

Architectural Element Matching Using Concept Analysis

Robert Waters, Spencer Rugaber, Gregory D. Abowd

College of Computing
Georgia Institute of Technology

{ watersr, spencer, abowd }@cc.gatech.edu

Abstract
A large portion of software development effort is fo-

cused on modification and evolution of existing software
systems. To feed forward-engineering and design activi-
ties, analysts must first recover and synthesize a complete
and consistent set of architectural representations. Archi-
tectural Synthesis is one method to build this representa-
tion. During the Architectural Synthesis of a software
system, an analyst must combine information derived
from a variety of sources (which we call perspectives).
This combination process requires the analyst to make
decisions about which elements in the perspectives denote
the same underlying parts of the software system. We
present an automated technique for matching these ele-
ments based upon a mathematical technique called con-
cept analysis. This technique constructs a spectrum of
matching relations using a lattice of concepts drawn from
the perspectives and descriptive information about the
system's application domain. The results show the prom-
ise of using concept analysis to match elements and aid in
synthesizing a large number of perspectives.

1. Introduction

An analyst with a mission to evolve or modify a leg-

acy system faces a daunting task. The architecture of the
existing system must be recovered and understood so
effective forward-engineering decisions can be made.
Architectural recovery is performed using many tech-
niques, each of which is concerned with some aspect of
the existing system’s architecture. Each technique there-
fore provides a perspective of what the architecture might
actually look like. For a large, complex system there are
many of these perspectives that can overwhelm the ana-
lyst with information. Our work focuses on the merging
or synthesis of these perspectives towards a more com-
plete and consistent set of representations. The specific
contribution in this paper is a technique that provides
automated support to the analyst for combining these per-
spectives and overcoming the information overload prob-
lem.

2. Architectural Synthesis

Architectural synthesis is the process we developed to

manipulate and process architectural information relating
to a legacy system. Synthesis is performed using a cycle
of activities consisting of extraction (obtaining informa-
tion about the architecture), classification (separating the
information based upon the stakeholder concerns being
addressed), union (combining all the information in the
same category) and fusion (checking information across
categories for consistency). Details of the synthesis proc-
ess can be found in [9].

This paper will focus on the union phase of the synthe-
sis process. We use three primary technologies to com-
bine information during the union phase:

• Lexical: This matches names of elements similar
to the approach used by Michail and Notkin for
library reuse [7].

• Topological: This manipulates the architecture as
a graph where components are nodes and connec-
tors are edges. It is similar to the technique used
by Kazman [5].

• Semantic approximation: This uses specific in-
formation from the problem domain to provide
semantic information about the components and
connectors in the architecture. We use the term
approximation to differentiate our approach from
more formal approaches to semantic definition of
architectural elements using specification lan-
guages.

We now discuss our approach to semantic approxima-
tion of architectural elements. If one considers that an
architecture is the highest abstraction of the software so-
lution to a problem in a specific domain, then the seman-
tics of the different elements can be expected to refer to
common terms in that domain. If we obtain common
domain terms and associate the terms with the elements
they refer to, we might expect these sets of terms to give
an approximation of the semantics of the element. We
obtain the domain terms through a technique known as
dowsing [2]. Dowsing searches domain documentation
and source code to extract word sets based upon their
frequency of occurrence. The remainder of this paper

will discuss our approach to the partial automation of
semantic approximation to aid an analyst in combining
information from different architectural perspectives.

3. Concept Analysis

Formal Concept Analysis (FCA) is a relatively new

approach that provides a conceptual tool for the analysis
of data [1]. FCA uses lattice theory to provide a way to
group and discuss objects based upon their common at-
tributes.

The fundamental object of manipulation in concept
analysis is the formal context (C) which is defined as the
ordered triple (O, A, R) where O is the extent (or set of
objects), A is the intent (or set of attributes) and R is a
relation between the extent and intent and AOR ×⊆ .
The easiest way to visualize this relation is as a table
where rows are indexed by objects and columns by attrib-
utes. If object o has attribute a, then the table entry (rela-
tion) is true (or (o,a) ∈R); otherwise it is false.

From the relation R, a lattice is computed which al-
lows examination of concepts shared among objects. A
concept can be thought of as a maximal set of shared at-
tributes. There are two mappings of importance, the set
of all common attributes of a set of ������� ��	
�� �
� ���

��
�� ������� �
��

�� ������ ��
 ��� ��
��������� ��	�

More formally: },),(|{)(XoRaoAaX ∈∀∈∈=σ

and },),(|{)(XaRaoOoX ∈∀∈∈=τ . Further
details on the underlying theory of concept lattices can be
found in Ganter and Wille [4].

4. Applying Concept Analysis

To apply concept analysis to the task of automating the
comparison of the semantic approximation information
across multiple perspectives we must first determine the
sets that will form the formal concept. We chose to use
the architectural elements (where an element is a compo-
nent or connector) as the objects (O) and the domain
terms as the attributes (A). The relation R is true if an
architectural element is semantically related to the do-
main term.

The difficult task is not in determining how the formal
context will be defined, but what the results of the
mathematical manipulation mean. Since we are trying to
use the computed concept lattice to match elements in
different perspectives we first create a context out of the
elements and attributes of two different perspectives. We
then generate a concept lattice using the standard mathe-
matical algorithm. Finally, we traverse the lattice to find
the elements in the two perspectives that are the same and
those that are different. This allows integration of multi-
ple perspectives in a semiautomatic manner.

We now define several matching relations that can be
analyzed as the lattice is traversed. Consider the case of
two perspectives P1 and P2, each containing a set of archi-
tectural elements {ei}. The matching relations are pre-
sented from highest to lowest confidence.

• EXACT(e1,e2). This relation is true if ���1)=
���2) (that is the attributes, in this case domain
terms, of the elements are equal.)

• SUBSUME(e1,e2	� �
�� ���
���� �� ���� �� ���2)⊂
���1) (that is the attributes of element e2 are a
proper subset of e1.) This situation occurs when
one perspective contains more information about
a specific element that another.

• CONTAIN(e1,e2). Any component or connector
within a specific representation may be decom-
posed into another representation made up of
another set of elements. We refer to this set of
elements as a subsystem of the component or
connector which was decomposed. The CON-
TAIN relation is true if e2 is part of the subsys-
tem of e1. This occurs when we can match e2
using EXACT, SUBSUME or OVERLAP to an
element in the subsystem of e1.

• OVERLAP(e1,e2). This relation is true if
(σ(e1)∩σ(e2)≠∅) ∧ (σ(e1) − σ(e2)≠∅ ∧ σ(e2) −
σ(e2)≠∅) (that is e1 has attribute values in com-
mon with e2, but has other attribute values which
are different.) Like SUBSUME, this situation
occurs when the techniques producing the per-
spectives elicit different kinds of information.

• NOREL(e1,e2). This relation is true if
σ(e1)∩σ(e2) =∅ (that is e1 and e2 have no ap-
parent commonality).

A concrete example will help to illustrate more clearly the
relationship between these matching relations and the
computed concept lattice.

5. Example

Consider a simple example where the two perspectives
in Figure 1 have been extracted for the Key Word in Con-
text (KWIC) problem. Each perspective contains four
components and four connectors. Without loss of gener-
ality, we will limit the discussion to component matching

Alphabetizer

Input

Database
Shifter

Sorter

Input

Rotate

Line

Perspective S1 Perspective S2

Figure 1: Simple Perspectives to Combine

only. This makes the relations easier to detect visually in
the computed lattice.

Table 1 relates the domain terms dowsed from a set of
KWIC problem descriptions to the elements in the two
perspectives. We then compute the concept lattice using
Christian Lindig’s concepts package [6]. The computed
lattice is presented in Figure 2. The top of the lattice is
the universal concept and represents the concept where
τ(X)={all the objects}. Likewise, the bottom of the lat-
tice is the empty concept or the concept where σ(X)={all
the attributes}. A concept higher than another in the lat-
tice is called a superconcept. We can now look at the
lattice and visually see examples of the primary matching
relations we previously defined.

If we examine the lattice node containing the Alpha-
betizer component from perspective S1 and the Sorter
component from perspective S2 we see an example of the
EXACT relation. Since the σ maps of each component
are equal, they will both be found at the same concept in
the lattice.

Likewise, the NOREL relation implies the intersection
of the σ maps is empty. In the lattice, this means the least
upper bound of a node is the universal concept (top) and

the greatest lower bound is the empty concept (bottom).
In Figure 2, there are two NOREL concepts, S1.Database
and S2.Line.

Since the SUBSUME match relation means one σ map
is a subset of another, we look for a concept which is a
superconcept of another. We find just such a relationship
in Figure 2 between S2.Input and S1.Input.

Finally, we can look for the OVERLAP match rela-
tion—admittedly the most difficult to find visually (and
automatically, for that matter). Two concepts with an
OVERLAP relation will have a superconcept in common.
This relation can be seen in Figure 2 between S1.Shifter
and S2.Rotate which both share the Lexeme superconcept.

This simple example did not demonstrate the CON-
TAIN match relation. The technique to compute this is
the same since we are looking for an EXACT, SUB-
SUME, or OVERLAP where one of the elements
matched is a subcomponent of another. The real diffi-
culty in CONTAIN is determining when an element ap-
pears to be NOREL, but is in reality in a CONTAIN rela-
tion with some other element.

If only real-world applications produced simple lat-
tices like that of Figure 2, there would be no need to have

S2.Input IO

S1.Alphabetizer S2.Sorter Order Lexical

S2.Line Data

S1.Database Persistent

S1.Shifter Change

S2.Rotate Reorder

S1.Input File Access

Universal Concept

Empty Concept

Lexeme

Figure 2: Simple Example Concept Lattice

Table 1: Simple Architecture Formal Context
Domain Terms
Components

Change IO Data Persistent Lexeme Reorder Order File Lexical Access

S1.Alphabetizer X X
S1.Shifter X X

S1.Input X X X
S1.Database X

S2.Rotate X X

S2.Line X
S2.Sorter X X

S2.Input X

any further automated support. Unfortunately, the lattices
for a real system may have a large number of concepts
and the match relations (especially for SUBSUME and
OVERLAP) are almost impossible to detect visually. For
this reason we developed a lattice traversal algorithm to
allow us to find these match relations automatically. The
algorithm is quite simple and involves a depth-first search
of the lattice and an analysis of the concept labels to de-
termine the proper relationship.

The algorithm also computes an overlap measure,
which is simply the percentage of domain term common-
ality. Currently this measure treats all domain terms as
having equal weight. The software uses this measure to
allow an analyst to specify a match threshold, above
which all matches are automatically accepted.

6. Future Work and Conclusions

We are extending the technique described in this paper
in several ways. First, as previously discussed, a complex
concept lattice can overwhelm an analyst. We are re-
searching methods to reduce the concept lattice to man-
ageable levels. One technique we are examining uses
subdirect and horizontal decompositions, as described by
Funk, Lewien and Snelting [3].

We previously discussed a problem we have with the
CONTAIN relation. We hope to apply the work in identi-
fication of modules by Siff and Reps [8] to the identifica-
tion of new components in subsystems.

We also are examining techniques to automate the ini-
tial assignment of attributes to elements. Our preliminary
solution is to augment the dowser to perform word prox-
imity analysis. This improvement is necessary to make
our element matching solution truly scalable.

Finally, we are integrating the automated algorithm for
element matching into our REMORA toolkit for architec-
tural synthesis. This tool provides an interactive work-
bench that an analyst can use to perform the entire archi-
tectural synthesis task. The tool combines perspectives in
an automatic mode where new perspectives are built us-
ing just the results of our matching relations, or it may be
used in interactive mode where the analyst accepts or
rejects suggestions made by the algorithm.

Some form of automated assistance is necessary to
help an analyst make sense of the many different perspec-
tives that are recovered during a reverse engineering pro-
ject. One method of providing this assistance is through
the use of concept analysis. By observing the relationship
of concepts to the elements in different perspectives, de-
cisions can be made as to whether elements in two differ-
ent perspectives are the same or different. Our matching

relations and algorithm for traversing a lattice to look for
these relations provides this assistance to an analyst in
making architectural recovery decisions.

7. Acknowledgements

This work supports MORALE (Mission-Oriented Archi-
tectural Legacy Systems Evolution) a part of the DARPA
EDCS project and was sponsored by the Defense Ad-
vanced Research Projects Agency, and Air Force Re-
search Laboratory, Air Force Material Command, USAF,
under agreement number F30602-96-2-0229.

8. References

[1] P. Burmeister, "Formal Concept Analysis with ConImp:
Introduction to the Basic Features," available electronically
from http://www.mathematik.tu-darmstadt.de/~burmeister/
ConImpIntro.ps, 1998.

[2] R. Clayton, S. Rugaber, and L. Wills, "Dowsing: A Tool
Framework for Domain-Oriented Browsing of Software Arti-
facts," 13th International Conference on Automated Software
Engineering, Honolulu, Hawaii, 1998.

[3] P. Funk, A. Lewien, and G. Snelting, "Algorithms for Con-
cept Lattice Decomposition and their Application," : Infor-
matik-Bericht Nr. 95-09, 1995.

[4] B. Ganter and R. Wille, Formal Concept Analysis : Mathe-
matical Foundations. Berlin: Springer Verlag, 1999.

[5] R. Kazman and M. Burth, "Assessing Architectural Com-
plexity," 2nd Euromicro Working Conference on Software
Maintenance and Reengineering (CSMR '98), 1998.

[6] C. Lindig, "Concepts," available electronically at
http://www.cs.tu-be.de/softech/people/lindig/software/index.
html , 1999.

[7] A. Michail and D. Notkin, "Accessing Software Libraries
by Browsing Similar Classes, Functions, and Relationships,"
21st International Conference on Software Engineering, Los
Angeles, 1999, pp 463-472.

[8] M. Siff and T. Reps, "Identifying Modules Via Concept
Analysis," ICSM' 97: IEEE Conference on Software Mainte-
nance, Bari, Italy, 1997, pp. 170-179.

[9] R. Waters and G. Abowd, "Architectural Synthesis: Inte-
grating Multiple Architectural Perspectives," in proceedings
Working Conference on Reverse Engineering (WCRE 99), At-
lanta,Georgia,1999.

