Sub-band Coding for Digital Audio Compression

Matthew Crowley, Sheldon Bedasse, Preston Burden, Faik Baskaya
\{gtg865e,gtg016w,gtg521u,gtg857i\}@mail.gatech.edu

Introduction

Digital Audio Compression:
-Reduces memory and bandwidth requirements for audio information -Used in various applications: cell phones, popular music media (mp3), etc. Sub-band Coding:
-Decomposes a signal into critical subbands
-Quantizes each sub-band depending on its significance in the overall signal
$>$ Significant sub-bands are processed with higher bit-rates

Audio Input>>Analysis Filter>>Down-sampler>>Quantizer>> Up-sampler>>Synthesis Filter>>Audio Output

Background

Advances in digital audio compression led to the development of MPEG Standards:
-MPEG is an international group that created standards for compression of digital media
-MPEG layers 2 and 3 achieve a reduction factor of 12 without any noticeable loss in quality

Methods

For each critical sub-band:

- Synthesize filters

-Find significance

- Design quantizers

$$
S_{i}=\frac{1}{f_{i}-f_{i-1}} \int_{C} P(f) d f
$$

Quantizer wordlength $\left.=\frac{S_{i}}{\sum S_{i}} \right\rvert\,$ Total wordlength

Results

-We applied this system to a 48000 Hz speech signal:

-As we increase total wordlength of quantizers, total error drops

-We observe different quantization wordlengths in each sub-band:
$\begin{array}{lccccccc}\text { quantizer: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { bits: } & 5 & 31 & 24 & 4 & 0 & 0 & 0\end{array}$
freq: 2010025050010002000800016000

Conclusion

- Sub-band decomposition is one of the steps of digital audio compression.
-Each critical sub-band has different significance
-Processing each sub-band separately allows to reduce bit-rate w/o considerable quality loss

Future Work

-Reduce bit-rate further by integrating down-samplers and up-samplers
-Integrate post-synthesis filters
-Develop an MP3 encoder-decoder in software

- Explore hardware implementation possibilities

Georgia Tech
intel

