
Design Guidelines for Ambient Software Visualization in the Workplace

Chris Parnin and Carsten Görg�

College of Computing
Georgia Institute of Technology
�vector,goerg�@cc.gatech.edu

Abstract

Success in software development dictates that the right
information reaches the right people. In the develop-
ment process, information flows among developers, man-
agers, and customers. The information is represented in a
multitude of sources: customer requirements, application
domains, product specifications, development processes,
schedules, budgets, project status reports, and task prior-
ities. Unfortunately, in the transmission of information,
vital tidbits are filtered away, made inaccessible, or with-
held from the stakeholders. Software visualization systems
have traditionally focused on the complexities of the rela-
tions and detailed structure of the software artifacts. Re-
cently, attention has been given to visualizing software ar-
tifacts from the perspective of supporting teams in coordi-
nating efforts. In this paper, we describe the nature of this
information source and provide design guidelines for devel-
oping ambient software visualizations in the workplace. In
particular, we describe how developers can better under-
stand more about project management, recall and perform
tasks in their personal work flow, and coordinate project
state that is continually changing.

1 Introduction

With rapidly advancing display technologies, new oppor-
tunities to alter the workplace environments for software de-
velopers emerge. Two major problems that have been iden-
tified in the software developer workplace are (1) the neg-
ative impact of distractions and interruptions and (2) fail-
ures in communicating and difficulties in understanding the
project as a whole.

The responsibilities and tasks assigned to professional
software developers require deep concentration in an envi-
ronment constantly vying for their attention. Distractions
are paramount in this environment; meetings, emails and

* The author was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

phone calls fragment the usable work hours. Many tasks re-
quire coordinating with another team member, interrupting
the current task of the assisting member. In this atmosphere,
it is not unusual for developers to fail to recall the need to
perform a specific task, known as prospective memory fail-
ure. In addition, productivity is negatively affected: Czer-
winski’s study [3] showed that tasks which resumed after
interruption were more difficult to perform and took twice
as long. O’Conaill’s study [15] found 40% of interrupted
tasks are not resumed at all. Further research [13] observed
57% of tasks were interrupted, and the time spent working
uninterrupted was very small. A recent study [12] of soft-
ware engineers working at Microsoft indicated that 62% of
developers surveyed believed recovering from interruptions
was a serious problem.

Opportunities for breakdowns in communication are
possible across numerous boundaries [11]. A large di-
vide exists in communicating between managers and pro-
grammers. The reasons for this are several: technical
inexperience, differing personality types, team structures,
and personnel removal. Moreover, programmers are of-
ten buffered from upper management concerns, budget con-
straints, schedule concerns, and task priorities.

In the software visualization community, several at-
tempts have been made to address some of the above con-
cerns. The WAR ROOM command console [16] is a shared
visualization system that provides a view of a team’s ac-
tivities. The system highlights individual team efforts in
order to report progress to management, identify poten-
tial conflicts, and share insight of the entire project. The
success of this approach comes from the overview of the
current project efforts; however, the visualization remains
largely developer-centric and source code centric. Ripley et
al. [21] show another instance where a 3d visualization is
used to monitor the artifacts and developer’s software con-
figuration management. The system AUGUR [8] provides a
SeeSoft [6] view to juxtapose source structure with activ-
ities on that structure. The authors note that the system is
not designed for managers.



The above systems focus mainly on visualizing data
from source control repositories. Source control reposito-
ries reflect only a small subset of the information sources
that developers must deal with. In addition, the design of
these systems assume that developers have the time and at-
tention to devote to these tools without understanding the
context of how these activities occur.

Ambient and peripheral visualization systems are an
alternative to the highly interactive and exploratory tool
paradigm. The term ambient visualization has been used to
refer to many applications: from glowing ambient orbs [2]
casting the stock market’s daily movement in green and red
hues to plasma displays hung in public spaces streaming
weather, event announcements, and traffic information.

A connection needs to be made with the philosophy of
ambient visualizations and the problems they contend to ad-
dress. Humans pursue assorted interests in their lives. Some
interests and information exist beyond the range of their
sphere of attention. In a world where only limited resources
and time are available, ambient conveyance of information
connect people to the fringe of their awareness with mini-
mal interruption. The displays accomplish this through the
blending of aesthetic qualities with environment and low-
key information conveyance.

We discuss the use of ambient displays in general office
applications in the next section, followed by an explanation
of how these displays can be arranged and operated in a de-
veloper’s office in Section 3. We describe how information
flows throughout the software process and how incorporat-
ing content from these sources promote awareness and fa-
cilitate information flow in Section 4. Finally, we suggest
design guidelines for managing the scheduling and repre-
sentation of this information in Section 5 and draw conclu-
sion in Section 6.

2 Ambient Displays in the Workplace

The design issues involved in ambient displays that fos-
ter information awareness and collaboration in the work-
place has received wide attention in the HCI community.
Huang and Mynatt [10] have described these efforts as they
vary along two dimensions: the target group size (pairs,
small groups of about 10, and large groups sized 20 to over
100), and the location of the display space (personal, collo-
cated, and public). McCarthy et al. have described systems
as being either UniCast, OutCast, or GroupCast [14]. In
UniCast, information is displayed for personal purpose in
the office location. OutCast systems can be placed outside
the office door to project information such as biographically
information, current projects, and in or out of office status.
In GroupCast, information is shared among a larger group.

In large groups, general information is broadcast to indi-
vidual desktops or public displays. The information caters

to general awareness of office events, weather, traffic, etc.
These systems have difficulty in providing directly rel-
evant content due to the size of the intended audience.
Approaches such as GroupCast limit information scope,
whereas systems such as THE BUZZ [5] address this prob-
lem through personalization of the broadcast information.

Other systems have attempted to tailor display design to-
ward smaller groups. The NOTIFICATION COLLAGE [9]
serves as a digital bulletin board allowing posting of gen-
eral events, photos, interesting news articles, and for-sale
ads in the office environment. Huang and Mynatt [10]
steer away from general office applications and describe
how semi-public displays can support collocated groups by
sharing information about personnel presence and absence,
work progress, participation in non-work activities, upcom-
ing work events, and solicitation for short-term assistance
and long-term collaboration. The MessyBoard [7] also fo-
cuses on groups by supporting the sharing of project ideas
and notes in a common digital space.

Other systems have catered toward the individual and
supporting the performance of their tasks. TASKTRACER [4]
enables workers to switch among and maintain different
working contexts by tracking documents, email messages,
and visited websites under various contexts. Similarly,
KIMURA [22] uses a peripheral display to hold montages of
artifacts that are associated with different working contexts.
The system allows users to switch among and make notes
about the contexts.

Although this body of work has demonstrated the effi-
cacy of ambient visualization in the workplace, the content
of these systems generally focus on office activities that fos-
ter a better workplace environment. Other systems do par-
tially address task-relevant issues such as maintaining work-
ing memory, but do not leverage the nature of the work or
project domain.

3 The Ambient Development Display

��� ������	 
����
������

Workplace arrangements vary greatly across different of-
fices and organizations. One developer may have a cubi-
cle with limited wall space or have physical limitations in
mounting displays. Other developers may have their own
office, whereas some might share an open lab space.

In these assorted configurations, the placement of an ex-
ternal display and the resulting effects warrant interest. For
desks placed against the wall, one possible configuration in-
volves a multi-monitor setup of dual or triple screens and a
large display placed above the monitors. This configura-
tion allows the developer to work with their main monitors
while enabling passive viewing of information on the large
display (see Figure 1). In this configuration the question



Figure 1. Multi-monitor setup.

arises: is the extra information on the large monitor distract-
ing? In Plaue’s study [18] of students performing tasks, it
was found that smooth animations did not distract or inter-
rupt the performance of the task. For desks facing outward,
placement may be either on the nearest opposite wall or far-
thest adjacent wall. The distance from the desk requires that
information viewed in this configuration cannot be too text
or detail-oriented. Some offices share a common atrium, al-
lowing the placement of a display in the common area. This
configuration is similar to GroupCast [14] and semi-public
displays [10] where a collocated group of people can share
one community display.

��� ������	 ���������

The operation of the display can be described in two
modes:

disengaged. The display is operating in disengaged mode
when the developer is not actively focusing on the dis-
play. In this mode, information is passively presented
and rotated in an ambient mode.

engaged. The display is operating in an engaged mode if
the developer is using the display for an active purpose
such as view information in a conference call, display
diagrams for group discussions, or serve as a supple-
mental view area for pixel-intensive visualizations and
applications.

The default operation of the display is in disengaged
mode. It may be possible to allow some control in the event

that interesting information is presented and the developer
needs to pause, or rewind the display. In this situation, the
developer could use an external input device such as a knob
control or a control program to pause, or navigate forward
or backward. The display can be engaged by a control pro-
gram or by dragging content onto the display space when
using multiple monitors.

4 Information Sources

If a work environment had a display that could give infor-
mation about the project and workplace, what information
could it display? What processes, artifacts, and source of
information would be appropriate?

Pressman describes the components that exist in the
software development workplace [20]: “Effective software
project management focuses on the four P’s: people, prod-
uct, process, and project. The order is not arbitrary.” To this
we add place as the fifth P, the environment in which these
activities occur. We argue that complexity of software de-
velopment does not necessarily derive from the individual
components but also from coordinating the efforts among
distributed resources while operating under the constraints
of time and cost.

Figure 2 shows the information flow between the differ-
ent aspects of software development.

People (Team)

Person

Product Process

Project Place

Software

UniCast OutCast

ManagerCustomer

Events

Figure 2. Communication information flow.

The people in the team developing the product must
grapple with maintaining a shared vision and goals con-
structed from various external sources of information. At
the personal level, a person must manage their tasks to avoid
prospective memory failure and negatively affecting their
team members.

The product is the envisioned outcome that addresses
some customer’s need. It includes the application domain,



Product Process Project People (Internal) People (External) Place
user stereotypes schedule/tasks build status class-context performance fixed lunch
use cases budget test failures testing checklist someone review this meetings
domain diagrams issues/risks quality metrics be nice to new db protocol announcements
concept prototypes deadlines bad smells block released need help cookies

Table 1. Sample artifacts for different content classes.

the requirements, and the end-user’s attributes. The infor-
mation about the product comes to the development team in
form of requirements, user-centered documents, or interface
designs.

The process is the collection of methodologies that are
employed in solving problems and realizing the product (in-
cluding code review strategies, test plans, and development
techniques). The manager often coordinates these efforts
and allocates the task to the team.

The project is what is being built: the software and all
the related artifacts used in its construction, (e.g. test cases,
quality assurance metrics, source code management). In-
formation about the project and its status often flows in-
formally amongst the team: (through emails, and face-to-
face communication) whereas information flow to manage-
ment occurs through solicitation or status meetings. Sys-
tems such as WAR ROOM [16] have tried to facilitate com-
munication to management but the opposite direction has
not been addressed.

In development environments, gaps and disconnect be-
tween developers and these information sources commonly
occur. Actively seeking this information is hampered by
the people’s inability to digest information that is outside of
their expertise and from the sheer mental burden of manag-
ing their personal work flow.

We argue that providing a mechanism for digesting var-
ious sources of information from people, product, process,
project, and place in a manner that is accessible but non-
intrusive will alleviate the following information concerns:

1. Make decisions in the light of constraints and maintain
a shared vision.

2. Manage coordination of the developers working on the
project.

3. Bridge the gap in communication through feedback.

4. Assist the developer in managing their own personal
work flow.

In the next subsections, we visit the different informa-
tion concerns and describe how information contained in
various content classes alleviates these concerns. Table 1
lists a summary of artifacts that contain interesting content
for each information component. This section is intended to
foster discussion on the space of possible applications that

researchers should investigate for ambient software visual-
ization.

��� ����������� ��� ������

Developers are often shielded from information and de-
cisions that occur in process management and product de-
sign. In some sense, being buffered from non-essential in-
formation and red-tape allows developers to focus on their
work. However, there is an overall benefit if developers are
more informed about the constraints they are operating un-
der and if developers share a common vision.

Even the best developers can get carried away some-
times. In the pursuit of solutions, features creep in and code
mavericks run-off on tangents. These developers are loos-
ing focus on the goal; often because the goal is not clearly
expressed in a tangible manner. One way to assist these
wayward spirits is to keep developers in perspective: where
are they now in development, how much work is left, how
much money has been spent, how much money is left, what
are the top priorities and issues? Engineers need to make
decisions in the light of constraints, but much of this infor-
mation is in the managers hands and not easily communi-
cated to developers.

Developers are disconnected from their customers. They
will often never meet or interact with a customer. The man-
agers divide and allocate tasks that senior developers or
technical leads further distill into manageable chunks for
junior developers to digest. By the time developers receive
these morsels, they have lost all the original essence, and de-
velopers have no sense that ultimately their contribution in-
tends to solve some customer or end-user need. To counter
this vision atrophy, visualizations that represent the final
product outcome and user environment keep developers fo-
cused on the outcome. If the developer is creating some
operational flight plan software for pilots, then diagrams of
the airplanes, and views from inside the cockpit can be dis-
played to inspire the developers in how their product fits
into the big picture and remind them of what they are work-
ing toward.

��� ������������

Despite the efforts to distribute work in independent sub-
tasks, development can be halted when central files are



locked, or sequential dependencies in task occur. Further-
more, knowledge and expertise is also distributed through-
out the team. Ambient visualization systems are suitable for
assisting teams in broadcasting announcements and moni-
toring project information.

When users outcast information, they want to make an-
nouncements to the team about their personal contributions
(e.g. update of a protocol or the fix of some long-standing
bug/performance issue), coordinate and share design deci-
sions, ask for help on an issue [10], or request a quick code
review. The scope of this information is most appropriate
for the team and can be applied even when the ambient dis-
play is in a collocated area.

If there are several conditions developers are waiting for,
then a system may monitor for changes in these blocking
conditions and notify the developer when the condition has
changed. A continuous integration system is an appropri-
ate solution for monitoring project state. Continuous inte-
gration is a process philosophy that incorporates integration
and testing throughout development. This practice aims at
reducing integration problems by having developers inte-
grate frequently, usually daily. Automation of this process
can be achieved with a system that continually builds the
latest software and runs tests.

The build philosophy can be taken further; instead of just
integration and testing, the continual build cycle can be seen
as ensuring continual quality and provide metrics for pro-
cess management. For example, one continuous integration
system might monitor changes to source control and then
ensure that it builds, updates auto-generated documentation,
update code metrics, and run unit and system tests.

build status. Includes information about the current build:
if the build is broken, who recently made changes, etc.

quality status. Has the code/comment ratio drastically
gone down for a class? Has the size of code increased
too much? Has the check-in frequency changed? What
anomalies appear? etc.

test status. Have any unit tests failed? For which modules?
Who is the author related to the code?

bad smells. Are there any bad smells present in code such
as long method, middle-man, code duplication, etc.?

��� ��������

When information flows in one direction, there is an op-
portunity to provide feedback in response to the opposite
direction. Feedback may occur with product design deci-
sions, process management, and implementation choices of
other developers.

For example, managers typically worry about regulat-
ing work focus, time, and cost in addition to making risk

estimates and assessments. This information is later com-
municated to upper management. The health of the project
benefits from managers having a honest and insightful view
into the state of the project regardless how they commu-
nicate this to the next level of management. However, in
performing risk management, which requires identifying
risks and giving estimates of the likelihood and impact of
unfortunate events, managers may have difficulty develop-
ing real insights into the problem because of their distance
from the work. Communicating the manager’s assumptions
about risk to developers has several benefits. The develop-
ers have a role in providing a sanity check on estimations
given to upper management and a developer’s understand-
ing of project status deepens.

��� �������� ���� ����
�����

During software development, developers generate ideas
of what they would like to do but cannot do at that mo-
ment (e.g. investigate a possible bug) resulting in failure to
recall this insight. Additionally there are many tasks that
are either waiting on someone else (blocked at the moment)
or that require performing many time consuming actions.
Without a structured method that supports keeping track of
all these things, mismanagement and failure in performing
tasks often arises.

In “Getting Things Done” [1], Allen provides some use-
ful insight into how to take care of business and manage fu-
ture actions. When confronted with thoughts like, “It would
be nice to use this concept when undo gets implemented
later on”, “I need to bring up the database connection issue
at the meeting”, or “Making this change might break the
preference dialog, I should test that” a scheme is needed to
help keep track of these thoughts and remind the person of
them at the appropriate time. Problems where no actions
can take place until a later date are difficult to record and
recall in a timely fashion.

One approach to improve the ‘like-to’ situation is to
maintain a tickler file. An implementation of a tickler file
is as simple as keeping twelve vanilla folders, one for each
month, where the person can refer to the file at the begin-
ning of each month and recall all the things they wanted
to investigate at that date. This concept can be extended
to the software development world where developers record
thoughts and set reminders for some time in the future. The
reminders are displayed on the ambient display near the ap-
propriate time and trigger those insights when they are more
actionable.

The ability to perform actions is strengthened when the
appropriate context is made available. By clustering actions
around the context in which all the tools and resources are
available to perform the action, a person only has to worry
about the actions available in a context and can be reminded



when that context occurs. A developer may be heavily in-
volved in making changes to the software when a thought
occurs, “one of the changes I made may break another fea-
ture”; however, the software is not in a runnable state and
may not be until a couple of days later. The action ‘test
feature’ cannot occur until the context ‘software runs’ is
present. With an ambient system, the developer records that
they want to test that feature in the ‘software runs’ context.
Later on, when the build is stable, the ambient system re-
minds the developer to test the feature which did indeed
break.

There are further ways to define context by target content
and interaction mode. For instance, when actively editing a
class, any issues related to this class can belong to the ‘class
context’. Working on different tasks, bug reports, or fea-
tures could trigger other reminders for these contexts. The
other dimension involves the operating mode (either debug-
ging, testing, error message, or wrong input). In an operat-
ing mode, if a certain error message reoccurs then the am-
bient system can complement this event with information
from previous instances when this occurred or notes from
another team member.

��� �� �� ��������

The realities of the development environment stipulate
that people will need to take lunches, companies have inter-
nal events, and details outside of the scope of the project af-
fect the performance of developers. At one company, some
people discuss plans for lunch on the ‘Lunch Train’, an in-
ternal message board devoted to lunch plans. Similarly,
team members note their lunch engagements if they want
to invoke some interest. Several previous research systems
have explored using ambient visualizations specifically for
office events and non-work related activities. Uses in con-
veying information such as “in/out of office” status, cor-
porate events, and participation in non-work activities have
been deployed. Even in a project-focused application, these
uses are warranted in that they situate the ambient device
as something both personal and integrated into work, not a
big-brother ‘telescreen’ that pressures employees into con-
stant state of fear of being monitored and regulated.

5 Design Guidelines for Ambient Displays

When researchers and future designers create ambient
views for software development environments three essen-
tial problems exist: (1) the scheduling and timing of the
content, (2) extracting the necessary details from an infor-
mation source, and (3) choosing the appropriate notification
level.

��� !� ��"���
 �������

Content can be either event-based or non-event based.
The following are design principles in sharing information
concerning events.

The law of volatility. Infrequent outliers, a change, or
spike in value are more interesting when they occur in
contrast to relatively unchanging data. If the build of-
ten breaks, then employing high levels of notification
to inform the developer that the build has broken will
just become annoying. If the unit tests rarely fail but
in this case have, then higher levels of notification are
justified.

The law of timeliness. Information is more interesting
when it has locality or co-occurrence with an event.
This may be before or after the event. The right time
to remind someone about the agenda they wanted to
present at a meeting is just before the meeting.

The law of freshness. The value of information decreases
in proportion to the underlying data’s volatility. The
appeal of a topic diminishes with time, especially if
the relevance of the facts are deemed unreliable.

Event-based content is scheduled using volatility and
timeliness. Non-event content should occur in between the
event-based content in a manner that maximizes the fresh-
ness of the content.

��� #�������������

The design choices in representation affect the devel-
oper’s perception of the system, their understanding of the
information, and the success of integration with the devel-
oper’s work flow. Pousman and Stasko [19] have identified
four dimensions prevalent in designing ambient visualiza-
tion systems:

information capacity. The amount of information dis-
played with the system.

notification level. The extent of interruption on the user.

representational fidelity. The faithfulness of the visual-
ization in representing the original information.

aesthetic emphasis. The level of artistic design in repre-
sentation.

Different content classes of information (product, pro-
cess, project, people, and place), require different consider-
ations in representing a visualization. In Figure 3, we sug-
gest how the design dimensions vary with different content
classes.



place

product

project

process

people

high

low

information

capacity
level of

notification

representation

fidelity

aesthetic

emphasis

Figure 3. Suggested design requirements for
different content classes.

For instance, place content such as a lunch announce-
ment does not require high levels of information capacity; it
may only need a few words or text and time information. In
contrast, process content may require a higher information
capacity. Consider the scenario where a user stereotype (a
design technique that creates a fictional user type with some
background information, preferences, and common activ-
ities) is displayed. This information requires higher infor-
mation capacity than desired on the ambient display system.
In this scenario, it is common to abstract the information by
adjusting the representational fidelity or artistic expression.
By creating user caricatures with icons representing differ-
ent actions and information needs, developers are reminded
of different user types without having to read through the
text.

The content classes do not necessarily generalize all the
design decisions. The complexity of individual information
sources may require a higher-level of representation fidelity.
With process content, on one hand scheduling information
needs time and task relations to be preserved, whereas a
view of budget information may discard certain details as
long as the point is driven across.

Source code components present the most interesting
challenges in representation. In coordination efforts, the
representation of source content may be restricted to file
or method names that are under conflict. This has been
the approach taken by most software visualization systems.
However, in displaying code metrics, potential security vi-
olations, or possible code smells, a more detailed code vi-
sualization is warranted. Approaches such as light-weight
visualizations for code smell inspection [17] provide more
context with task-oriented visualizations.

��� $���%������

With the ambient system, the notification of timely in-
formation can be done in such a way that the developer is
not disturbed from their current task. Unlike other reminder
systems, the display is capable of presenting information
without popping up message boxes or balloon notifications.
The information is available when the developer actively
decides to refer to the display.

But how much further should the system attempt to ac-
quire attention? Researchers in ambient visualizations sys-
tems have employed various animation, ticker, acoustic,
and lighting techniques for acquiring attention. Informa-
tion such as contextual reminders may justify higher levels
of notification, especially if the display is currently operat-
ing in the engaged mode. Ultimately, the spirit of ambient
visualization systems suggests that notification should be
considered low by default and then configured to acceptable
thresholds of tolerance.

6 Conclusion

In this paper we have characterized information flow as
part of the software development process. Several systems
have addressed a subset of this information flow – only the
flow from project state to management and from project ef-
forts to people has been thoroughly studied. We have il-
lustrated several information sources and artifacts that are
of interest in this communication model. We present a
new paradigm for incorporating visualizations that reflects
the complexity of the software development environment.
Many software visualizations are heavy-weight and require
exploration and direct interaction with users. We advocate
light-weight visualizations that highlight insights through-
out the software development process that have minimal im-
pact on the developer’s work flow. We propose that the use
of ambient visualization systems will serve these needs.

Several systems have demonstrated the effectiveness of
ambient visualization systems in general office settings. Fu-
ture work in the context of software development would
generalize these results for knowledge-intensive work. En-
richment of this work could develop new content classes
and examine the nature of information flows within organi-
zations and teams. Several issues that are unique to soft-
ware development need to be addressed. For example, the
role of personalizing and configuring levels of notifications,
representations, content, and content scheduling needs to be
further explored.

Acknowledgments. Spencer Rugaber, James Eagan, and
our anonymous reviewers gave helpful comments on earlier
revisions of this paper.



References

[1] D. Allen. Getting Things Done: The Art of Stress-Free Pro-
ductivity. Penguin, 2002.

[2] Ambient orb (ambient devices).
http://www.ambientdevices.com/cat/orb/
orborder.html, 2007.

[3] M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of
task switching and interruptions. In CHI ’04: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
175–182, New York, NY, USA, 2004. ACM Press.

[4] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. Mclaughlin,
L. Li, and J. L. Herlocker. Tasktracer: a desktop environment to
support multi-tasking knowledge workers. In IUI ’05: Proceedings
of the 10th international conference on Intelligent user interfaces,
pages 75–82, New York, NY, USA, 2005. ACM Press.

[5] J. R. Eagan. Designing interfaces to enrich personalization. In DIS
’06: Proceedings of the 6th ACM conference on Designing Inter-
active systems, pages 350–351, New York, NY, USA, 2006. ACM
Press.

[6] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-a tool
for visualizing line oriented software statistics. IEEE Trans. Softw.
Eng., 18(11):957–968, 1992.

[7] A. Fass, J. Forlizzi, and R. Pausch. Messydesk and messyboard:
two designs inspired by the goal of improving human memory. In
DIS ’02: Proceedings of the conference on Designing interactive
systems, pages 303–311, New York, NY, USA, 2002. ACM Press.

[8] J. Froehlich and P. Dourish. Unifying artifacts and activities in a
visual tool for distributed software development teams. In ICSE
’04: Proceedings of the 26th International Conference on Software
Engineering, pages 387–396, Washington, DC, USA, 2004. IEEE
Computer Society.

[9] S. Greenberg and M. Rounding. The notification collage: posting
information to public and personal displays. In CHI ’01: Proceed-
ings of the SIGCHI conference on Human factors in computing sys-
tems, pages 514–521, New York, NY, USA, 2001. ACM Press.

[10] E. M. Huang and E. D. Mynatt. Semi-public displays for small, co-
located groups. In CHI ’03: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 49–56, New York,
NY, USA, 2003. ACM Press.

[11] H. Krasner, B. Curtis, and N. Iscoe. Communication breakdowns
and boundary spanning activities on large programming projects.
Empirical studies of programmers: second workshop, pages 47–64,
1987.

[12] T. D. Latoza, G. Venolia, and R. Deline. Maintaining mental mod-
els: a study of developer work habits. In ICSE ’06: Proceeding of
the 28th international conference on Software engineering, pages
492–501, New York, NY, USA, 2006. ACM Press.

[13] G. Mark, V. M. Gonzalez, and J. Harris. No task left behind? Ex-
amining the nature of fragmented work. In CHI ’05: Proceedings
of the SIGCHI conference on Human factors in computing systems,
pages 321–330, New York, NY, USA, 2005. ACM Press.

[14] J. F. McCarthy, T. J. Costa, and E. S. Liongosari. Unicast, out-
cast & groupcast: Three steps toward ubiquitous, peripheral dis-
plays. In UbiComp ’01: Proceedings of the 3rd international con-
ference on Ubiquitous Computing, pages 332–345, London, UK,
2001. Springer-Verlag.

[15] B. O’Conaill and D. Frohlich. Timespace in the workplace: dealing
with interruptions. In CHI ’95: Conference companion on Human
factors in computing systems, pages 262–263, New York, NY, USA,
1995. ACM Press.

[16] C. O’Reilly, D. Bustard, and P. Morrow. The war room command
console: shared visualizations for inclusive team coordination. In
SoftVis ’05: Proceedings of the 2005 ACM symposium on Software
visualization, pages 57–65, New York, NY, USA, 2005. ACM Press.

[17] C. Parnin and C. Görg. Lightweight visualizations for inspecting
code smells. In SoftVis ’06: Proceedings of the 2006 ACM sym-
posium on Software visualization, pages 171–172, New York, NY,
USA, 2006. ACM Press.

[18] C. Plaue and J. Stasko. Animation in a peripheral display: Distrac-
tion, appeal, and information conveyance in varying display config-
urations. In GI ’07: Proceedings of the 33rd conference on Graphics
Interface, 2007. to appear.

[19] Z. Pousman and J. Stasko. A taxonomy of ambient information
systems: four patterns of design. In AVI ’06: Proceedings of the
working conference on Advanced visual interfaces, pages 67–74,
New York, NY, USA, 2006. ACM Press.

[20] R. S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2001.

[21] R. Ripley, A. Sarma, and A. van der Hoek. Using visualizations to
analyze workspace activity and discern software project evolution.
Technical report, University of California, Irvine, 2006.

[22] S. Voida, E. D. Mynatt, B. MacIntyre, and G. M. Corso. Integrating
virtual and physical context to support knowledge workers. IEEE
Pervasive Computing, 1(3):73–79, 2002.


