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ABSTRACT
Adaptive query processing in large distributed systems has
seen increasing importance due to the rising environmen-
tal fluctuations in a growing Internet. We describe Ginga,
an adaptive query processing engine that combines proac-
tive (compile-time) alternative query plan generation with
reactive (run-time) monitoring of network delays. The core
of Ginga approach is the notion of adaptation space and
mechanisms for coordinating and integrating different kinds
of query adaptation. An adaptation space consists of a set of
adaptation triggers and a set of adaptation cases associated
with the triggers. Each adaptation case describes a specific
adaptation opportunity of the query execution when changes
to the runtime environment are detected. Our experimental
results show that Ginga query adaptation can achieve sig-
nificant performance improvements (up to 40% of response
time gain) for processing distributed queries over the Inter-
net.

Categories and Subject Descriptors
H.2.4 [Systems]: Query Processing; H.1.0 [Models and
Principles]: General.

General Terms
Design, Reliability, Experimentation, Performance.

Keywords
Query Adaptation, Distributed Query Processing.

1. INTRODUCTION
In contrast to the closed world assumption made by most of
conventional databases, advanced Internet applications op-
erate in an open environment that changes dynamically. In
particular, network bandwidth and latency fluctuate quite
unpredictably. The problem is aggravated for long-running
ad hoc queries and continual queries [12] that are executed
repeatedly, since significant changes in runtime environment
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can make any static query plan sub-optimal over time. Adap-
tive query processing has been recognized as an important
problem with significant research activity (see Section 6).

Most of the previously proposed approaches to adaptive
query processing can be classified [1] as either proactive (i.e.,
calculate the adaptation alternatives at compile time) or
reactive (i.e., find appropriate adaptations at run-time ac-
cording to environmental changes). In our adaptive query
processing engine, called Ginga, we combine proactive alter-
native query plan generation with reactive monitoring and
adaptation according to environmental changes.

Our first contribution in this paper is the adoption of the
Adaptation Space concept [9] to manage the proactive gener-
ation of query plans. These parameterized plans will service
as alternatives to react to unexpected shortages of runtime
resources. In addition to Adaptation Space, we also use a
systematic method based on feedback to monitor the run-
time environmental variables for significant changes. Using
Adaptation Space and feedback, we develop an integrated
adaptation methodology combining proactive and reactive
adaptive query processing, including policies and mecha-
nisms for determining when to adapt, what to adapt, and
how to adapt.

The second contribution of this paper is an experimental
evaluation of query adaptation trade-offs in the presence of
network delays. We show that by intelligent switching to
new query plans, we may increase concurrency to bypass
bottlenecks caused by network delays and latency fluctua-
tions. As a result, query response time can be improved up
to 40%. Our study evaluates both the gains as well as the
limitations of query adaptation. We observe that the net
gains of query adaptation are primarily due to the added
concurrent processing. However, adaptation gains are of-
ten bounded by other runtime resource constraints, such
as available memory. Our experimental results show that
Ginga is a promising approach for implementing query adap-
tation in open environments such as the Internet.

The rest of this paper is organized as follows. Section 2
motivates the Ginga approach using a real world example.
Section 3 presents an overview of Ginga system. Section 4
describes the experimental setup and Section 5 presents the
experimental evaluation results. We discuss related work in
Section 6 and conclude the paper in Section 7.

2. MOTIVATING EXAMPLE
Before describing the Ginga approach to query adaptation,
we discuss our experiences and observations obtained from
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Figure 1: Average response times measured every 15 minutes for 32 days (from 4/11/2002 to 5/13/2002)
between 8:00 and 22:00 EST. (a) Keyword query on “HIV” using PDB, SWISS-PROT, and NCBI Entrez;
(b) NCBI BLAST searches on nucleotide or protein sequences, matching a nucleotide or a protein sequence
found in HIV.

our participation in a DoE SciDAC1 multi-discipline research
initiative.

It is well known that there are more than 500 Bioinfor-
matic data sources accessible on the Internet. One of the
common applications of this growing number of Bioinfor-
matic data sources is the discovery of new drugs that may
efficiently treat serious diseases caused by virus such as Hu-
man Immunodeficiency Virus (HIV). As we describe next,
such applications will involve contacting different web ser-
vices that have unpredictable response times. The main
challenge in this scenario is to execute a user request over
these unstable remote services with expected responsiveness.
Example 1 (Concrete Application): Consider Next Gen-
eration Drugs (NGD), a company specialized in developing
state-of-the-art drugs. For each new drug that NGD starts
to develop, the first step is to gather all the needed in-
formation about the virus that the new drug will attack.
In general, this information describes the nucleotides, pro-
teins, and protein structures associated with the virus along
with assay results on how chemical compounds can affect
the virus proteins. Further information about the virus
can be obtained by performing BLAST (Basic Alignment
Search Tool) searches, which finds similar protein sequences
to those found in the virus. This information may be rel-
evant, for example, while determining what would be the
possible side effects of the new drug over other similar pro-
teins.

Typically, collecting the information described above will
require contacting remote web services such as NCBI En-
trez2 for data on nucleotides, SWISS-PROT3 for proteins,
PDB4 for protein structures, and NCBI BLAST5 for similar
protein sequences. However, the response time from these
web services can be very unpredictable as shown in Figure 1.
Even though NCBI Entrez has fast response time (in the or-
der of a few seconds), waiting for PDB results can take up

1http://www.science.doe.gov/scidac/
2http://www.ncbi.nlm.nih.gov/Entrez
3http://ca.expasy.org/sprot
4http://www.rcsb.org/pdb
5http://www.ncbi.nlm.nih.gov/BLAST/

to 34 seconds depending on what time of the day the query
request was posted to the site. Therefore, if the data col-
lected from different web services have to be combined or
integrated before delivering to the users, such difference in
response time could become costly. The situation may be-
come aggravated when NGD needs to execute this type of
queries repeatedly (practically, one for each new chemical
compound that can potentially affect the virus). The ac-
cumulative effect of these delays can significantly affect the
company’s productivity.

One possible solution that NGD may use is the Ginga
system, which uses the two-phase distributed query adap-
tation mechanisms in the presence of network delays and
latency fluctuations. Our experimental analysis shows that
the Ginga approach to query adaptation is efficient and ef-
fective.

3. SYSTEM OVERVIEW
Ginga6 query adaptation engine [13] is a distributed soft-
ware system that supports adaptive query processing. Like
the rhythm and movements of samba, with Ginga adapta-
tion engine we want to efficiently change the execution of a
query plan to keep up with the rhythm imposed by runtime
variations in the environment.

Ginga system architecture is depicted in Figure 2. Every
query submitted to Ginga is initially processed by the query
manager, which prepares the Ginga system for the perfor-
mance optimization process. One of the important tasks of
the query manager is query routing [10] of each user request.
Query routing is dedicated to prune those data sources that
cannot directly contribute to the answer of the query. After
query routing, each end-user query is transformed into a set
of subqueries associated with some execution dependencies.
Each subquery is targeted to one of the chosen data sources.

Ginga query adaptation engine combines a proactive en-
gagement phase, before query execution, with a reactive con-
trol phase during the execution. Before the query starts,

6Ginga is a Brazilian word typically used to describe a qual-
ity that a person needs to have when dancing samba, the
famous Brazilian rhythm.
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Figure 2: Ginga System Architecture.

Ginga builds an initial optimized plan using the resulting
queries from query routing and generates some alternative
execution plans that may be needed due to runtime varia-
tions in the environment. During query execution, Ginga
monitors the system resource availability through execution
progress, determines when to change the query plan and
how to adapt by choosing an alternative plan created in the
proactive phase.
Proactive Engagement Phase
Proactive engagement phase consists of two main steps. First,
Ginga builds an initial optimized query plan P0 using any ex-
isting query optimization algorithm for distributed databases
(e.g., [17, 15, 11]). Second, Ginga establishes a selection of
alternative query plans ({Pi, i = 1, . . . n}) for adaptation.
Since there are many potential alternative plans, we orga-
nize them into an adaptation space.

Adaptation Space Model
In this section, we informally present the key components
of the adaptation space model as applied to query adapta-
tion and illustrate the construction process of an adaptation
space that coordinates query adaptation in the presence of
network delays. Formal definitions for the adaptation space
model are presented in [9].

In general, an adaptation space consists of two main com-
ponents: the set of adaptation cases and the set of adapta-
tion triggers. In this paper, adaptation cases are the query
plans {Pi, i = 0, . . . , n}, each optimized for a set of envi-
ronmental parameters. An adaptation trigger is defined as
a quadruple < Pfrom, AT condition, Pto, wait time >. As-
suming that Ginga is currently executing the query plan
Pfrom, when AT condition (a significant runtime environ-
ment change such as network delay) happens, Ginga adapts
by making the transition from Pfrom to Pto. The wait time

component indicates for how long AT condition must hold
before the described transition takes place.

