MB++: An Integrated Architecture for Pervasive Computing and
High-Performance Computing

David J. Lillethun
davel@cc.gatech.edu

David Hilley
davidhi @cc.gatech.edu

Seth Horrigan
katana@cc.gatech.edu

Umakishore Ramachandran
rama@cc.gatech.edu

Abstract

MB++ is a system that caters to the dynamic needs of
applications in a distributed, pervasive computing environ-
ment that has a wide variety of devices that act as produc-
ers and consumers of stream data. The architecture en-
compasses several elements: The type server allows clients
to dynamically inject transformation code that operates on
data streams. The transformation engine executes dataflow
graphs of transformations on high-performance computing
resources. The stream server manages all data streams in
the system and dispatches new dataflow graphs to the trans-
formation environment. We have implemented the architec-
ture and show performance results that demonstrate that our
implementation scales well with increasing workload, com-
mensurate with the available HPC resources. Further, we
show that our implementation can exploit opportunities for
parallelism in dataflow graphs, as well as efficiently sharing
common subgraphs between dataflow graphs.

1 Introduction

Novel sensors, handhelds, wearables, mobile phones,
and embedded devices enable the creation of imaginative
pervasive computing applications to assist users in everyday
environments. However, many such devices are constrained
in processing capability, memory, and power consumption.
In contrast, high-performance systems, such as clusters and
grid resources, have much greater capabilities at the expense
of size and mobility. While significant advances have been
made in pervasive computing middleware, most solutions
tend to be handcrafted for specific applications or specific
environments. Many systems support pervasive applications
with moderate computational requirements, but few are tar-
geted for applications that are both pervasive and require
full utilization of high-performance computing resources. A
comprehensive solution requires not only facilities for man-
aging data transport, but also support for managing and in-
stantiating computation automatically.

By combining the plethora of new gadgetry with high-
performance computing (HPC) resources, there is an oppor-

tunity to expand the scope of pervasive computing appli-
cations to domains such as emergency response and trans-
portation that require computationally intensive processing
for which the edge devices may not be sufficiently equipped.
The following application scenario is intended to represent
the more general class of applications that MB++ is de-
signed to support: A metropolitan-area emergency response
infrastructure may have data sources including traffic cam-
eras, handheld or in-dash computers from local police, fire
and burglar alarms in local buildings, as well as a variety of
other roaming data sources. In addition to simply capturing
such data and making it available to humans for monitoring,
the application would also use HPC resources to more ex-
tensively analyze the incoming data in real-time to perform
anomaly detection and potentially predict future problems
by monitoring events in different locations. The addition of
stronger data analysis requires harnessing a cluster or fed-
erated groups of HPC resources, and a mechanism for auto-
matically managing computation.

Pervasive computing applications such as this would ben-
efit from an infrastructure providing services that integrate
solutions to these problems. In particular, this infrastruc-
ture should be designed to support applications that are both
pervasive and require extensive processing, necessitating the
efficient use of HPC resources (e.g. compute clusters). Such
an infrastructure would leverage high-performance comput-
ing resources in order to transform data while it is being
transported. Transformations are arbitrary computations on
data streams, not limited to simple format conversions —
common examples include data fusion, feature extraction,
and classification. The scheduling and execution of transfor-
mations should be handled by the runtime and applications
could be constructed in a straightforward manner through
composition. With such an infrastructure, consumers of data
could obtain the streams needed, when they are needed, and
in the form desired, leveraging the ambient computing in-
frastructure composed of sensors and HPC resources.

Prior work in this area tends to be either focused on the
pervasive computing side, or on the side of service com-
position that uses HPC resources (see Section 6 for more
details). In our work, we explore the requirements of perva-

sive computing applications with a non-trivial need for HPC
resources and present a general architecture for addressing
such applications’ needs.

MB++ is an infrastructure that allows pervasive comput-
ing devices to join and leave the system dynamically, and
executes stream transformations on HPC resources. Some
of the goals of the system are to support arbitrary transfor-
mations of data streams (including fusion), to allow clients
to dynamically add transformation functions, and to sched-
ule transformations in a manner balancing the workload of
many consumers. Previous work addresses interoperability
of devices with different communication requirements [10].
This architecture also builds on previous work addressing
the problems of efficient data transport to consumers requir-
ing diverse data types [14].

Specifically, we make the following contributions:

e An architecture that (1) allows clients to dynamically
inject data types and transformation functions into the
infrastructure, (2) enables the dynamic composition of
transformations to create complex dataflow graphs, (3)
executes transformations in dataflow graphs that re-
quire multiple inputs from different source streams,
such as data fusion and feature extractors, (4) ensures
safe execution of transformations by using sandboxing,
and (5) manages available computational resources by
scheduling the execution of dataflow graphs on HPC
resources.

e A prototype implementation of the MB++ architecture
and experimental evaluation of its capabilities.

Section 2 discusses the system requirements in detail.
The architecture is presented in Section 3 and the MB++
implementation in Section 4. Section 5 gives an experimen-
tal analysis of the type and transformation systems, followed
by related work in Section 6 and conclusions in Section 7.

2 Requirements

The nature of pervasive applications imposes a highly
dynamic environment, both in terms of application needs
and resource availability, which leads to an interesting set
of requirements to be met by the infrastructure for man-
aging stream data and transformations thereof. Recall the
example application scenario presented in Section 1. One
application within that environment may allow authorities
to track a criminal during a burglary. Suppose the crimi-
nal trips an alarm while entering a store, which notifies the
police. The police may have software that acts as a client
to the pervasive system, and upon receiving this notification
submits a request to the system to send feeds from all the
cameras that can see the criminal to the authorities. This
may require certain functions that are not already present
in the system, such as a computer vision algorithm that de-
tects people or an algorithm that uses a collection of motion
detectors to find the precise location of activity in the build-
ing. First, the police would inject this code into the system.

Then they would compose the injected components into an
application that produces the desired result (i.e. tracking
the criminal) and submit that request to the system. Since
this application may have computationally expensive com-
ponents (e.g. computer vision algorithms), the system as-
signs high-performance computing resources to run the al-
gorithms. Finally, the police can read the output information
from lightweight handheld or automotive devices while they
are dispatched to the scene.

The MB++ infrastructure is meant to facilitate informa-
tion exchange among the clients. At a minimum, it has
to provide conduits for data communication between pro-
ducers and consumers of information. Pervasive computing
applications typically involve heterogeneous gadgetry that
may need different data formats for the same source of data.
For example, a video stream may be needed in Motion JPEG
by the automotive display and in Java Media Format by a
handheld device. Additionally, pervasive applications of-
ten require more than mere format conversions: Many com-
pelling applications require continuous and highly-intensive
feature extraction on multiple data streams. For applications
that run on lightweight and mobile devices, the computation
cost of these transformations may be prohibitive. There-
fore, an infrastructure for pervasive applications must allow
transformations to be run on high-performance resources
not only for purposes of data format conversion, but also for
feature extraction, data fusion, or any other arbitrary trans-
formation algorithm.

As applications join the environment, the infrastructure
must provide the data types and transformation methods re-
quired by these applications. Rather than restricting an ap-
plication to a set of predefined transformations, which may
not meet the application’s needs, the infrastructure must al-
low clients to dynamically add and remove transformations.
However, since this facility allows clients to inject code into
the infrastructure, it is important that the code also be plat-
form independent as well as safe.

In our prior work [14], we presented a minimal set of
services, namely statically defined data format transforma-
tions by the producer of a stream. In this paper we present
an architecture for dynamically injecting arbitrary transfor-
mation code, a general stream sharing framework, and an
infrastructure for safely executing transformations on high-
performance computing resources.

3 Architecture

Figure 1 shows the architectural elements of the system,
which include: a type server, stream server, and transfor-
mation engine. The clients (producers and consumers of in-
formation) are on the edge of the network and constitute the
pervasive computing environment. The rest of the architec-
tural elements are expected to be hosted on HPC resources.

Client requests for adding and/or deleting transforma-
tions are routed to the type server (labeled 1 in Figure 1).
When a client requests to execute a set of transformations
on a stream, the stream server dynamically instantiates the

Stream Server : |
(T111] |
. | TE |
Scheduler —»Dj:\jj\ : B
Command 21
Producer @ Queues @ : TE % I
1 o |
® ' 6- l
LI RN N R R) ' 3
Producer N r3” l
@ Channel | Q :
=
) @ Consumer @ I TE” :
Consumel @ Channel \|\ |
> I

®

Type
Server

- as ar o> o> - -

Figure 1. Architecture and Control Flow

necessary plumbing, in terms of the stream sources (labeled
2-9). The transformation engine executes the transforma-
tions on the available resources (labeled 10).

3.1 Type Server

Every stream has a data type that is indicative of both the
structure and semantics of the data stream. A data type is
expressed as a set of extensible user-defined attributes that
describe the necessary aspects of the type. A transformer
is the physical embodiment of a transformation. For exam-
ple, face detection on a video stream is a transformation but
a function that implements the face detection algorithm is
a transformer. A transformer is expressed as a tuple con-
sisting of the expected data types of the inputs, the code
implementing the transformation, and the data type of the
output, as shown in Figure 2. Data types provide informa-
tion about which streams a transformer can operate on, and
therefore about how transformers may be joined to create

larger dataflow graphs.
Alarm
' Alarm Value (true/false) ‘

Figure 2. Example Transformer

Video Motion Value

The type server stores information about data types
and transformations, and allows clients to dynamically add
and remove both data type specifications and transformers.
More than one transformation between the same set of in-

put and output types may exist, provided there are distinct
transformers (i.e. distinct code) qualifying each such rela-
tionship.

3.2 Transformation Engine

The transformation engine is the logical entity respon-
sible for managing the available resources. The transfor-
mation engine comprises a number of transformation en-
vironments (TE) running on different HPC resources (such
as nodes in a cluster). Each TE is an independent, multi-
threaded process that runs on a single compute node and
executes dataflow graphs assigned to it by the scheduler
(described in the next section). The number of TE can be
scaled up or down depending on the available resources and
the need as demonstrated by the number of transformations
to be performed. A dataflow graph running on a TE is a
long-running entity that continues to process streams until
the scheduler signals the TE to stop.

One of the important architectural roles of a TE is the
safe execution of transformations. A TE serves to “sand-
box” the transformers by separating them from the rest of
the system. Depending on the implementation vehicle, the
TE sandboxing can also conceal local resources, such as the
file system and system calls that are not necessary for trans-
former execution.

The TE also provide platform independence to trans-
formers, since transformer developers may not be able to
predict the platform on which the transformer may be run.

3.3 Stream Server

The stream server is responsible for instantiating all
streams as well as sending dataflow graphs to the transfor-
mation engine for execution. It includes a scheduler that
determines on which resources each new transformation re-
quest should be run, and load balances dataflow graphs al-
ready running in the transformation engine.

A dataflow graph identifies the initial input streams (sup-
plied by producers), plus any transformations to be applied
to those streams, as shown in Figure 3. A consumer submits
a dataflow graph to request transformed stream data from
the stream server. Information in the type server allows ver-
ification of the data types in the dataflow graph.

Establishing the plumbing for a new dataflow graph in-
volves the following steps as shown in Figure 1: Any client
may submit data types and transformers to the type server
(1); here the consumer is shown doing so prior to submit-
ting a new dataflow graph. The client submits a dataflow
graph by making the appropriate call to the stream server’s
API (2). If the dataflow graph requires transformation, the
stream server establishes a new stream for the graph results,
called a consumer stream (3), and schedules the transfor-
mations to be executed on a particular transformation envi-
ronment by submitting the dataflow graph to the queue of
commands issued to that TE (4). Then the stream server re-
sponds to the consumer with the connection information it
will need to begin reading from the new consumer stream
(5). Meanwhile, the transformation environment reads the
transformation request from its command stream (6) and
downloads the required transformer code from the type
server (7). Then the TE connects to the producer streams
that it will use for input (8) and the consumer stream where
it will place the results of the transformation (9). Finally,
the TE begins executing the transformations on the producer
stream data and writing the output to the consumer stream
(10). Once a TE begins executing a transformation request,
it will continue to transform those streams until it receives a
command to stop from the stream server.

Some dataflow graphs have a structure that allows certain
portions to be executed in parallel, for example, the Face
Detector and Motion Detector in Figure 3. To take advan-
tage of this, the stream server can submit the parallelizable
portions to the transformation engine such that they will be
executed in parallel. It is also possible that two or more dif-
ferent dataflow graphs may have a subset of the graphs in
common. In such a case, the common subgraph may be ex-
ecuted only once and the result shared between all dataflow
graphs that have this subgraph in common.

4 Implementation

In this section, we describe the status of our current
MB++ implementation. All the components of the pro-
totype are implemented; however, we note where the im-
plementation of a component lags behind the architectural
specification laid out in the previous section.

4.1 Type Server

The type server is implemented in C++ and accessed re-
motely by a lightweight client library that communicates
with the type server in an RPC-like fashion. The library
exposes methods to add and remove data types and trans-
formers, and to query and retrieve transformer code.

The type server back-end is implemented using a rela-
tional database. Storing data in memory fails to provide per-
sistence, in case of a crash, shutdown, or migrating between
machines. Writing data to disk, on the other hand, does not
provide the features of a database, such as transactional se-
mantics and a rich query language (i.e. SQL).

4.2 Stream Server

The stream server manages the necessary plumbing be-
tween the producers and consumers of the MB++ system
for the execution of the dataflow graphs. It is implemented
as a multi-threaded C++ runtime system, assuming an un-
derlying infrastructure support for reliable timestamped data
transport for the streams. The requirement for timestamped
stream transport is met by a programming system called
Stampede [13]. A Stampede program consists of a dy-
namic collection of threads communicating timestamped
data items through channels and queues. Channels provide
random access to items indexed by timestamps (including
special wild card values for timestamps such as “get_latest”
and “get_earliest”); queues support first-in first-out seman-
tics for the items contained in them. The threads, channels,
and queues can be launched anywhere in the distributed sys-
tem, and the runtime system takes care of automatically
garbage collecting the space associated with obsolete items
from the channels and queues. D-Stampede [1] is the dis-
tributed implementation in C of the Stampede programming
model, and allows Java, C, and C++ components of a given
application to share channels and queues.

The stream server (implemented as a layer on top of the
D-Stampede runtime) maintains a command queue for each
transformation environment, implemented using Stampede
queues. When a consumer submits a dataflow graph to the
stream server, it follows the steps outlined in Section 3.3 to
pass the graph on to a particular transformation environment
using its command queue.

The stream server also includes a scheduler. Upon sub-
mission of new dataflow graphs, it simply enqueues them
in the command queues of the TE in a round robin fashion.
However, the scheduling algorithm can be changed easily
without any change to the overall MB++ architecture.

An alternative to scheduling entire dataflow graphs
would be to schedule each item as it is created by a producer.
However, this approach introduces too much overhead into
the critical path.

Currently, the scheduler does not perform any advanced
analysis or verification of the dataflow graphs, nor does it
do any load balancing across the TE. Parallelizable graphs
may still be run in separate threads of execution within the

. Video
Motion .
Detect Motion
Producer Stream etector Value
Face Video Faces
Detector Present

Alarm Alarm
Detector Value
(true/false)

Figure 3. Example Dataflow Graph

transformation engine, but it is up to the client submitting
the graph to explicitly specify how it is to be parallelized.
The client may achieve this by submitting a dataflow graph
in separate pieces, where each parallel branch is a distinct
dataflow graph. Likewise, there is no automatic detection of
dataflow subgraphs that may be shared between consumers.
However, if two clients are aware of each other in advance,
they may cooperate to create a sharing situation using the
same mechanism.

