
Project Proposal

Philippe David Ariel Vardi

February 16, 2006

1 Motivation and objectives

In only 5 years, the Massively Multiplayer Online Games (MMOG) have become
the fastest growing segment of the gaming industry. At first, reserved to only the

hardcore gamers, the market has increasingly reached a broader portion of the

market. The latest MMORPGs boast thousands and thousands of users playing
simultaneously on a same world. The antique Client/Server architecture tends

to show its limits with such a number of clients. The bandwidth requirement is
huge, as well as the CPU resources needed to process the tremendous amount

of data in real time. However, an analysis of the traffic on the client side shows

a very low bandwidth needed compared to other real-time games like the now
famous Counter-Strike. This lead us to think that MMOGs could very well be

implemented as P2P applications. Indeed, the low bandwidth, and the nature

of the data transferred make this kind of game the ideal application for a dis-
tributed system.

However, despite the obvious drawbacks of a client/server architecture for

this kind of applications, it also has numerous advantages. It namely enable the

company hosting the server to have a very strong control over what is happen-
ing in the world they have created. Indeed, the centralized server receives all

the data sent by all the players connected to the world which would not be the

case in a P2P architecture.

Several concerns are raised by a P2P architecture. How can we prevent play-
ers from cheating? How can we guarantee a uninterrupted experience to the

user when one of the peers fails and is removed from the network? How can we

keep the gamestate consistent through all the peers in a decentralized architec-
ture? And finally, how can we make sure that the network latency between the

peers won’t affect their experience?

These are all the issues that we will try to address in our study.

1



2 Related works

[1] and [2] provide several traffic figures and analysis. One of the most impor-
tant result is about the spacial and temporal locality of information exchanged.

Based on the fact that most of the traffic to and from players contains informa-
tion that has an impact on players and objects in a close area around the player,

[3] presents a commonly used technique to decentralize the communications in

MMOGs which is to partition the world into multiple regions. All players in a
particular region will communicate which each other to spread the information

about who is doing what. This way, the most intensive activity of the central

server is decentralized among playing peers. Doing this is not without issues,
one of them being keeping a consistent game state among players. In a central-

ized solution, the server make everything move at a fixed heart beat and is able
to detect conflicting actions. In a decentralized solution, this is very tricky since

when a player receives a message from another player, the message was sent a

few ms before. This can lead to a lot of inconsistency of the game state among
players. For example if two players go toward a same point, they will most cer-

tainly receive a message saying that the other player is at the same point before

detecting a collision.

[4] introduced and tested a robust solution based on a responsible node in
each region, with backup nodes and an adaptive tree-like communication when

the number of nodes increase in this region. This solution meets the expecta-

tions in terms of scalability, as it provides very goods performance results and
does not suffer from the game state consistency problem. However it does not

address one of the issue introduced by giving high responsibility to a few nodes,

which is security and preventing these nodes from altering data.

[5] introduce what they call booster boxes which are trusted servers run
within the ISPs installations. This solution gives good latency results and the

server is trustable but since the expensive communication goes through the

trusted servers, their capacity must be scaled along with the number of play-
ers. This could eventually divide the prices of these costly servers among the

game companies and ISPs but does not produce a solution that scales easily and

automatically with the number of players.

[6] explored several multicast solutions to spread data in a region, based

on minimum spanning trees and steiner minimal tree in networks with sev-
eral heuristics. The game state consistency issue is addressed by using proxies.

However his conclusion is that none of these multicast techniques is ideal for
MMORPGs, so better heuristics has to be found.

2



3 Plan of action

We plan to develop an infrastructure with a simple server holding persistent
data about the world and characters and clients that are able to act very simply

in this world with respect to the rules. We chose to study two topologies, both
based on the partition of the world and a group of peers in each region.

The first topology will be based on [4]: a responsible node in each region
with backup node. Our goal is to study what power and bandwidth capacity a

peer should have to be elected responsible or backup node and what percent-

age of players need to meet this capacity in order to have enough peers that can
play these roles in the game. We will also research how to make this solution

secure if the responsible node or its backup nodes try to cheat.

Figure 1: Topology 1

The second topology will be based on [6]: each group of peers in a region
use a more decentralized communication style. The study will focus on the

topology that can be used to keep a low latency and a coherent game state.

We plan to develop a design in which peers communicate directly with

their closest neighbors and accept to receive information about further players

through a few hops. To prevent inconsistency in the game state, one or several
proxies in each region will interact with the concerned peers when some poten-

3



Figure 2: Topology 2

tial conflicts are detected. Determining the exact topology to achieve this is part

of the project.

In these two options we will also study what the optimal number of peers

are in each region, and how much bandwidth these solution require for each

peer or type of peer.

Our project will span on 9 weeks starting from February 16th and ending on
April 20th.

• Week 1: Finalization of the specifications

• Week 2: Design of the data structures

• Week 3-4: Design and implementation of the client/server

• Week 5-6-7: Design and implementation of the sub-servers, dynamic load
balancing, trust grading mechanism

4



• Week 8-9: Test and writing of the final report

The project will be written in Java and will be hosted if possible on a cluster

hosted by Georgia Tech. Otherwise, our personal machines will be used.

4 Evaluation and Testing method

During the last two weeks of our project, we will evaluate the efficiency of our

solution in terms of network usage, CPU load, as well as cheating prevention.

A comparison between our architecture and a more traditional one will be

done. We will then see if we have been able to improve the efficiency of the

system while preserving the coherence of the game-state and by preventing
cheating.

To measure network usage, a solution based on the tcpdump tool will prob-

ably be used. Several cases of network failure will also be simulated in order

to test the resiliency of our system. The CPU load will be measured on every
type of peer and be compared to the client and server CPU load on a traditional

architecture. Finally, we will see how our application behaves when a player

tries to cheat.

5 Bibliography

1. Traffic Characteristics of a Massively Multi-player Online Role Playing

Game, Jaecheol Kim, Jaeyoung Choi, Dukhyun Chang, Taekyoung Kwon,
Yanghee Choi, Eungsu Yuk

2. Game Traffic Analysis: An MMORPG Perspective, Kuan-Ta Chen, Polly

Huang, Chun-Ying Huang, Chin-Laung Lei

3. Peer-to-Peer Support for Massively Multiplayer Games, B. Knutsson, H. Lu,

W. Xu, B. Hopkins

4. A Distributed Event Delivery Method with Load Balancing for MMORPGs,

Shinya Yamamoto, Yoshihiro Murata, Keiichi Yasumoto and Minoru Ito

5. Network Infrastructure for Massively Distributed Games, Daniel Bauer,

Sean Rooney, Paolo Scotton

6. Game State and Event Distribution using Proxy Technology and Applica-
tion Layer Multicast, KnutHelge Vik

5


