Infososphere:
Smart Delivery of Fresh Information

Calton Pu
Professor and John P. Imlay, Jr. Chair in Software
Georgia Institute of Technology

with
(OGI) Walpole (GT) Liu, Schwan, Abowd

© 2000 Calton Pu
DARPA/ITO Expeditions

- MIT’s Oxygen project (Sci. Am. 99/08)
- UC Berkeley’s Endeavour (Wired 00/01)
- CMU’s Aura project
- Washington’s Portolano project (with Xerox PARC)
- Georgia Tech & OGI’s *Infosphere* project
Moore’s Law

- Gordon Moore, computer pioneer
 - CPU speed doubles every 18 months
 - Memory density doubles every 18 months
 - Disk storage density doubles every 12 months

- Computers almost free
Network Is The Computer

- Next generation Internet
 - OC12 (622 Mb/s) connections

- Wireless networks
 - Megabit/second wireless connections

- Computer interconnects
 - Gigabit Ethernet, affordable clusters

- *Networks almost free*
Network Everywhere

- High speed backbone wide area networks
 - Next generation Internet around the world
- Metropolitan and local area networks
 - Wired example: Portland, Oregon
 - Wireless: cellular networks, satellites
- Home and personal networks
 - Bus-based smart homes, Bluetooth
Computers Everywhere

◆ Traditional computers
 • Mainframes, desktops, notebooks, etc

◆ Embedded systems
 • Cars, PDAs, cell phones, smart appliances
 • Micro-electronic mechanical (MEM) systems

◆ Smart environments
 • Sensors, automated controls, monitoring
Ubiquitous Computing

- Plenty of computers
 - Are Everywhere
 - Know Everything
 - Almost Free

- Scarce resource is human
 - User attention span
 - Programmer time
Information Growth

Storage capacity growth
- Disk capacity sold per year: Exabytes

Information content growth
- All of human published information: Exabytes
- Computer-generated information: web robots
- Sensor-generated information
Infosphere Focus Area

- Too many heterogeneous sources
- Too much data
 - Internet data
 - Digital Earth (100TB/day)
 - Smart Dust sensors (thousands p/km2)
Traditional Computer Science

- Computational models
 - Theory: finite state machines, Turing machines
 - Programming languages: programs
 - Operating systems: processes
 - Computer architecture: instruction sets
- Distributed computations scale poorly
 - Example: agreement protocols
Information Flow Computing

- Internet applications are primarily *information flow applications* (DL, EC)
- Networking success
 - Massive information delivery, QoS
- Historical examples (centralized systems)
 - Dataflow machines in computer architecture
 - Dataflow diagrams in software engineering
 - Unix pipes
Comp. Models & Info Flow

- Focus on algorithms
 - Distributed programs
 - Global algorithms
 - Scalability problems

- Info flow “on the side”
 - Implicit or separate description of I/O

- Localized algorithms
- Global info flow
 - Flow composition
 - Composable properties

- Focus on info flow
 - Explicit description of syntax, semantics, and QoS properties
Infosphere Meta-Approach

◆ Focus on distributed information flow
 - In contrast to computation-centric computing
 - Infopipe as the central abstraction
 - Hypothesis: composable, predictable, scalable distributed software systems

◆ Missing link: the systems software
 - OS kernel, middleware, data management
Problem: too many sources, too much information

Infosphere

Clean, Reliable, Timely Information, Anywhere

Personalized Filtering & Info. Delivery

Resource Adaptation

Property Mgmt

specialization

Continuous Queues

Information Quality

Microfeedback

Infopipes

Internet: Information Jungle

Digital Earth

Sensors
Infopipes: Backbone of Infosphere

Research Challenges:

- Property preserving composition of Infopipes
- Timely delivery of high quality fresh information
Infopipe Abstraction

- Several reasonable definitions
- Component Infopipes
 - Ends: Typespec, property specifications
 - Middle: processing, buffering, active
- Composition of Infopipes
 - End-to-end property preservation
 - Multiplex ends and middles
Impact on OS Research

- Computation-centric
 - Process abstraction
 - Inter-process communications
 - Synchronization
 - Memory and I/O are “on the side”

- Information-driven
 - Infopipe abstraction
 - Infopipe connection and composition
 - Flow control
 - I/Os are natural flows
Impact on DB Research

- Traditional DB
 - Focus: data reservoir
 - Closed world
 - Homogeneity and slow evolution
 - Static control (DBA)
 - Data warehouse

- Infosphere/Infopipe
 - Focus: data flow
 - Link to real world
 - Heterogeneity and rapid changes
 - Dynamic adaptation
 - Fresh information

Person. Filtering
Preserv. Info Quality
Fresh Information Applications

◆ Near Term
 - Georgia Tech Aware Home
 - I/O-Intensive embedded systems

◆ Long term
 - Electronic commerce
 - Personal guidance
 - Environmental observation and forecasting
Georgia Tech Aware Home

♦ GRA, other funds
♦ Many sensors
 • 20 video cameras
 • microphones, vibes, …
♦ Big backend
 • 2 Gigabit connections
 • 128-CPU cluster
♦ Real-time sensor information laboratory
Aware Home Projects

◆ Ubiquitous sensing
 - Recognize people based on their footsteps
 - Multiple camera/multiple person tracking
 - Sensor fault-tolerant scene modeling

◆ Potential applications
 - Long term elderly care
 - Emergency rescue missions
Classic Embedded Systems

- Embedded = Closed
 - Small, independent, self-contained
 - Custom hardware and custom software
 - Small footprint, predictable performance, reliability

- Closed = Limited Evolution
 - Limited hardware and software life expectancy
 - Each generation is a new product
I/O-Intensive Embedded Systems

◆ Computers and communications
 • Sensor-actuators, PDAs, remote control
 • Network is the embedded system

◆ Network embedded software requirements
 • Traditional: small footprint, reliability, predictable performance
 • New: composability, adaptability, extensibility, end-to-end performance
3-Tier Client/Server Today
N-Tier Systems Tomorrow

Infotaps & Fat Clients

Variety of Servers

Sensors

Many sources

Database Server

Email: Calton.Pu@cc.gatech.edu
E-Commerce Applications

- N-Tier electronic commerce systems
 - Predictable end-to-end latency
- Logistics, real-time decision support
 - Predictable, reliable, real-time information flow
 - Recovery from faults, accidents
 - Adaptation to environmental changes
Personal Guidance Today

- Tele Aid (Mercedes) and OnStar (Cadillac)
 - Cell phone link
 - GPS navigation
 - Human operator
- Palm VII
 - Radio link (cities)
 - Simple web browser
Personal Guidance Tomorrow

- Traffic-aware road navigation
 - Car receives news, suggests alternative routes

- Cell phones with GPS, WAP
 - Heidelberg tour guide, Digital Kyoto
Environ. Observation & Forecast

- Columbia River
 - 2nd in No. America
- Observe (nowcast)
 - 12 data stations in Columbia River Mouth
- Calculate (forecast)
 - Observation-driven model of unpredictable environments
Tomorrow’s Precise Forecasts

◆ Many sensors everywhere
 ● Video cameras, MEMs, satellites, ...

◆ Weather-adaptive applications
 ● Safe river and shallow water navigation
 ● Disaster prevention in precision farming
 ● Airline crew and airplane optimization

◆ Monitoring of environment
 ● Amazon illegal timber traffic detection
Infosphere: Current State

- **Infopipe basic research**
 - Infopipe concepts and specification (ISL)
 - Infopipe “stub generators” (ISL compiler)

- **Infopipe technology development**
 - Personalized filtering (Continual Queries)
 - Middleware Infopipes (Event Channels)
 - Kernel QoS Support (Quasar/Microfeedback)
Infopipe Concepts

Serial
(1 source, 1 sink)

Multiplex
(n sinks)

Demultiplex
(n sources)

Buffer
(storage)

Filter
(transformation)
Infopipe Specification

- Syntax of info flow
 - Java class, C record
- Semantics of info flow
 - Currently XML (placeholder)
- QoS requirements of info flow
 - Performance (bandwidth, latency, jitter)
 - Security (level of encryption)
Infopipe “Stub Generators”

- Translate the Infopipe specification into executable code and OS run-time support

![Diagram showing the process from XML parser to XML generator](image)

(1) XML parser
(2) DOM tree
(3) User function
(4) DOM tree
(5) XML generator

Input-end

Output-end

Calton.Pu@cc.gatech.edu
InfoFilters

♦ Personalized filtering
 • Interesting, important, urgent (IIU)

♦ Continual Queries
 • Monitoring of IIU updates on the Internet
 • Event-based filtering of new information
 • Pro-active delivery of IIU information
Recent InfoFilter Results

- **WebCQ**: web update monitoring
 - Built on OpenCQ
 - Currently a service
- **XWRAP Elite**: Wrapper generator
 - Semi-automated generation of wrapper code

http://www.cc.gatech.edu/~lingliu

[Diagram with arrows and boxes for WebCQ, HTML, Wrapper, and Infopipe]
Middleware Infopipes

- Event channels as InfoEvents
 - Publish/subscribe
 - Push/pull
- Quality of Service
 - Performance, security, availability, ...
 - Freshness, timeliness
Recent InfoEvent Results

◆ **DataExchange** software release
 - BPIO: Low-overhead data interchange format
 - ECho: Event Channel code generator
 - JECho: Java Event Channels
 - Heterogeneous distributed platforms

◆ **Event channels** as InfoEvents
 - QoS being added: real-time, security, etc...
Real-Rate Infopipes

◆ Support applications w/ real-world events
 ● Sensor-actuator control and sensor information
 ● Routers and active network nodes
 ● Multimedia (bandwidth, latency, jitter)

◆ Rate-matching and quality degradation
 ● Real-rate OS kernel research
 ● Microfeedback-based adaptive mechanisms
 ● Utility-based QoS degradation policies
Recent Real-Rate OS Results

- Video Camera
- Wireless Internet Connection
- Pentium Motherboard, 233MHz, 128MB RAM, no disk.
- 28V battery pack, power supply, serial-port driven servo controller, steering servos and speed control.
Current Collaborations

- Georgia Tech and OGI
- Specialization of systems software
 - France: INRIA, IRISA, Univ. Bordeaux
 - Japan: Univ. Tokyo, Univ. Tsukuba
- Info flow software, Internet data mgmt
 - Germany: GMD/IPSII
 - Japan: Sony Corp.
Infosphere Summary

- The ubiquitous computing vision
 - Many computers everywhere, out of the way
 - Too many sources, too much data

- Systems software missing link
 - Information flow perspective
 - Composing Infopipes w/ predictable properties
 - Smart delivery of fresh information
Fresh Information On the World