An adaptation space can also be viewed as a transition
graph – a lattice with nodes representing query plans and
edges representing the transition from one query plan to
another. Below, we illustrate the construction of an adap-
tation space by using the application scenario described in
Section 2.
Example 2 (Adaptation Space Construction): As-
sume that NGD uses Ginga to add query adaptation into
their query processing system. Now the queries from phar-
macologists can be processed more efficiently in the presence
of network delays. Suppose that a pharmacologists wants
to investigate new drugs to treat HIV. As a first step, she
needs to issue a query Q to gather the following informa-
tion about the HIV virus: nucleotides, proteins, and protein

structures associated with the virus along with the related
assay results. For illustration purposes, we assume that Q

is expressed in a SQL statement as shown in Figure 3(a).
However, any other query language, such as XQuery, could
very well be used instead.

In order to process Q, Ginga first identifies the bioinfor-
matic sources with the information needed (query routing)
and then generates the initial optimized query plan P0 (Fig-
ure 3(a)) to process Q. For simplicity, we assume that only
the following sources were selected to answer Q: NCBI for
nucleotides, SWISS-PROT for proteins, PDB for protein
structures, and RemoteLab for the related assay results7.
Also, assume that the expected transfer rate for the network
connection Li is Rate(Li) = 1Mbps, for 1 ≤ i ≤ 4. Ginga
will adapt the execution of Q whenever Rate(Li) drops be-
low w × 1Mbps, 0 < w ≤ 1.

The construction of an adaptation space for executing Q

has three main steps. First, we generate P0 and record the
assumptions made about the runtime environment used for
optimizing P0. Second, we create the important network de-
lay scenarios (AT conditions), when adaptation is needed to
recover from the consequent execution delay. Third, we con-
struct the transition graph by generating the needed query
plans for each AT condition. The result is shown in Fig-
ure 3(b). P0 is at the top (labeled as ac initialP ) and the
other nodes represent alternative query plans when network
delays occur.

It is important to note that it is unrealistic to construct
an adaptation space covering all possible adaptation cases.
A more realistic approach is to generate adaptation cases
for only those runtime environment changes that are known
to occur with a frequency above a realistic threshold.

Reactive Control Phase
The reactive control phase takes as input the associated
adaptation space for the query Q being executed and initi-
ates the monitoring of AT condition specified in Q’s adap-
tation triggers that are relevant to the current query plan
Pfrom (e.g., transfer rate of network connections). The
adaptation process is triggered when at least one AT condi-
tion becomes true (e.g., network delay). We call the transi-
tion from plan Pfrom to Pto an adaptation action.

In general, there are two kinds of AT conditions: content-
based event push and time-based event push. With content-
based event push, the evaluation of AT condition period-
ically observes and records the environmental parameters
specified in the AT condition. If an AT condition becomes
true for more than wait time, the adaptation process to
switch the query plan to Pto starts. With time-based event
push, Ginga (reactive control phase) sets a timeout for each
remote data sources (e.g., long initial connection cost). If
timeout happens, a network delay is detected directly. In
the current prototype of Ginga, we use the wait time as the
timeout value for detecting network delays. In case multiple
AT conditions become true, the time-based event push has
higher priority due to its immediate validity.

We now describe the concrete adaptation actions taken
by Ginga to cope with network delays caused by slow deliv-
ery, a possible runtime environment change. Upon detect-
ing slow delivery, Ginga first reacts by scheduling adapta-
tion actions that involve materializing independent subtrees

7In this example, we assume that NGD has many different
labs geographically distributed, where each lab has its own
database of assay results.
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Figure 3: (a) Query Q for collecting information on HIV and (b) associated adaptation space for Q.

from the original query tree while continuing to process the
data retrieval through the slow network connection8. When
no more independent subtrees can be materialized and the
problematic connection is still slow, Ginga schedules adap-
tation actions that create and materialize new joins between
the relations that were previously materialized.
Example 3 (Adaptation Action): Suppose that as Ginga
initiates the execution of query plan from Figure 3(a), slow
delivery is detected on connection L1. In order to cope
with this network delay, Ginga schedules the first adapta-
tion action to start plan P11, which concurrently materializes
the the search results from SWISS-PROT (MatRel(SWISS-
PROT)). If Ginga finishes processing NCBI search results
while concurrently running MatRel(SWISS-PROT), then no
further adaptation is necessary. Otherwise, another adapta-
tion action should be scheduled. In this example, the new
query plan P12 (Figure 4) starts concurrently the materi-
alization of join between the search results from PDB and
RemoteLab (MatJoin(PDB, RemoteLab))9.

When there are no more independent query subtrees from
the original plan to be materialized and Ginga still has not
finished processing NCBI results, the next adaptation action

8We call independent subtree a query subtree from the origi-
nal plan that does not depend on the input from the delayed
source.
9The materialization operations in each plan are numbered
in the order they should be executed.

is to start with joins. In this example, the new query plan
P13 will create and materialize a new join with the relation
and join results that P12 materialized. In order to avoid
Cartesian products, Ginga creates new joins by following
the query graph associated with P0.
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Figure 5: (a) Initial optimized plan P0 used for the experiments on network delays.; (b) Adaptation actions
for coping with delays on network connection LA.

4. EXPERIMENTAL SETUP
For all experiments reported in this paper, we use a simula-
tor (based on the CSIM toolkit) that models a client-server
system with one client running Ginga and seven remote data
servers. We assume that the servers are not handling any
workload other than responding to Ginga requests.

Table 1 lists the main parameters used for configuring the
simulator. Client and server machines have the same hard-
ware configuration. Disks are modeled as FIFO queues. We
model the network as point-to-point communication links
between the client and each data server. Network connec-
tions are independent of each other, in the sense that the
failure of a connection does not affect the others. The nor-
mal bandwidth of each connection is 5Mbps and degrades
to 500Kbps, 256Kbps, and 128Kbps.

For our experiments, we use the initial query plan P0 de-
picted in Figure 5(a), where each remote source is expected
to return 10,000 objects of 200 bytes each. We use a bushy
tree because it allows us to fully investigate all aspects of
Ginga adaptation engine. Nevertheless, similar results were
obtained for left-deep and right-deep query trees.

We assume that relations can be equijoined in any order,
always on the same attribute. We consider two sizes of mem-
ory for executing the query at the Ginga site: limited and
unlimited. With limited memory, all operators are executed
with the minimum memory requirement, while with unlim-

ited memory the operations are executed at their optimal
performance. For example, in a hash-join between relations
R and S the minimum and maximum memory requirements
are respectively 2

�
|R| × F and |R| × F , where |R| < |S|

and F represents the overhead factor due to the hash struc-
ture [16].

Table 1: Simulation Parameters
Parameter Value Description

Speed 100 CPU speed (MIPS)
PageSize 8192 disk page size (bytes)
SeqIO 3.5 per disk page for sequential I/O (msecs)
RandIO 11.8 per disk page for random I/O (msecs)
DiskIO 5000 instructions to start a disk I/O
NBandw 5 network bandwidth (Mbps)
Move 2 instructions to move 4 bytes
Comp 4 instructions to compare keys
Hash 25 instructions to hash a key

5. EXPERIMENTAL RESULTS
In this section, we report the results from our study on
the performance characteristics of Ginga’s reactive control
phase. We first investigate the effectiveness of Ginga while
coping with network delays. Then, we introduce errors to
the selectivity of the newly created joins to explore the per-
formance boundaries of Ginga System.
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Effectiveness Analysis of Ginga Adaptation to Net-
work Delays

The graph in Figure 6(a) shows the response time of Ginga’s
adapted plans when slow delivery is first detected in three
different situations while retrieving data from Source A: (1)
at the beginning, (2) after 50%, and (3) after 75% of pages
were received without delay. Once the delay is detected, we
assume that the data is slowly delivered under a degraded
rate Rate(LA) = 128Kbps. The duration of the slow de-
livery is represented by the x-axis. The response time of
the original plan (without adaptation) is represented by the
dotted line. For the experimental results reported in this
section, we assume that all intermediate results have 5,000
objects and the query is executed under limited memory size.

As we can see from the graph from Figure 6(a), the bene-
fits of adapting the query execution in the presence of slow
delivery are significant. This fact is illustrated by the “stair-
case” lines for the case when the adaptation process is used.
The horizontal length of each step in each adaptation line
represents the amount of slow delivery that each alterna-
tive query plan can absorb after Ginga schedules it. The
height of each step shows the response time of the adapted
query execution if Rate(LA) resumes to its expected data
transfer rate of 5Mbps after a period of observed slow deliv-
ery. The label in each step indicates the query plan being
used. A description of all alternative plans are depicted in
Figure 5(b). For short duration of slow delivery (less than
4 seconds), Ginga can practically maintain the same query
response time as the initial plan when executed without de-
lay. This can be observed from the solid line in Figure 6(a).
However, this scenario does not occur for the ‘50%’- and
‘75%’-lines. In fact, in these two cases, for slow delivery
with very short duration the response time with adaptation
is worse than the response time with no adaptation. We are
currently investigating mechanisms to avoid this anomaly.

For slow delivery duration longer than 4 seconds, Ginga’s
query adaptation is beneficial even when network delays are
detected after 50% and 75% of pages were downloaded with-
out delay. The longer the duration of slow delivery, the more
processing can be done concurrent while downloading the
slow data. However, we observe that there are a few mo-
ments when using adaptation can result in a query response
time that is almost as bad as no adaptation. One of these
moments can be observed at 5 seconds with the ‘50%’-line.

The improvements provided by Ginga adaptation process
is limited by the number of alternative query plans. When
it is no longer possible to fully process the slow data while
executing the sequence of materialization operations from
query plan P7a, there is nothing left to be done other than
process the slow data as it arrives. This explains why after
65 seconds of slow delivery the solid-adaptation line becomes
parallel to the no adaptation line. However, Ginga adapta-
tion is still beneficial even though it can no longer absorb
all the slow delivery.

The number of needed alternative query plans is reduced
according to when the slow delivery is first detected and how
seriously the Rate(LA) is degraded. From the ‘75%’-line in
the graph of Figure 6(a), we can clearly see that Ginga adap-
tation process uses only up to query plan P3a. This occurs
because when the network delay is detected there are only a
few pages left from A that need to be processed concurrently
with the sequence of scheduled materializations. In other
words, less critically the Rate(LA) is degraded and later the
slow delivery is detected, fewer the alternative query plans
that are needed.

Figure 6(b) shows the comparative benefits of using Ginga
versus no query adaptation when slow delivery is first de-
tected at the beginning under three different degraded rates
for connection LA: 128Kbps, 256Kbps, and 500Kbps. The
x-axis represents the number of pages delayed, and the y-
axis represents percentage of improvement in response time
obtained by using Ginga. As we can see from the graph, in
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Figure 7: Ginga’s performance under different result sizes for the newly created joins. (a) Limited Memory

; Normal Rate = 5Mbps ; Degraded Rate(LA) = 128Kbps; (b) Unlimited Memory ; Normal Rate = 5Mbps ;

Degraded Rate(LA) = 128Kbps.

this experiment Ginga can provide up to 40% of improve-
ment on the query response time when compared with the
no adaptation case.

The spikes in each curve in Figure 6(b) represent the mo-
ments at which Ginga switches plan. When there are no
more alternative plans to schedule and the number of pages
delayed increases, the response time improvement due to
adaptation starts to gradually decrease. This occurs be-
cause the last scheduled plan can no longer fully absorb the
processing of the slow data. Line ‘128Kbps’ represents this
scenario. In contrast, for the ‘256Kbps’ and ‘500Kbps’ lines,
Ginga never experiences a situation where the alternative
query plans cannot fully absorb the slow delivery.

The results from the experiments with slow delivery de-
tected for the other network connections of query plan P0

(Figure 5(a)) are similar to the results described so far in
this subsection. Due to space limitations, we omit these re-
sults.

Ginga Performance Boundaries
We now analyze Ginga’s performance boundaries when sig-
nificant variance is observed for the selectivity of the newly
created joins used by some of the alternative query plans.
We consider two situations: when the memory is limited and
when memory is unlimited. With limited memory, some of
the query plans require a large number of disk I/Os which
can lead Ginga to worse performance than no adaptation.
On the other hand, with unlimited memory, I/O costs are
not incurred, but CPU power processing can be a bottleneck
for Ginga’s adaptation process.

Figure 7(a) shows the experimental results under limited
memory when newly created joins used on query plans P4a,
P5a, and P6a (see Figure 5(b)) produce 5,000; 25,000; and
50,000 objects. The ‘5,000’-line in the graph represents
the situation studied previously. For new joins resulting
in 25,000 objects, the response time with adaptation is still
acceptable. However, when compared with the ‘5,000’-line,
the response time for 25,000 objects increases significantly

(up to 32%) because for each new join, it is necessary to
partition the relations due to the limited memory size. This
situation is aggravated when the new joins produce 50,000
objects. In this case, there are moments when the response
time with adaptation becomes worse than the response time
with no adaptation. In other words, this means that wait-
ing for Rate(LA) to resume to its expected rate is better
than adaptation. Similar results were obtained for differ-
ent degraded rates and having slow delivery first detected
at different moments.

Figure 7(b) shows the experimental results under unlim-
ited memory, which are analogous to the results in Fig-
ure 7(a). By assuming unlimited memory size, all the joins
are executed in main memory eliminating I/O costs. How-
ever, note that unlimited memory still does not prevent the
‘5,000’-line from crossing the no-adaptation line. Intuitively,
from this result, we conclude that Ginga’s adaptation pro-
cess is not only memory bounded, but also CPU bounded.
Adapting the query execution to memory and CPU con-
straints is part of our ongoing research study.

6. RELATED WORK
Adapting the execution of queries due to changes to the run-
time environment parameters has been an important area of
research, starting from early 90’s [6, 5], and continuing to
today [2, 1, 7, 8, 3, 4]. Depending on when the adaptation
takes place, previous approaches to query adaptation can be
broadly categorized into proactive and reactive methods [1].
Proactive methods adapt query execution at start-up time
(i.e., while loading the query plan to be executed) based
on the current runtime environment, while reactive meth-
ods adapt the query execution at runtime by reacting to
runtime environment changes. In contrast, Ginga combines
proactive and reactive adaptation.

Two classical proactive adaptive methods are Volcano Dy-
namic Plan [5] and Parametric Optimization [6]. Volcano
Dynamic Plan uses choose-plan operators to enable the op-



timizer to cope with the inability to precisely estimate all
the resource parameter values at compile-time. Paramet-
ric Optimization attempts to generate one optimized query
execution plan for each possible combination of values for
the resource parameters that are unknown at compile-time.
In comparison, Ginga can use these methods in the static
query plan generation phase. In addition, Ginga has run-
time reactive adaptation.

Two reactive methods closely related to Ginga are Query
Scrambling [1, 2] and Dynamic Scheduling Execution (DSE)
[4]. Query Scrambling uses materialization and operator
synthesis to adapt the execution of distributed queries in
the presence of network delays. The reactive method imple-
mented by the DSE also adapts the execution of distributed
queries in the presence of network slow delivery. In com-
parison, Ginga uses a unified framework (adaptation space
model) to support both proactive and reactive adaptation.
Ginga’s framework is powerful enough for us to study not
only query adaptation to network delays, but also query
adaptation to memory and CPU constraints.

There are several other approaches to reactive adaptive
methods. Mid-query re-optimization [8] attempts to re-
optimize the query execution whenever a significant differ-
ence between estimated and observed values for the resource
parameters is detected at runtime. The Tukwila project [7]
proposes query (re-)optimization based on rules defined over
possible runtime environment changes. Eddies [3] suggests
the re-ordering of operators in the presence of configuration
fluctuations of the runtime environment during query ex-
ecution. While these projects propose more sophisticated
mechanisms to support adaptation, Ginga uses a unified
simple model and feedback-based monitoring mechanism to
support both proactive and reactive adaptation using the
existing relational operators.

7. CONCLUSION
Adaptive query processing is an active research area that has
received considerable attention (see Section 6) due to the in-
creasing openness of information systems such as Internet,
where sudden changes such as network delays are common.
Most of the previously proposed approaches can be classified
into proactive (compile-time or start-up time generation of
foreseeable query plans) or reactive (runtime adaptation ac-
cording to actually observed environmental changes). In this
paper, we described Ginga, an adaptive query processing en-
gine that combines proactive generation of query plans with
run-time monitoring and reactive switching of query plans.
We evaluate the effectiveness of Ginga primarily under net-
work delays, with particular attention to slow delivery, a
common problem that has received little attention previ-
ously.

At compile-time, Ginga uses the Adaptation Space con-
cept to organize alternative query plans, generated for the
main cases of network delays. At runtime, Ginga relies on
feedback mechanisms to monitor the query execution to de-
tect environmental changes. Our experimental evaluation
shows that Ginga achieves almost always significant perfor-
mance improvements compared to no adaptation.

Our results show that Ginga holds promise both as an
approach and as a system for adaptive query processing.
Ginga is a good approach since Adaptation Space supports
a variety of adaptation actions through a uniform frame-
work. Ginga is a good system due to the effectiveness of

its adaptation policies and mechanisms, as demonstrated
by our experimental evaluation. We are currently extend-
ing the Ginga work to study other kinds of system resource
constraints (e.g., CPU and memory) and their interactions
with network delays.
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