4.3 Transformers

Transformers are Java classes that implement a common
interface. Despite the superior performance of native code
written in C or C++, Java is a better fit for the architectural
needs for several reasons. First, the Java security model pro-
tects the MB++ system from hostile code which may per-
form unsafe activities such as local disk access, network
communication, creating new processes, loading dynamic
libraries, and directly calling a native method. Second, it
provides platform independence so that a transformer may
be implemented once and added to any MB++ instance, re-
gardless of the underlying platform. Finally, the Just-In-
Time byte-code compilation technique included in many
modern JVMs reduces the performance disparity between
Java and native code implementations of transformers.

4.4 Transformation Engine

The transformation engine is a conceptual aggregation
of available computational resources for running transfor-
mations in parallel on HPC resources. Each participating
node runs a container instance called a transformation envi-
ronment (TE). A TE runs in a Java Virtual Machine (JVM)
and executes transformers represented as Java byte-code.

A TE has a main thread of execution whose sole respon-
sibility is handling commands retrieved from the TE’s com-
mand queue. When a command requests that a new dataflow
graph be instantiated, the necessary transformer code is re-
trieved from the type server and the transformers are in-
stantiated. Then a new Java thread is created to execute
the dataflow graph. While the scheduling of Java threads
is JVM implementation dependent, some common configu-
rations, such as the Sun JVM on Linux for SMP, allow true
concurrency on multiprocessor systems. Therefore, a trans-

formation environment may execute dataflow graphs con-
currently on a multi-processor/multi-core architecture if the
underlying system (JVM and OS) has SMP support.

5 Performance

To demonstrate the performance of MB++ we present
three experiments. The first is a set of microbenchmarks
for the most common type server requests. The next shows
the scalability of the transformation engine as the number
of dataflow graphs are varied. The final experiment demon-
strates the performance improvement gained by paralleliz-
ing dataflow graphs and sharing common subgraphs.

The type server runs on a RedHat Enterprise Linux 4
(RHEL4) machine using the Linux 2.6.9 SMP kernel with
two hyperthreaded 3.20 GHz Intel Xeon processors. The
stream server and each of the TE execute on cluster nodes
that are RHEL4 machines using the Linux 2.6.9 SMP ker-
nel with two hyperthreaded 3.06 GHz Intel Xeon processors.
The cluster’s internal network is Gigabit Ethernet. All pro-
ducers and consumers are run on a RHEL4 machine using
the Linux 2.6.9 SMP kernel with two hyperthreaded 3.06
GHz Intel Xeon processors.

For the latter two experiments, two video producers are
used that read video files and place the video frames into
their streams. Both producers execute the same code, but
read from different video files. In addition, they add the
Face Detection and Motion Detection Transformers to the
type server prior to streaming video. Producers of live video
streams are also developed, but we chose to use prerecorded
video in order to make the experiment more reproducible.

The Motion Detection Transformer determines the
amount of motion in a video frame and outputs that value.
To accomplish this, it keeps state (independently for each
instance of the transformer) that contains the pixels of the
previous frame, which it compares to the current frame.

The Face Detection Transformer determines the number
and position of any faces in a video frame. To accomplish
this, we use Intel’s OpenCV library which is not available
as Java byte-code. There is an executable daemon written
in C, which is already present on the nodes running TE, that
receives video frames via IPC and returns the face informa-
tion. For security reasons, this would not be possible on
a real deployment of the system, and Java libraries would
need to be used to support transformers.

Producer 2
N
N
)
Motion Face Motion
Detector Detector Detector

| |

Producer 1

. Video . Video
Video Faces . Video Faces .
Motion Motion
Present Present
Value Value

Face Selector

Video Faces
Present

!

Consumer

Figure 4. Experiment Dataflow Graph

API Call Time (ms) Std. Dev.
add_type 80.8 0.619
add _transform 82.9 4.107
query_transforms 79.9 0.031

Table 1. Type Server Benchmarks

Consumer clients submit the dataflow graph shown in
Figure 4, but submit the graph differently in each experi-
ment in order to execute the entire dataflow graph in serial,
in parallel, or with shared subgraphs. The consumers also
provide the Face Selection Transformer to the type server.

The Face Selection Transformer takes two pairs of face
and motion streams as inputs. It selects the video with the
most motion (largest motion stream value), and returns the
face information from the corresponding face stream.

5.1 Type Server Latency

The latency microbenchmarks are recorded using a pro-
gram that acts as a client to the type server and measures the
end-to-end latency for the three most common requests. In
order to eliminate the variable effect of network latency, the
client was executed on the same system as the type server
using the localhost loopback IP address.

Table 1 shows the latency associated with the requests.
These calls are regularly used by producers when registering
types and by consumers when adding new transformers to
process streams. However, they are not in the critical path
of stream processing in the transformation engine.

As the data demonstrates, clients can add tens of types
and transformers per second, which is acceptable since they
are only called at set-up time. In the tests, a very small code

section of 12 bytes was used. The actual add_transform
time will increase with the size of the code contained within
the transformer, mainly due to network latency. Simi-
larly, network latency may affect the time to service a
query_transforms request depending on the number of trans-
formers that are returned.

5.2 Dataflow Graph Scaling

To demonstrate scaling as the number of dataflow graphs
increases, we measure the end-to-end latency of the execu-
tion of a dataflow graph. It is important to note that this
includes not only the time needed to execute the graph in
the transformation engine, but also the network communi-
cation. Each measurement is taken at the producer just be-
fore the data item is put in the Stampede channel, and on the
consumer just after the item is retrieved. The difference in
these measurements is the latency to transform a single item
(e.g. a video frame). The data points presented below are
the average of the latencies encountered while transforming
180 items. In cases with multiple consumers, the data point
represents the average across all consumers.

s) per Consumer for a Single ltem

100 L L L L L L
2

5 10 15
Number of Consumers

Figure 5. Performance Scaling of Serial
Dataflow Graphs

This experiment uses two video producers, as described
earlier, and the transformation engine is comprised of 8 TE,
each running on a separate SMP cluster node. A variable
number of consumer clients submit separate but identical
dataflow graphs, as shown in Figure 4. The graphs from
different consumers are executed in parallel with each other,
but each individual graph executes its transformers serially.

The results are shown in Figure 5, where each data point
represents the mean latency of a single item. Little change
in latency is expected while the number of dataflow graphs
is less than or equal to the number of processors in the trans-
formation engine. This is in fact what the results show, as
the latency change between 1 consumer and 16 consumers is
only 10ms. However, latency begins to degrade as the com-
putational resources become loaded, as demonstrated by a
55% increase (78ms) in latency from 16 to 32 consumers.

150

T T
Sertal Dataflow Graphs s

arallel Dataflow Graphs — «seeees
Shared Dataflow Graphs e

A 1

120 |
110 ' 7

100 F B

Mean Latency (ms) per Consumer for a Single ltem

80 L L L L L
2 4 6 8 10 12 14 16

Number of Consumers

Figure 6. Performance Scaling of Parallel and
Shared Dataflow Graphs

5.3 Dataflow Graph Parallelization

This experiment demonstrates the benefit of paralleliz-
ing dataflow graphs. The setup is the same as the previ-
ous experiment except that the consumer clients submit the
dataflow graphs so that the transformation engine executes
portions of each graph in parallel. Each consumer submits
the entire graph, so that the total number of transformations
being executed is still five per consumer, as shown in Fig-
ure 4. As a side effect, sequential data items are also par-
tially pipelined, since the Motion Detection and Face De-
tection Transformers can compute item ¢ 4 1 in parallel with
the Face Selection Transformer computing item i.

The performance improvement from parallelizing the
dataflow graphs should be substantial as long as the compu-
tational resources are not over-utilized. However, as the load
becomes heavy, the benefit should decrease since the sys-
tem resources’ limited capacity to do the work becomes the
dominant factor. Figure 6 verifies this hypothesis by com-
paring the performance of the parallelized dataflow graphs
with the serial version of the same graphs from the previous
experiment. With 4 consumers submitting dataflow graphs
to the eight transformation environments, there is a 30%
decrease in latency by parallelizing the graphs. However,
when the system is loaded with 12 consumers trying to run
60 transformers in parallel, there is only a 7.6% decrease in
latency.

5.4 Dataflow Subgraph Sharing

The final experiment shows how consumers with com-
mon dataflow subgraphs can collude to reduce latency by
sharing these subgraphs. The consumer clients are simi-
lar to those used in the dataflow parallelization experiment,
except that each of the first four subgraphs (the face and
motion detection on the two video streams) are instantiated
only once. Each consumer submits its own face selection

dataflow graph, but each instance takes input from the same
four shared subgraphs. Therefore, for N clients the num-
ber of transformations being executed is reduced from 5N
toonly N + 4.

The primary difference between the shared and parallel
cases is that the amount of computation required increases
more slowly as additional consumers are added. With 16
consumers, the serial and parallel cases are both taxing the
available resources with 80 total transformations, while the
subgraph sharing case only places 20 transformations on the
sixteen processors. Therefore the latency should increase
only after many more consumers join the system than in the
parallel or serial experiments.

Figure 6 confirms this by comparing the shared dataflow
graph latency to the parallel and serial experiments. The
shared experiment shows only a 2.8% increase in latency as
the number of consumers increases from 1 to 16. With 16
consumers, the shared graphs have a latency of only 88ms,
while the parallel and serial experiments have latencies of
132ms and 143ms, respectively.

6 Related Work

Pieces of the architectural framework of MB++ can be
found in other related work; however, a composite architec-
ture that represents a true marriage of HPC and the perva-
sive computing environment as envisioned in MB++ does
not exist to the best of our knowledge.

Much work in stream-handling middleware focuses on
either multimedia streams or sensors streams. IrisNet [11] is
a middleware designed to support database-oriented, sensor-
rich Internet applications, a subset of applications rele-
vant to MB++’s domain. The Distributed Media Journal-
ing project [6] provides a middleware to support the live
indexing of media streams, defining applications in terms
of three types of component transformations (filters, fea-
ture extractors, or classifiers) operating on media sources
or other transformation output streams.

There is a large body of work in more declarative and
domain-specific stream processing systems using dataflow
graphs and transformation operations. TelegraphCQ [2],
a continuous query database system, uses a combination
of SQL and a lower-level query language to express slid-
ing window based continuous queries over streaming data
sources. Other streaming database systems present stream
manipulation via SQL but do not utilize continuous queries,
such as Gigascope [S]. Many domain-specific and higher-
level distributed programming languages provide elements
of stream processing, such as Spindle [4] and Sawzall [12]
(though Sawzall operates on stored data sets rather than
streams) . The actual data processing mechanism is just a
piece of the MB++ approach and we see such declarative
processing work as complementary to our goals.

Solar [3] is a middleware for event-driven, context-aware
applications composed of event streams and fusion opera-
tors. MB++ supports streams of arbitrary data, thus allowing
not only event streams but also other types of data streams,

such as media streams. Solar also processes streams in
distributed planets rather than using HPC resources like
MB++. The Ninja Architecture [7] is a large project encom-
passing a range of goals related to service-oriented applica-
tions. Services are provided by high-availability computa-
tional resources, like a cluster, called bases. However, like
Solar, Ninja’s primary mechanism for processing streaming
data is an overlay network of active proxies.

There is also extensive work related to delivering stream-
ing media content where the streams are transformed by
service overlay networks or dynamically configured com-
posable services in order to meet varying QoS demands of
consumers [8, 9, 15]. Many of these works also cite the
aforementioned Ninja Architecture as a foundational effort
in service composition as a mechanism for creating dis-
tributed applications for this domain. All of these frame-
works and systems achieve similar goals as MB++ but
the applications these systems tend to support have differ-
ent characteristics. Applications are created by dynami-
cally composing existing available services with interposed
adapters to resolve data format and protocol mismatches.
This approach tends to favor more loosely-coupled appli-
cations with greater geographic distribution, while MB++
favors more tightly-coupled and potentially higher perfor-
mance applications.

Our own prior work focused on data stream registration
and discovery, and on transformation of data to different
formats and fidelities [14]. However, both the architecture
and the implementation of our earlier system were limited in
scope: (a) the architecture did not support dynamic injection
of arbitrary transformations or fusion of multiple streams,
and (b) the implementation did not fully exploit HPC re-
sources for executing dataflow graphs.

7 Conclusions

MB++ is an infrastructure that establishes a union be-
tween pervasive computing devices and high-performance
computing resources in dynamic pervasive computing envi-
ronments. At the heart of the architecture is a unique ca-
pability for the dynamic injection, composition, and execu-
tion of stream transformations. The system has been imple-
mented and our experimental results show that performance
scales with the number of dataflow graphs being executed
and the amount of computational resources available.

There are a number of avenues for future research. An
online analysis of dataflow graphs submitted to the stream
server would allow automatic detection of parallelizable
portions of the graph, as well as subgraphs that can be
shared with other graphs being executed. Adding priority
to dataflow graphs would allow performance commensurate
with their perceived importance. Federating the architec-
ture would allow multiple MB++ instances to work together
and share streams. Finally, deploying MB++ for a specific
real-world application would provide valuable insight into
its limits and capabilities.

7.1 Acknowledgments

The work has been funded in part by an NSF ITR
grant CCR-01-21638, NSF NMI grant CCR-03-30639, NSF
CPA grant CCR-05-41079, and the Georgia Tech Broad-
band Institute. The equipment used in the experimental
studies is funded in part by an NSF Research Infrastruc-
ture award EIA-99-72872, and Intel Corp. We thank the
members of the Embedded Pervasive Lab at Georgia Tech
(http://wiki.cc.gatech.edu/epl/) for their helpful feedback on
our work.

References

[1] S. Adhikari, A. Paul, and U. Ramachandran. D-Stampede:
Distributed programming system for ubiquitous computing.
In Proceedings of ICDCS’02, July 2002.

[2] S.Chandrasekaran et al. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In Proceedings of CIDR
’03, January 2003.

[3] G. Chen and D. Kotz. Solar: An open platform for context-
aware mobile applications. In Proceedings of the First Inter-
national Conference on Pervasive Computing, pages 41-47,
June 2002. Short Paper.

[4] C. Consel et al. Spidle: a dsl approach to specifying stream-
ing applications. In Proceedings of GPCE '03, pages 1-17,
New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[5] C. Cranor et al. Gigascope: A Stream Database for Network
Applications. In Proceedings of SIGMOD 03, pages 647—
651, New York, NY, USA, 2003. ACM Press.

[6] V. Eide, E. Eliassen, and O. Lysne. Supporting distributed
processing of time-based media streams. In Proceedings of
DOA’01, pages 281-288, September 2001.

[7]1 S.D. Gribble et al. The Ninja architecture for robust Internet-
scale systems and services. Computer Networks, 35(4):473—
497, 2001.

[8] J.Jin and K. Nahrstedt. QoS Service Routing for Supporting
Multimedia Applications. Technical Report IRP-TR-03-04,
Department of Computer Science, University of Illinois at
Urbana-Champaign, November 2002.

[9] J.Liang and K. Nahrstedt. Service composition for advanced
multimedia applications. In Proceedings of MMCN’05,
pages 228-240, 2005.

[10] J. Nakazawa et al. A bridging framework for universal
interoperability in pervasive systems. In Proceedings of
ICDCS’06, July 2006. to appear.

[11] S. Nath et al. IrisNet: An architecture for enabling sensor-
enriched internet service. Technical Report IRP-TR-03-04,
Intel Research Pittsburgh, June 2003.

[12] R. Pike et al. Interpreting the Data: Parallel Analysis with
Sawzall. Scientific Programming, 13(4):277 — 298, 2005.

[13] U. Ramachandran et al. Stampede: A cluster program-
ming middleware for interactive stream-oriented applica-
tions. IEEE TPDS, 14(11):1140-1154, November 2003.

[14] U. Ramachandran et al. Mediabroker: A pervaisve comput-
ing infrastructure for adaptive transformation and sharing of
stream data. Pervasive and Mobile Computing, 1(2):257-
276, July 2005.

[15] D. Xu and X. Jiang. Towards an integrated multimedia ser-
vice hosting overlay. In Proceedings of ACM Multimedia
"04, pages 96—103, New York, NY, USA, 2004. ACM Press.

