
PROGRAM COMPREHENSION FOR REVERSE

ENGINEERING

Spencer Rugaber

College of Computing

Georgia Institute of Technology

Atlanta� Georgia ����������

spencer�cc�gatech�edu

INTRODUCTION� REVERSE

ENGINEERING

This paper motivates and describes a research program
in the area of reverse engineering being conducted at
the Georgia Institute of Technology� Reverse engineer�
ing is an emerging interest area within the software
engineering �eld� Software engineering itself is con�
cerned with improving the productivity of the software
development process and the quality of the systems it
produces� However� as currently practiced� the ma�
jority of the software development e�ort is spent on
maintaining existing systems rather than developing
new ones� Estimates of the proportion of resources
and time devoted to maintenance range from ��� to
���� 	Boehm� 
��
�

The greatest part of the software maintenance pro�
cess is devoted to understanding the system being
maintained� Fjeldstad and Hamlen report that ��
and ��� of time spent on actual enhancement and cor�
rection tasks� respectively� are devoted to comprehen�
sion activities� These involve reading the documenta�
tion� scanning the source code� and understanding the
changes to be made� 	Fjeldstad and Hamlen� 
����

The implications are that if we want to improve soft�
ware development� we should look at maintenance� and
if we want to improvemaintenance� we should facilitate
the process of comprehending existing programs� Re�
verse engineering provides a direct attack on the pro�
gram comprehension problem�

De�nition

The process of understanding a program involves re�
verse engineering the source code� Chikofsky and Cross
	Chikofsky and Cross II� 
���� give the following de��
nition� �Reverse enginering is the process of analyzing
a subject system to identify the system�s components
and their interrelationships and create representations
of the system in another form or at a higher level of
abstraction�� The purpose of reverse engineering is
to understand a software system in order to facilitate
enhancement� correction� documentation� redesign� or
reprogramming in a di�erent programming language�

Di�culties

Reverse engineering is di�cult� It is di�cult because it
must bridge di�erent worlds� Of particular importance
are bridges over the following �ve gaps�

� The gap between a problem from some application
domain and a solution in some programming lan�
guage�

� The gap between the concrete world of physical
machines and computer programs and the abstract
world of high level descriptions�

� The gap between the desired coherent and highly
structured description of the system and the actual
system whose structure may have disintegrated over
time�

� The gap between the hierarchical world of programs
and the associational nature of human cognition�

� The gap between the bottom�up analysis of the
source code and the top�down synthesis of the de�
scription of the application�

The di�culties manifest themselves in three ways�
lack of a systematic methodology� lack of an appropri�
ate representation for the information discovered dur�
ing reverse engineering� and lack of powerful tools to
facilitate the reverse engineering process�

METHODOLOGY

Background� Bottom Up versus Top Down

There are two approaches to understanding a program�
bottom�up� starting with the source code and gen�
erating a description� and top�down� formulating hy�
potheses and con�rming them by examining the pro�
gram� An example of the former is the approach taken
by Soloway and Ehrlich� They propose a bottom�up
model of analysis based on the recognition of plans
in the source code� 	Soloway and Ehrlich� 
��� The
plans are organized into subgoals and then goals� Ex�
periments have been conducted that support this ap�
proach� and Letovsky has built an analysis tool that
implements part of the analysis process� 	Letovsky�

���� Other examples of the bottom�up approach are



the program analyzer component of the Programmer�s
Apprentice project 	Rich and Wills� 
���� and the work
of Basili and Mills based on control �ow analysis and
formal documentation� 	Basili and Mills� 
����
The top�down approach is championed by Ruven

Brooks� In his approach� the program understander
attempts to recreate a series of mappings between the
application domain and the program� Exploration is
driven by expectations derived from the application
description� 	Brooks� 
���� There have been some hu�
man factors experiments that support Brooks� ideas�

Synchronized Re�nement

Rugaber et al� have developed an approach�
called Synchronized Re�nement� that coordinates the
bottom�up analysis of the source code with the top�
down synthesis of the application description� 	Kam�
per and Rugaber� 
���� Rugaber et al�� 
���� It pro�
duces a description of the functioning of the system an�
notated by references to locations in the program text
that implement the various aspects of the application�
The description is highly cross�referenced� indicating
how programs are built from component pieces that
are interleaved to accomplish the total purpose�
Synchronized Re�nement has been used to help ana�

lyze numerical� data processing� and real�time software
systems ranging in size from one hundred to one mil�
lion lines of code written in Fortran� Cobol� and PL�M
�a system programming language�� The application of
Synchronized Re�nement proved to be highly labor in�
tensive� re�ecting the need for support tools� More�
over� the descriptions that were constructed and the
source code segments that were analyzed were man�
aged using regular text �les� This emphasized the
need for a comprehensive representation or data model
based on which a data base can be constructed to hold
the information� Finally� it should be pointed out that
all program analysis methods are just a part of the
overall reverse engineering task that also requires con�
sideration of �le structures� organization of runs� user
interface� etc��

REPRESENTATION

Requirements for a Representation

A key ingredient for successful reverse engineering is a
suitable representation for the understanding obtained
when analyzing source code� In order to design such
a representation� it is important to understand how it
might be used� The following requirements hold for a
representation suitable for dealing with reverse engi�
neering information�

� Requirements Related to the Information
Content of the Representation� The represen�
tation must be able to contain a variety of types of
information� These include informal rationale and
annotations� program segments� pointers to other
documentation� and application descriptions� Most

importantly� it must be able to represent the organi�
zation of the program in terms of detected abstrac�
tions� In fact� the reverse engineer constructs a com�
plex information structure that describes the orga�
nization of the program and the interrelationships
of its pieces� There must be a place in the repre�
sentation to hold observations made by the reverse
engineer during this process�

� Requirements Related to the Relationships
Among the Data Being Represented� The rep�
resentation is constructed incrementally by the re�
verse engineer� It must allow an observation con�
cerning a section of code to be associated both with
related sections of code and with the overall func�
tional description being constructed� This includes
both hierarchical connections among abstractions
and heterarchical �cross�reference� associations� Fi�
nally� the representation should support instances
where a section of code contains several components
interleaved together�

� Requirements Related to How the Represen�
tation is Constructed� The representation needs
to be easy to construct incrementally� both compu�
tationally and from a user interface point of view�
Additionally� it should be language independent in
the sense that it can be used during the reverse engi�
neering of programs written in a variety of languages
and programming paradigms�

� Requirements Related to How the Represen�
tation is Used� The representation must be formal
enough to support automatic manipulation� For ex�
ample� after a program has been reverse engineered
into the representation� it should be possible to ap�
ply tools to adapt segments for reuse� This process
is called transformational programming � and a va�
riety of such transformations exist� 	Feather� 
����
Partsch and Steinbruggen� 
����

� Requirements Related to How the Represen�
tation is Accessed and Viewed� A predominant
use of the representation will be to facilitate program
browsing� That is� a maintenance programmer de�
siring to �x a bug or make an enhancement needs
to be able to peruse the information structure either
to answer speci�c questions �which functions call a
given function�� obtain an architectural overview �in
graphical form�� or locate a speci�c section of the
code �where are all of the statements that could af�
fect the �nal value of a given output variable�� The
representation must� at the same time� be indepen�
dent of any particular design method or notation
and be capable of generating information in any of
a variety of formats�

Design Decisions

When a program is constructed� the original designer
makes a series of decisions that break the problem solu�
tion into pieces and then indicates how the pieces work



together to solve the problem� It is natural to base a
methodology for reverse engineering on the recognition
of design decisions in code� Furthermore� the repre�
sentation for the information detected during reverse
engineering is naturally structured to re�ect the inter�
relationships of the code segments used to implement
the detected decisions�
Synchronized Re�nement is based on the detection

of design decisions in code� Moreover� a representa�
tion is being designed to satisfy the requirements men�
tioned above that uses design decisions as a structur�
ing mechanism� Design decisions and how they can
be recognized are described in� 	Rugaber et al�� 
����
The description is summarized here� Design decisions
can be divided into several classes based on the type of
abstraction they provide� Among the classes that are
useful to detect during the reverse engineering process
are the following�

� Composition�decomposition � Programs are built up
from parts� and problems are broken down into
smaller� more easily solvable sub�problems� This
type of decision is manifested in the code by such
constructs as modules and data structures�

� Encapsulation�interleaving � Subcomponents inter�
act with each other� If the interactions are limited
and occur through explicit interfaces� the component
is said to be encapsulated� If� usually for reasons
of e�ciency� two or more plans are realized in the
same section of code or by the same data structure�
then the components corresponding to those plans
are said to be interleaved�

� Generalization�specialization � Often one compo�
nent is similar to another� It may then be possible
to construct a higher level parameterized component
capable of realizing both as special cases� In object�
oriented programming� the process is often reversed�
with the more general component constructed �rst�
and the special cases added later�

� Representation � � In translating from the problem
domain to the solution domain� decisions are made
that result in a program component serving as a
model for some application domain entity� If e��
ciency is a concern� high level programming con�
structs can be further represented by other con�
structs closer to the machine� such as using an array
to represent a stack� Languages such as Ada are
emerging that support explicit representation� but
the reverse engineering of programs from older lan�
guages requires the detection of these decisions�

� Data�Procedure � Programs are sequences of com�
putations organized by control structures� Variables
are ways of saving intermediate results for later use�

�This use of the term representation should not be con�
fused with its use as a notation for capturing a high�level
understanding of a program�

either to avoid recomputation or to simplify the ex�
pression of the computation� The introduction of a
variable is an important design decision that is� un�
fortunately� too easy to make without appropriate
thought and annotation�

� Non�determinism removal � In some situations� a de�
signer has a choice of how to express the relation�
ship between input and output parameters� This
is particularly true in logic programming languages�
such as Prolog� A single relationship� expressing a
high level speci�cation� can lead to alternative func�
tions depending on the modes �input�output desig�
nations� of the parameters� This decision is usually
made at a very early stage of design� if it is made
explicitly at all�

TOOLS
Synchronized Re�nement is a labor�intensive process
for reverse engineering a program� Many of its com�
ponent activities are� however� automatable using well�
understood techniques� The information that the tools
produce needs to be saved in a data base so that it can
be later accessed by software maintainers�

� Analysis Tools� Recognizing design decisions re�
quires intensive� non�linear access to the source code�
When a decision is suspected� it often needs to be
con�rmed by examining related sections of code�
Also� the code needs to be manipulated so that the
details of the decision can be hidden and a summary
displayed in its place� Many of the decisions are de�
tected by recognizing syntactic patterns of program
constructs and variable usage� Their recognition in�
volves much of the same processing as occurs during
the early stages of compiling a program� In fact� the
artifacts of parsing a program� the abstract syntax
tree and the symbol table� can serve as a source of
data from which to build an initial representation of
the program�

� Browsers�Hypertext� If a program is suitably an�
alyzed and stored in a structured fashion� browsing
activities are facilitated� In particular� the abstract
syntax tree can serve to guide those perusals that
are aimed at understanding the hierarchical nature
of the program code� Likewise� the symbol table in�
formation can serve to support the cross�reference�
like queries� The technology being described bears
a striking resemblance to that of hypertext systems�
	Conklin� 
���� There� high bandwidth displays and
direct manipulation interfaces are used to explore
non�linear organizations of text� In the case of re�
verse engineering� the text is source code and the
non�linear relationships are provided by the parser�

� Object Server� The information structure being
assembled from detected design decisions needs to be
saved in a repository for use by software maintain�
ers� Although some of its organization is support�
able by existing data base systems� these are not en�



tirely adequate� In the same sense that CASE tools
are turning to object�oriented data bases and object
servers in order to support forward engineering ac�
tivities� reverse engineering needs to be supported
by non�traditional methods�

� Task�Oriented Tools�Debugging� Once a com�
prehensive information structure is populated with
information about a program� tools speci�c to a par�
ticular software maintenance task can be applied�
The data model and the information structure are
the prerequisites for an integrated collection of tools�
As an example consider the following debugging tool�
The software maintainer begins with a trouble re�
port that indicates that a program is producing un�
expected output on a given run� The maintainer
desires to quickly localize the problem to a small
segment of the code� He uses a tool that indicates
for a given set of correct and incorrect output val�
ues� which statements are potentially responsible for
the problem� The tool examines the dependency re�
lationships among the program statements and the
execution history of the program to determine the
appropriate statements� The tool has a mode where
only relevant statements are displayed in a given sit�
uation� In this way the maintainer can concentrate
on the appropriate code sections� The tool makes
it determination from the information contained in
the data base�

CONCLUSIONS

Five Gaps

The introduction to this paper describes the reasons
why reverse engineering is di�cult� The remainder of
the paper presents an integrated approach to solving
these problem based upon a methodology called Syn�
chronized Re�nement� This approach is based upon
the detection of design decisions in the source code and
the organization of the information into an information
structure suitable for browsing by software maintain�
ers� This approach addresses the �ve gaps discussed in
Section � in the following ways�

� Application domain�program domain � Synchro�
nized Re�nement involves the parallel exploration
of the source code and construction of a functional
description of the application domain� The process
itself constructs the bridge between them�

� Concrete�abstract � Synchronized Re�nement con�
structs an information structure that organizes low
level details into more abstract constructs� The pro�
cess continues until a concise high level description
of the program�s main purpose is expressed�

� Coherency�disintegration � It is only by looking at
the overall structure of a program that organiza�
tional di�culties can be appreciated� Synchronized
Re�nement constructs a representation of the actual
structure of the program and allows the reverse en�
gineer to annotate the representation with questions

and suggestions about improvements� Moreover� the
data model enables the construction of transforma�
tion tools useful for improving the structural aspects
of the program�

� Hierarchical�associational � The data model sup�
ports a variety of relationships including both hier�
archical and cross�reference information� Moreover�
the model is extensible to new relationships deemed
appropriate by the reverse engineer�

� Bottom�up�top�down � Synchronized Re�nement co�
ordinates both of these activities�

Productivity and Quality

The introduction also discusses how reverse engineer�
ing relates to other activities in the software engineer�
ing �eld� Software development productivity and qual�
ity are improved if programs can be enhanced instead
of being rebuilt� They are also improved if major pieces
of existing systems can be reused with reduced e�ort�
These activities require that software engineers know
in detail what existing programs do�
The purpose of this research program is to support

the comprehension process� The support comes in
the form of a methodology called Synchronized Re�
�nement� The methodology produces an information
structure suitable for use by software maintainers in
understanding programs and adapting them for alter�
native uses� Moreover� it enables the construction of
tools� such as debuggers and program transformers�
useful in maintaining and improving software quality�

References

Basili� V� R� and Mills� H� D� 
���� Understanding
and documenting programs� IEEE Transactions on
Software Engineering SE��������������

Boehm� Barry W� 
��
� Software Engineering Eco�
nomics� Prentice Hall� Englewood Cli�s� NJ�

Brooks� Ruven 
���� Towards a theory of the compre�
hension of computer programs� International Journal
of Man�Machine Studies 
��������

Chikofsky� Elliot J� and Cross II� James H� 
���� Re�
verse engineering and design recovery� A taxonomy�
IEEE Software ��
��
��
��

Conklin� J� 
���� Hypertext� An introduction and
survey� IEEE Computer ������
��
�

Feather� Martin S� 
���� A survey and classi�cation
of some program transformation approaches and tech�
niques� In Meertens� L� G� L� T�� editor 
���� Program
Speci�cation and Transformation� Elsevier North Hol�
land� 
���
���

Fjeldstad� R� K� and Hamlen� W� T� 
���� Applica�
tion program maintenance study� Report to our re�
spondents� In Proceedings GUIDE ��� Philadelphia�
PA� Also in Tutorial on Software Maintenance� G�
Parikh and N� Zvegintozov� editors� IEEE Computer
Society� IEEE Order No� EM���



Kamper� Kit and Rugaber� Spencer 
���� A reverse
engineering methodology for data processing appli�
cations� Technical Report GIT�SERC������� Soft�
ware Engineering Research Center� Georgia Institute
of Technology�

Letovsky� Stanley 
���� Plan Analysis of Programs�
Ph�D� Dissertation� Yale University�

Partsch� H� and Steinbruggen� R� 
���� Program
transformation systems� ACM Computing Surveys

�����
�������

Rich� Charles and Wills� Linda M� 
���� Recognizing
a program�s design� A graph�parsing approach� IEEE
Software ��
��������

Rugaber� Spencer� Ornburn� Stephen B�� and Jr��
Richard J� LeBlanc 
���� Recognizing design deci�
sions in programs� IEEE Software ��
������

Soloway� E� and Ehrlich� K� 
��� Empirical studies
of programming knowledge� IEEE Transactions on
Software Engineering SE�
�������������


