PROGRAM COMPREHENSION FOR REVERSE
ENGINEERING

Spencer Rugaber

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

spencer@cc.gatech.edu

INTRODUCTION: REVERSE
ENGINEERING

This paper motivates and describes a research program
in the area of reverse engineering being conducted at
the Georgia Institute of Technology. Reverse engineer-
ing is an emerging interest area within the software
engineering field. Software engineering itself is con-
cerned with improving the productivity of the software
development process and the quality of the systems it
produces. However, as currently practiced, the ma-
jority of the software development effort is spent on
maintaining existing systems rather than developing
new ones. Estimates of the proportion of resources
and time devoted to maintenance range from 50% to
80%. [Boehm, 1981]

The greatest part of the software maintenance pro-
cess is devoted to understanding the system being
maintained. Fjeldstad and Hamlen report that 47%
and 62% of time spent on actual enhancement and cor-
rection tasks, respectively, are devoted to comprehen-
sion activities. These involve reading the documenta-
tion, scanning the source code, and understanding the
changes to be made. [Fjeldstad and Hamlen, 1979]

The implications are that if we want to improve soft-
ware development, we should look at maintenance, and
if we want to improve maintenance, we should facilitate
the process of comprehending existing programs. Re-
verse engineering provides a direct attack on the pro-
gram comprehension problem.

Definition

The process of understanding a program involves re-
verse engineering the source code. Chikofsky and Cross
[Chikofsky and Cross 11, 1990] give the following defi-
nition. “Reverse enginering is the process of analyzing
a subject system to identify the system’s components
and their interrelationships and create representations
of the system in another form or at a higher level of
abstraction.” The purpose of reverse engineering is
to understand a software system in order to facilitate
enhancement, correction, documentation, redesign, or
reprogramming in a different programming language.

Difficulties

Reverse engineering is difficult. It is difficult because it
must bridge different worlds. Of particular importance
are bridges over the following five gaps.

e The gap between a problem from some application
domain and a solution in some programming lan-

guage.
e The gap between the concrete world of physical

machines and computer programs and the abstract
world of high level descriptions.

e The gap between the desired coherent and highly
structured description of the system and the actual
system whose structure may have disintegrated over
time.

e The gap between the hierarchical world of programs
and the associational nature of human cognition.

e The gap between the bottom-up analysis of the
source code and the top-down synthesis of the de-
scription of the application.

The difficulties manifest themselves in three ways:
lack of a systematic methodology, lack of an appropri-
ate representation for the information discovered dur-
ing reverse engineering, and lack of powerful tools to
facilitate the reverse engineering process.

METHODOLOGY
Background: Bottom Up versus Top Down

There are two approaches to understanding a program:
bottom-up, starting with the source code and gen-
erating a description; and top-down, formulating hy-
potheses and confirming them by examining the pro-
gram. An example of the former is the approach taken
by Soloway and Ehrlich. They propose a bottom-up
model of analysis based on the recognition of plans
in the source code. [Soloway and Ehrlich, 1984] The
plans are organized into subgoals and then goals. Ex-
periments have been conducted that support this ap-
proach, and Letovsky has built an analysis tool that
implements part of the analysis process. [Letovsky,
1988] Other examples of the bottom-up approach are



the program analyzer component of the Programmer’s
Apprentice project [Rich and Wills, 1990] and the work
of Basili and Mills based on control flow analysis and
formal documentation. [Basili and Mills, 1982]

The top-down approach is championed by Ruven
Brooks. In his approach, the program understander
attempts to recreate a series of mappings between the
application domain and the program. Exploration is
driven by expectations derived from the application
description. [Brooks, 1983] There have been some hu-
man factors experiments that support Brooks’ ideas.

Synchronized Refinement

Rugaber et al. have developed an approach,
called Synchronized Refinement, that coordinates the
bottom-up analysis of the source code with the top-
down synthesis of the application description. [Kam-
per and Rugaber, 1990; Rugaber et al., 1990] It pro-
duces a description of the functioning of the system an-
notated by references to locations in the program text
that implement the various aspects of the application.
The description is highly cross-referenced, indicating
how programs are built from component pieces that
are interleaved to accomplish the total purpose.

Synchronized Refinement has been used to help ana-
lyze numerical, data processing, and real-time software
systems ranging in size from one hundred to one mil-
lion lines of code written in Fortran, Cobol, and PL/M
(a system programming language). The application of
Synchronized Refinement proved to be highly labor in-
tensive, reflecting the need for support tools. More-
over, the descriptions that were constructed and the
source code segments that were analyzed were man-
aged using regular text files. This emphasized the
need for a comprehensive representation or data model
based on which a data base can be constructed to hold
the information. Finally, it should be pointed out that
all program analysis methods are just a part of the
overall reverse engineering task that also requires con-
sideration of file structures, organization of runs, user
interface, etc..

REPRESENTATION

Requirements for a Representation

A key ingredient for successful reverse engineering is a
suitable representation for the understanding obtained
when analyzing source code. In order to design such
a representation, it is important to understand how it
might be used. The following requirements hold for a
representation suitable for dealing with reverse engi-
neering information.

¢ Requirements Related to the Information
Content of the Representation: The represen-
tation must be able to contain a variety of types of
information. These include informal rationale and
annotations, program segments, pointers to other
documentation, and application descriptions. Most

importantly, it must be able to represent the organi-
zation of the program in terms of detected abstrac-
tions. In fact, the reverse engineer constructs a com-
plex information structure that describes the orga-
nization of the program and the interrelationships
of 1ts pieces. There must be a place in the repre-
sentation to hold observations made by the reverse
engineer during this process.

¢ Requirements Related to the Relationships
Among the Data Being Represented: The rep-
resentation is constructed incrementally by the re-
verse engineer. It must allow an observation con-
cerning a section of code to be associated both with
related sections of code and with the overall func-
tional description being constructed. This includes
both hierarchical connections among abstractions
and heterarchical (cross-reference) associations. Fi-
nally, the representation should support instances
where a section of code contains several components
interleaved together.

¢ Requirements Related to How the Represen-
tation is Constructed: The representation needs
to be easy to construct incrementally, both compu-
tationally and from a user interface point of view.
Additionally, it should be language independent in
the sense that it can be used during the reverse engi-
neering of programs written in a variety of languages
and programming paradigms.

¢ Requirements Related to How the Represen-
tation is Used: The representation must be formal
enough to support automatic manipulation. For ex-
ample, after a program has been reverse engineered
into the representation, 1t should be possible to ap-
ply tools to adapt segments for reuse. This process
is called transformational programming, and a va-
riety of such transformations exist. [Feather, 1987;
Partsch and Steinbruggen, 1983]

¢ Requirements Related to How the Represen-
tation is Accessed and Viewed: A predominant
use of the representation will be to facilitate program
browsing. That is, a maintenance programmer de-
siring to fix a bug or make an enhancement needs
to be able to peruse the information structure either
to answer specific questions (which functions call a
given function), obtain an architectural overview (in
graphical form), or locate a specific section of the
code (where are all of the statements that could af-
fect the final value of a given output variable). The
representation must, at the same time, be indepen-
dent of any particular design method or notation
and be capable of generating information in any of
a variety of formats.

Design Decisions

When a program is constructed, the original designer
makes a series of decisions that break the problem solu-
tion into pieces and then indicates how the pieces work



together to solve the problem. It is natural to base a
methodology for reverse engineering on the recognition
of design decisions in code. Furthermore, the repre-
sentation for the information detected during reverse
engineering is naturally structured to reflect the inter-
relationships of the code segments used to implement
the detected decisions.

Synchronized Refinement is based on the detection
of design decisions in code. Moreover, a representa-
tion 1s being designed to satisfy the requirements men-
tioned above that uses design decisions as a structur-
ing mechanism. Design decisions and how they can
be recognized are described in. [Rugaber et al., 1990]
The description is summarized here. Design decisions
can be divided into several classes based on the type of
abstraction they provide. Among the classes that are
useful to detect during the reverse engineering process
are the following.

e Composition/decomposition - Programs are built up
from parts, and problems are broken down into
smaller, more easily solvable sub-problems. This
type of decision i1s manifested in the code by such
constructs as modules and data structures.

e Encapsulation/interleaving - Subcomponents inter-
act with each other. If the interactions are limited
and occur through explicit interfaces, the component
is said to be encapsulated. If, usually for reasons
of efficiency, two or more plans are realized in the
same section of code or by the same data structure,
then the components corresponding to those plans
are sald to be interleaved.

o Generalization/specialization - Often one compo-
nent is similar to another. It may then be possible
to construct a higher level parameterized component
capable of realizing both as special cases. In object-
oriented programming, the process is often reversed,
with the more general component constructed first,
and the special cases added later.

¢ Representation ! - In translating from the problem
domain to the solution domain, decisions are made
that result in a program component serving as a
model for some application domain entity. If effi-
ciency is a concern, high level programming con-
structs can be further represented by other con-
structs closer to the machine, such as using an array
to represent a stack. Languages such as Ada are
emerging that support explicit representation, but
the reverse engineering of programs from older lan-
guages requires the detection of these decisions.

e Data/Procedure - Programs are sequences of com-
putations organized by control structures. Variables
are ways of saving intermediate results for later use,

! This use of the term representation should not be con-
fused with its use as a notation for capturing a high-level
understanding of a program.

either to avoid recomputation or to simplify the ex-
pression of the computation. The introduction of a
variable 1s an important design decision that is, un-
fortunately, too easy to make without appropriate
thought and annotation.

e Non-determinism removal - In some situations, a de-
signer has a choice of how to express the relation-
ship between input and output parameters. This
is particularly true in logic programming languages,
such as Prolog. A single relationship, expressing a
high level specification, can lead to alternative func-
tions depending on the modes (input/output desig-
nations) of the parameters. This decision is usually
made at a very early stage of design, if it is made
explicitly at all.

TOOLS

Synchronized Refinement is a labor-intensive process
for reverse engineering a program. Many of its com-
ponent activities are, however, automatable using well-
understood techniques. The information that the tools
produce needs to be saved in a data base so that it can
be later accessed by software maintainers.

e Analysis Tools: Recognizing design decisions re-
quires intensive, non-linear access to the source code.
When a decision is suspected, it often needs to be
confirmed by examining related sections of code.
Also, the code needs to be manipulated so that the
details of the decision can be hidden and a summary
displayed in its place. Many of the decisions are de-
tected by recognizing syntactic patterns of program
constructs and variable usage. Their recognition in-
volves much of the same processing as occurs during
the early stages of compiling a program. In fact, the
artifacts of parsing a program, the abstract syntax
tree and the symbol table, can serve as a source of
data from which to build an initial representation of
the program.

¢ Browsers/Hypertext: If a program is suitably an-
alyzed and stored in a structured fashion, browsing
activities are facilitated. In particular, the abstract
syntax tree can serve to guide those perusals that
are aimed at understanding the hierarchical nature
of the program code. Likewise, the symbol table in-
formation can serve to support the cross-reference-
like queries. The technology being described bears
a striking resemblance to that of hypertext systems.
[Conklin, 1987] There, high bandwidth displays and
direct manipulation interfaces are used to explore
non-linear organizations of text. In the case of re-
verse engineering, the text is source code and the
non-linear relationships are provided by the parser.

e Object Server: The information structure being
assembled from detected design decisions needs to be
saved in a repository for use by software maintain-
ers. Although some of its organization is support-
able by existing data base systems, these are not en-



tirely adequate. In the same sense that CASE tools
are turning to object-oriented data bases and object
servers in order to support forward engineering ac-
tivities, reverse engineering needs to be supported
by non-traditional methods.

Task-Oriented Tools/Debugging: Once a com-
prehensive information structure is populated with
information about a program, tools specific to a par-
ticular software maintenance task can be applied.
The data model and the information structure are
the prerequisites for an integrated collection of tools.
As an example consider the following debugging tool.
The software maintainer begins with a trouble re-
port that indicates that a program is producing un-
expected output on a given run. The maintainer
desires to quickly localize the problem to a small
segment of the code. He uses a tool that indicates
for a given set of correct and incorrect output val-
ues, which statements are potentially responsible for
the problem. The tool examines the dependency re-
lationships among the program statements and the
execution history of the program to determine the
appropriate statements. The tool has a mode where
only relevant statements are displayed in a given sit-
uation. In this way the maintainer can concentrate
on the appropriate code sections. The tool makes
it determination from the information contained in
the data base.

CONCLUSIONS

Five Gaps

The introduction to this paper describes the reasons
why reverse engineering is difficult. The remainder of
the paper presents an integrated approach to solving
these problem based upon a methodology called Syn-
chronized Refinement. This approach is based upon
the detection of design decisions in the source code and
the organization of the information into an information
structure suitable for browsing by software maintain-
ers. This approach addresses the five gaps discussed in
Section 2 in the following ways.

Application domain/program domain - Synchro-
nized Refinement involves the parallel exploration
of the source code and construction of a functional
description of the application domain. The process
itself constructs the bridge between them.

Concrete/abstract - Synchronized Refinement con-
structs an information structure that organizes low
level details into more abstract constructs. The pro-
cess continues until a concise high level description
of the program’s main purpose is expressed.

Coherency /disintegration - It is only by looking at
the overall structure of a program that organiza-
tional difficulties can be appreciated. Synchronized
Refinement constructs a representation of the actual
structure of the program and allows the reverse en-
gineer to annotate the representation with questions

and suggestions about improvements. Moreover, the
data model enables the construction of transforma-
tion tools useful for improving the structural aspects
of the program.

e Hierarchical /associational - The data model sup-
ports a variety of relationships including both hier-
archical and cross-reference information. Moreover,
the model is extensible to new relationships deemed
appropriate by the reverse engineer.

¢ Bottom-up/top-down - Synchronized Refinement co-
ordinates both of these activities.

Productivity and Quality

The introduction also discusses how reverse engineer-
ing relates to other activities in the software engineer-
ing field. Software development productivity and qual-
ity are improved if programs can be enhanced instead
of being rebuilt. They are also improved if major pieces
of existing systems can be reused with reduced effort.
These activities require that software engineers know
in detail what existing programs do.

The purpose of this research program is to support
the comprehension process. The support comes in
the form of a methodology called Synchronized Re-
finement. The methodology produces an information
structure suitable for use by software maintainers in
understanding programs and adapting them for alter-
native uses. Moreover, it enables the construction of
tools, such as debuggers and program transformers,
useful in maintaining and improving software quality.

References
Basili, V. R. and Mills, H. D. 1982. Understanding

and documenting programs. IEEE Transactions on
Software Engineering SE-8(3):270-283.

Boehm, Barry W. 1981. Software Engineering Eco-
nomics. Prentice Hall, Englewood Cliffs, NJ.

Brooks, Ruven 1983. Towards a theory of the compre-
hension of computer programs. International Journal

of Man-Machine Studies 18:543-554.
Chikofsky, Elliot J. and Cross I, James H. 1990. Re-

verse engineering and design recovery: A taxonomy.

IEEE Software 7(1):13-17.

Conklin, J. 1987. Hypertext: An introduction and
survey. IEEE Computer 20(9):17-41.

Feather, Martin S. 1987. A survey and classification
of some program transformation approaches and tech-
niques. In Meertens, L. G. L. T., editor 1987, Program
Specification and Transformation. Elsevier North Hol-

land. 165-195.
Fjeldstad, R. K. and Hamlen, W. T. 1979. Applica-

tion program maintenance study: Report to our re-
spondents. In Proceedings GUIDE /8, Philadelphia,
PA. Also in Tutorial on Software Maintenance, G.
Parikh and N. Zvegintozov, editors, IEEE Computer
Society, IEEE Order No. EM453.



Kamper, Kit and Rugaber, Spencer 1990. A reverse
engineering methodology for data processing appli-
cations. Technical Report GIT-SERC-90/02, Soft-
ware Engineering Research Center, Georgia Institute
of Technology.

Letovsky, Stanley 1988. Plan Analysis of Programs.
Ph.D. Dissertation, Yale University.

Partsch, H. and Steinbruggen, R. 1983. Program
transformation systems. ACM Computing Surveys
15(3):189-226.

Rich, Charles and Wills, Linda M. 1990. Recognizing
a program’s design: A graph-parsing approach. IEEE
Software 7(1):82-89.

Rugaber, Spencer; Ornburn, Stephen B.; and Jr.,
Richard J. LeBlanc 1990. Recognizing design deci-
sions in programs. IFEE Software 7(1):46-54.
Soloway, E. and Ehrlich, K. 1984. Empirical studies
of programming knowledge. [EEE Transactions on

Software Engineering SE-10(5):595-609.



