
Reverse Engineering with a CASE Tool

Bret Johnson

Research advisors� Spencer Rugaber and Rich LeBlanc

October �� ����

Abstract

We examine using a CASE tool� Interactive Development Environ�
ment�s Software through Pictures �StP�� to support reverse engineer�
ing� We generate structure charts in StP from the automated analysis
of C source code� The advantages of this approach are that one can use
the CASE tool�s support for drawing� linking� and modifying pictorial
notations for program design in order to make it easier to construct a
reverse engineering tool� Additionally� one can then use the design rep�
resentations with the CASE tool to do reengineering for maintenance�

� Introduction

Reverse engineering� in the context of this paper� is the act of taking the
source code for a program and extracting from it information about the
design of the program� Reverse engineering is frequently required when an
existing program needs to be rewritten or modi�ed� Unfortunately� all too
often such programs have been written with little attention to the principles
of software engineering such as providing adequate internal and external
documentation�

Computer Aided Software Engineering �CASE� tools are software tools
that are intended to support forward engineering�the transformation from
requirements to design to source code that occurs when writing new software�
CASE tools frequently allow the the software engineer to represent the design
of his program pictorially� through notations such as structure charts�

This work examines using a CASE tool� Interactive Development Envi�
ronment�s Software through Pictures �StP�� intended for forward engineer�
ing� for reverse engineering� StP supports many di�erent pictorial notations
for representing a program�s design at a level more abstract than source code�

	

These notations include entity relationship diagrams� structure charts� data
structure diagrams� and data
ow and control
ow diagrams� StP is a typi�
cal CASE tool� for most other CASE tools also support these notations� One
typically thinks of the design information in these notations as coming from
the software engineer� he takes ideas in his head about how the program
should be designed and from these ideas draws the diagrams that represent
the program design� However it is also possible that these diagrams could
be generated from source code analysis of an existing program� This source
code analysis could be either completely automated or partially automated
and partially requiring user interaction� Therefore� given the source code for
some program� one could construct a pictorial representation of the design
of the program� This pictorial representation could be viewed and modi�ed
using StP� And thus StP could be used to support reverse engineering�

In our work we generate structure charts from analysis of C programs�
The analysis is mostly automated� though the reverse engineer can control
the analysis in a few di�erent ways� Section � describes the details of our
reverse engineering tool� Section explains how to run the tool here at
Georgia Tech� This section tells where the required �les are located and ex�
actly how they are used� Section � examines possibilities for future research�
And Section � gives concluding remarks�

� The Reverse Engineering Tool

Our tool generates StP structure charts by analyzing C source code� The
structure charts generated by our tool are basically call trees� They say what
functions call what other functions� The structure chart notation supports
including other information in the structure chart� such as indicating if a
function is called from inside a loop or a conditional statement or what the
function�s parameters are� Our tool� however� does not currently generate
structure charts containing these additional notations�

Our tool works in four phases� It analyzes C source code using NewY�
acc� extracts the important parts of this analysis using Awk� generates a
structure chart using a layout program written in C� and allows the reverse
engineer to interact with the structure chart using StP� To better illustrate
the actions of the various phases of the tool� we show the of the intermedi�
ate text �les that are generated by the di�erent phases when analyzing the
simple C program in Figure 	�

The �rst phase uses an enhanced version the parser generator Yacc �	�

�

int a� b�

main��

�

init���

process���

�

init��

�

init�a���

init�b���

�

init�a��

�

a � �	�

�

init�b��

�

b �
	�

�

process��

�

int i�

for �i � 	� i � a� ��i�

printf�b �� �d�n� b��

�

Figure 	� A Sample C Program to be Reverse Engineered

DCL�example�c�	�������������a

DCL�example�c�	�������������b

FDC�example�c�	�������������main

FRF�example�c�
�������������init

FRF�example�c�
�������������process

FDC�example�c�	���	������	����init

FRF�example�c�
���
������
����init�a

FRF�example�c�
���������������init�b

FDC�example�c�	���������������init�a

DEF�example�c�
���������������a

FDC�example�c�	��
������
�����init�b

DEF�example�c�
��
������
�����b

FDC�example�c�	��
������
�����process

DCL�example�c�
���������������i

DEF�example�c�
���������������i

REF�example�c�
�����������������i

REF�example�c�
�����������������a

REF�example�c�
�����
�������
���i

FRF�example�c�
�������������	��printf

REF�example�c�
�����
�������
���b

Figure �� Output of NewYacc Phase

called NewYacc ���� NewYacc contains a number of features which make it
easy to write a source code analyzer� These features are detailed in ���� We
augmented the C grammar provided with NewYacc to output information
concerning the de�nition of and references to functions� variables� and labels�
Only about �� lines of the C grammar �le needed to be modi�ed and a
few auxiliary functions written� The output of this NewYacc analysis on
our sample program is shown in Figure �� In the output �DCL� means a
variable declaration� �FDC� means a function de�nition� �FRF� means a
function reference �function call�� �REF� means a variable reference� and
�DEF� means a variable de�nition �assignment to a variable�� The output
also tells the �le name and line and column numbers where each identi�er
appears and the level of nesting of that identi�er�s scope�

The second phase uses Awk ��� a programming language especially good
for parsing simple text �le formats and scanning for patterns� Our Awk

�

D main

R init

R process

D init

R init�a

R init�b

D init�a

D init�b

D process

R printf

Figure � Output of Awk Phase

program extracts from the output of the NewYacc phase just the information
needed to generate structure charts� Our Awk program is only only three
lines long� It simply picks out the lines of the NewYacc output representing
function de�nitions and function references �function calls� and outputs the
name of the function together with an �R� or a �D� indicating if this is a
de�nition or reference� The output of this phase for our continuing example
is shown in Figure � Note that all of the �R� functions appearing after a
�D� function are functions called by that �D� function�

The third phase is the most involved� It is a C program that reads in
the output of the Awk phase and converts it to a structure chart diagram
in the format required by StP� The main task of the program is to lay out
the structure chart in an aesthetically pleasing way� and thus this program
is named layout� The program reads in the output of the Awk phase and
builds a data structure describing the program being analyzed� This data
structure is basically a list of subprogram objects� each subprogram object
describing one subprogram �the layout program was designed in an object�
oriented fashion�� Each of these subprogram objects contains� as one of its
components� a list of the subprograms that this subprogram calls� This data
structure can be viewed as a call tree� The subprograms are the nodes in
the tree and the subprograms they call are the children of these nodes� It
is the user�s responsibility to specify which subprogram should serve as the
root of the tree� Typically� the user will specify �main� as the root for a C
program� Currently� the Smalltalk prototype for the layout program allows
the user to specify any subprogram name he wants for the root of the tree�

�

while the C version of the layout program always assumes that �main� is at
the root�

After this data structure is built� the program proceeds to create the StP
structure chart diagram �le� This operation proceeds in two steps� First�
a postorder traversal of the call tree is made� The root of each subtree of
the call tree is assigned a number giving the number of units of width that
that subtree is allotted in the StP structure chart diagram� Because this
is a postorder traversal of the tree� the assignments are made bottom up�
Leaves are assigned enough space for a single box in the diagram plus a little
extra space so that boxes don�t touch each other� A parent node�s width
assignment is equal to the sum of the width assignments of its children� Next
the program does a preorder traversal of the call tree� printing out in the StP
structure chart �le format each node in the tree and the arc between that
node and its parent� This output for our continuing example is in Figure ��
A description of the StP structure chart �le format can be found on pages
��� � ���	 of ����

The reverse engineer has some control over the generation of the struc�
ture chart� he can specify prede�ned subprograms and subprograms to be
ignored� Note that these two features are present in the prototype of the lay�
out program� written in Smalltalk� but they have not yet been implemented
in the �nal C version of the layout program�

The reverse engineer can specify that certain subprograms are prede�
�ned� Prede�ned subprograms are subprograms whose implementations are
not part of the current program being analyzed� For example� the standard
library functions in C should probably be speci�ed by the reverse engineer
as being prede�ned� Structure charts represent prede�ned subprograms in
a di�erent way� with two lines on the sides of their boxes instead of one�

The reverse engineer can also specify that certain subprograms are to
be ignored� He might choose to ignore subprograms that do an insigni�cant
part of the computation so that these subprograms do not appear in the
structure chart and are thus not distracting� The program will simply skip
over ignored subprogram nodes and all of their children when traversing the
call tree�

The �nal phase is to read the structure chart generated by the layout
program into StP� Once in StP the reverse engineer can pan over and zoom
in on the diagram� He can also make modi�cations to the diagram� perhaps
to increase its aesthetics� The structure chart for our example� as printed
by StP� is shown in Figure ��

�

scefile�

� � �		

	

�

�	� ��

�			
		

�

main

��		 ��		

	

	

�

�	
 ��

�	� �
�

�

init

��		 ��		

	

	

�

�	� ��

�	� ���

�

init�a

��		 ��		

	

	

�	
 �	�

�

�	� ��

�			 ���

�

�

�

Figure �� Partial Output of Layout Phase

�

main

process

printf

init

init_b init_a

Figure �� Final Structure Chart

� Using Our Tool at Georgia Tech

For those readers at Georgia Tech who wish to run our tool� we now describe
exactly what steps you must go through�

All of the tools are compiled for Sparc machines �though they can be
compiled for other machines�� so log into a Sparc machine� Change to the
CToStructureChart directory� in whoever�s account is keeping these �les�
For simplicity� we will work entirely out of this directory� Copy all of the
C source �les that you wish to reverse engineer to this directory� Run the
C preprocessor ��lib�cpp� on these source �les and save the resulting �les�
Next type makeSC followed by the names of the �les preprocessed above�
makeSC is a four�line shell script taking as many arguments as you choose
to give it� each a �le name� makeSC concatenates all of the argument
�les �concatenating several C source �les gives a valid C source �le�� and
runs the resulting large �le through canal �the NewYacc source analyzer��
�lter�awk �the Awk program�� and layout �the C layout program�� The
�nal result� an StP structure chart �le� is written to standard output� so you
should redirect it to a �le� You should give the structure chart �le a name

�

ending in �sce� StP�s standard naming convention for structure chart �les�
Now all that remains is to read the structure chart diagram into StP�

Start the StP Main Menu� select the SCE icon� �ll in the name of the
structure chart �le in the �Diagram�� �eld� and press the �Execute� button�
Now you are free to manipulate the structure chart as you please�

� Possibilities for Future Work

In the future we wish to investigate how StP can be used interactively as
a reverse engineering tool� In particular� the structure charts generated
by our tool are often too big� When printed on a single sheet of paper�
these structure charts are too small to read� Big structure charts need to
be broken down into a group of linked smaller charts� We envision a tool
where the reverse engineer can interactively break a large structure chart into
linked smaller charts using the StP structure chart editor� Unfortunately�
the standard StP structure chart editor does not have facilities built in for
breaking apart structure charts� We hope to �nd an e�ective way to add
such functionality to the structure chart editor� There are a few possible
methods of accomplishing this task that we are considering� Perhaps one of
these methods will be e�ective and appear in a future paper�

� Conclusion

We have successfully demonstrated that a CASE tool can be used to support
reverse engineering� Our structure chart generator appears to be a genuinely
useful tool for a reverse engineer� It was much easier to write this tool to
work in conjunction with StP than it would have been to write a stand
alone� interactive structure chart generator and viewer� NewYacc has also
proven to be a handy tool� making it relatively simple to write source code
analyzers�

We veri�ed that StP implements the open architecture its makers adver�
tise� Without its simple ASCII text �le format for structure chart diagram
�les� a �le format described thoroughly in the StP User�s Manual� writing
our tool would have been much more di�cult�

This principle disadvantage of building a reverse engineering tool on top
of a CASE tool is that the CASE tool�s architecture is not totally open�
For example� in StP the user cannot completely rede�ne the user interface
for the structure chart editor� If one is interested in developing a high

�

quality� commercial reverse engineering product� this lack of a complete

exibility in being able to change the functionality of the CASE tool could
be an argument for writing the entire reverse engineering tool from scratch�
However� CASE tools� especially StP� can be customized in a fairly large
number of ways� Thus for developing inhouse reverse engineering tools�
using a CASE tool appears very promising�

References

�	� S� Johnson� �Yacc� Yet Another Compiler�Compiler�� Bell Laborato�
ries� 	����

��� E� White� J� Callahan� and J� Purtilo� �The NewYacc User�s Manual��
University of Maryland�

�� A� Aho� B� Kernighan� and P� Weinberger� �Awk � A Pattern Scanning
and Processing Language�� Bell Laboratories�

��� Interactive Development Environments� Software through Pictures User

Manual� 	����

	�

