

Sub-band Coding for Digital Audio Compression Matthew Crowley, Sheldon Bedasse, Preston Burden, Faik Baskaya

Introduction

Digital Audio Compression: Reduces memory and bandwidth requirements for audio information •Used in various applications: cell phones, popular music media (mp3), etc. Sub-band Coding:

•Decomposes a signal into critical subbands

•Quantizes each sub-band depending on its significance in the overall signal

Significant sub-bands are processed with higher bit-rates

Audio Input>>Analysis Filter>>Down-sampler>>Quantizer>> Up-sampler>>Synthesis Filter>>Audio Output

Background

Advances in digital audio compression led to the development of MPEG Standards:

•MPEG is an international group that created standards for compression of digital media

•MPEG layers 2 and 3 achieve a reduction factor of 12 without any noticeable loss in quality

•Find significance

• Design quantizers

{gtg865e,gtg016w,gtg521u,gtg857i}@mail.gatech.edu

Methods

		- O ×				
🛛 🖸 妃 🏶 🙁	1 🕞 🛞 😡 🚯 🕅					
cifications						
Mag. (dB)						
-	Anass	T				
	T Pass					
		A _{stop}				
		<u>+</u>				
0	F ['] pass F ['] stop	Fs/2 f(Hz)				
er	Frequency Specifications	Magnitude Specifications				
fy order: 10	Units: Hz	Units: dB				
ım order	Fs: 48000					
an order		Apass 1				
	Fpass 9600	Astop 80				
actor: 20	Fstop 12000					
Deste	ns Eliter					
Design Hiter						

Hz speech signal:

quantizers, total error drops:

•We observe different quantization wordlengths in each sub-band:

quantize	r: 1	2	2	3 4	1 5	5 6	5 7
bits:	5	3	1 2	24 4	4 C) (0
freq:	20 1	100	250	500	1000	2000	8000 1

