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Abstract 
Many tools and techniques are available to help under-
stand and analyze a system at the architectural level.  
Each of these provides its own perspective of the key ar-
chitectural elements of the system. We introduce the 
process of architectural synthesis to deal with the prob-
lem of integrating these different architectural perspec-
tives.  The four steps of the synthesis process form an 
iterative cycle and include acquiring different perspec-
tives (extraction), grouping related perspectives (classifi-
cation), combining all perspectives that apply to the same 
architectural view (union), and finally composing views 
to determine consistency (fusion).  We apply the synthesis 
process to the architecture of a software visualization 
tool. Our preliminary investigation shows that synthe-
sized architectural perspectives provide a more complete 
and consistent representation of a real system.  We con-
clude with directions for future research in this area.  
 
 
1.  Introduction 
 

Although the exact percentage varies, most researchers 
agree that somewhere between 40 and 80 percent of de-
velopment activities are focused on maintenance, en-
hancement or evolution of existing systems.  To perform 
enhancement and evolution activities effectively, an ana-
lyst must recover high-level architectural information so 
as to understand the best way to make changes to the leg-
acy system under study.  Kazman et al. [19] aptly de-
scribe this process of recovery as “playing detective”. 

There is no single reverse engineering tool or method 
that can give an analyst all the information they need to 
describe the software architecture of an existing system.  

Each method or tool provides instead valuable clues 
about the structure or behavior of the system which must 
be pieced together to find the ultimate answer [19].     

Over the last seven years, the study of software archi-
tecture has been a focal point of many research efforts 
[10].  Several different methods and tools have been de-
veloped which analyze different aspects of a software 
system from the standpoint of its architecture.  Some of 
these approaches include architectural definition lan-
guages (ADLs) [22], simulation tools such as Rapide 
[25], and analysis methods such as the Software Architec-
ture Analysis Method (SAAM) [17] and the Architecture 
Tradeoff Analysis Method (ATAM) [4].  Unfortunately, 
most of these techniques are focused on new development 
activities.  This makes them difficult to use while reverse 
engineering since they require one or more accurate archi-
tectural representations to work with.  For legacy sys-
tems, where do these representations come from? 

Like Kazman’s detective, we have plenty of clues, a 
few suspects, but no complete case to take to the district 
attorney.  Just as a detective takes fingerprints, shell cas-
ings and witness interviews to make his case, we take 
call-graphs, design documents and developer interviews 
to make ours.  As shown in Figure 1, there is a void be-
tween the arbitrarily many architectural perspectives of a 
legacy system and the refined inputs which most software 
architectural analysis tools desire.  Our work looks at the 
broad problem of developing a consistent, complete and 
useful set of representations for a legacy system’s soft-
ware architecture to enable developers to evolve the sys-
tem in an efficient and effective manner.  The architec-
tural synthesis process fills the void between the inputs 
required for forward engineering and architectural analy-
sis and the outputs produced by reverse engineering tools 
and techniques by providing a general repeatable process 
with integrated tool support.  Although this statement 
gives the impression the problem is one solely of tools 
and techniques, we recognize that the problem is actually 
one of architectural information management.  An inexpe-
rienced analyst can be quickly overcome by the volumes 
of information at multiple levels of abstraction that can be 

 



 

produced by many of to-
day’s sophisticated tools.  
We want to aid the analyst 
in managing and process-
ing this information by 
helping her separate the 
wheat from the chaff. 

Since the vocabulary 
for software architecture 
has not yet been standard-
ized, we first present the 
definitions of key terms.   
An overview of the archi-
tectural synthesis process 
and finally a discussion of 
our experience using the 
synthesis process to extract 
the architecture of a non-
trivial software system 
follow the definitions and 
a summary of related 
work. 

 
2. Definitions 
 

Before discussing the synthesis process in detail, we 
define the terms architecture, representation, view and 
perspective.  These terms are used throughout software 
architecture literature, but with overloaded or conflicting 
meanings.   

 
Architecture.  When we discuss software architecture 
and the synthesis process, we are focusing primarily on 
the structural aspects of the architecture. We use the fol-
lowing definition from Bass, Clements and Kazman [5]: 
“The software architecture of a program or computing 
system is the structure or structures of the system, which 
comprise software components, the externally visible 
properties of those components, and the relationships 
among them.”  The relationships are commonly called 
connectors.  A similar definition can be found in ISO 
10746 [15], defining an architecture as: “a set of rules to 
define the structure of a system and the interrelationships 
of its parts.”  So architecture is fundamentally informa-
tion about the system at a high level of abstraction that 
describes how the system is designed to meet its func-
tional and non-functional requirements.  This information 
includes syntactic information such as component names 
and semantic information such as descriptions of compo-
nent functionality and interfaces. 

For generality, we refer to components and connectors 
collectively as elements.  Any element may be further 
decomposed into another collection of elements that rep-
resent lower levels of abstraction.  We refer to a decom-
position of a component or connector as a subsystem.  

 
Representation.  Software architectures can be textually 
or graphically described.  We refer to any of these de-
scriptions as a representation. In our work we frequently 
use an attributed graph, where nodes denote components 
and edges denote connectors, as a common representa-
tion.  If a representation is purely textual, we convert it to 
an attributed graph.  We will present the attributes for 
these elements when discussing the union phase of the 
synthesis process. 

 
Perspective.  An architectural perspective is a representa-
tion of an architecture created directly by some method or 
tool.  Perspectives vary in their degree of precision and 
include both unsubstantiated opinion, such as a simple 
box and arrow diagram drawn on a napkin, and precisely 
defined analyses, such as a call graph generated from 
source code. If we continue the detective analogy, per-
spectives are the individual clues on which we will build 
the case. 

 
View.  Researchers disagree about whether a single archi-
tectural representation can accurately portray a complete 
system.  The existence of some ideal single representation 
is still an open question [10].   The current consensus is 
that a variety of representations is necessary to fully de-
scribe the architecture of any non-trivial system.  We use 
the definition of view as presented by Clements and 
Northrup [9] to describe this set of representations.  A 
view is a representation of an architecture that reflects a 
specific set of concerns that are of interest to a given 
group of stakeholders in the system.  There is no gener-
ally accepted required set of representations that might be 
necessary to fully describe a system. Kruchten [24] pro-
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Figure 1: The Multiple Perspective Problem 



 

poses that such a set should include four different views.   
These include logical (focusing on software functional-
ity), process (focusing on concurrency, fault-tolerance, 
and synchronization), module (focusing on division of the 
software into subsystems assigned to different program-
mers) and physical (focusing on assignment of functional-
ity to specific hardware devices) views.  Likewise Perry 
and Wolf [30] describe at least three separate views in-
cluding processing (focusing on the flow of control 
through processing elements), data (focusing on the flow 
of data through the system) and connections (focusing on 
interactions between elements). For complex systems, 
there may even be views associated with specific non-
functional requirements, such as a security view of the 
architecture.  Our use of the phrase architectural view is 
consistent with all these uses.  For any given software 
architecture there are potentially multiple views (some 
overlapping and some disjoint) that exist to describe it. 

If we use an analogy from the requirements engineer-
ing world, it might make the perspective–view relation-
ship clearer.  When gathering requirements, we obtain 
raw information from different sources about what a spe-
cific requirement might be.  These raw elements are like 
perspectives.  By using different requirements analysis 
techniques we can refine this raw information into a final 
specification.  These refined elements are equivalent to 
views.  

 
3. Related Work 
 

Several other research projects relate to the area of ar-
chitectural recovery and development of multiple views 
of a system’s architecture.  These include DALI [18], 
CANTO [3] and MANSart [40].  Of these approaches, 
CANTO and MANSart are tied to specific extraction 
methods that focus on analysis of code-based artifacts to 
find architectural styles or patterns.  DALI is more gen-
eral in that it tries to incorporate multiple extraction 
methods into a tool framework—however it still relies 
primarily on code-based artifacts.  Information extracted 
is placed into a database and then views can be built via 
queries created by the analyst. Recovery of design pat-
terns [13, 40] by automated searching as well as classifi-
cation of architectural components based upon matching 
their characteristics [21] has also been a focus of prelimi-
nary research. 

Eixelsberger et al. [11] have a philosophy similar to 
ours, but with a different approach to realizing it.  They 
recognize the need to use non-code-based information in 
the recovery process, but they emphasize recovering a 
single representation focused on a specific view of the 
system.  For instance the safety architecture might be the 
focus of the extraction effort.  While this single-aspect 
recovery has the advantage of requiring less time than our 

process, it does not attempt to ensure completeness or 
consistency of the produced view. 

 
4. Architectural Synthesis  
 

Architectural synthesis consists of a cycle of activities 
that integrates the raw information in perspectives into a 
synthesized set of views. The synthesized views form a 
complete and consistent architectural representation of the 
legacy system under study.  Architectural synthesis is a 
semi-automatic task (shown graphically in Figure 2) con-
sisting of the following four steps: Extraction, Classifica-

tion, Union and Fusion.  As we combine the various per-
spectives of the system, we create better and more com-
plete representations.  We may also find incompleteness 
and inconsistency that needs further resolution, thus the 
synthesis process is shown as a cycle.  We do not claim 
that this process creates “the” software architecture, but 
rather that it creates a reasonably complete and consistent 
set of representations describing the architecture through 
various views of the system.  

 
4.1.  Extraction 
 

The first step in the synthesis process is to obtain the 
perspectives to be synthesized.  These perspectives may 
come from existing documentation, source code analysis, 
domain analysis, interviews with human experts, or any 
other source that may provide an idea of what the legacy 
system’s architecture might be. 

Following the philosophy of DALI [19], there is no 
prescribed set of extraction mechanisms that must be used 
to develop a set of perspectives.  It is unclear at this time 
whether there might exist a set of extraction methods 
which could be prescribed that would give an adequate 
set of perspectives from which to derive a set of represen-
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Figure 2: The Architectural Synthesis Cycle 



 

tations which are complete, consistent, useful, and have 
the desired content. 
 
4.2.  Classification 
 

The next step is for the analyst to group perspectives 
into their respective views.  This helps an analyst to focus 
initially on reconciliation of perspectives that are intended 
to describe the same aspects of a system.  This is not nec-
essarily a one-to-one function, as an individual perspec-
tive may map to two or more views. 

We generally limit the classification step to the four 
major views (physical, logical, process and module).  In 
larger systems classification may need to be expanded to 
include other views.  For instance, the logical view might 
be separated into a data and control view if this is neces-
sary to better understand a complex system.  The main 
purpose of classification is to group perspectives in such a 
way that a common aspect of the system being analyzed 
relates the elements being combined. 

 
4.3. Union 
 

The union phase analyzes and combines all perspec-
tives representing a specific view.  During this step we 
manipulate a perspective as a graph where nodes denote 
components (boxes) and edges denote connectors (lines).  
Each element within a perspective has some set of attrib-
utes that describe properties of that element.  These at-
tributes include the name of the component (or its domain 
synonym), topological characteristics such as port count, 
general attributes, and a set of domain terms.  General 
attributes consist of (attribute-value) pairs.  Some com-
mon examples of these general attributes are shown in 
Table 1. 

While the previously described attributes focus on syn-
tactic information about the architecture, we use domain 
terms to approximate semantic information about the 
various elements in an architecture.  Domain terms are 
obtained by dowsing [8] the available system artifacts.  
Dowsing is a technique that scans textual artifacts such as 
source code, design documents and user’s manuals and 
extracts frequently occurring key words or phrases (n-
grams).  A set of these n-grams is chosen by the analyst to 
represent the key terms in the domain. A subset of these 
terms forms the set of domain terms associated with each 
element.  It is important to note that any duplication of 

terms (or synonyms) amongst the domain terms is han-
dled during the dowsing process.  The set of domain 
terms to be associated with each element are thus unique.  
Since architecture addresses how the system solves the 
problem within a specific domain, we feel the use of these 
domain terms is an adequate, lightweight approximation 
to the semantics of the various elements. 

The union phase derives its name from the set-union 
operation.  During union we combine perspectives by 
matching elements or by recognizing new elements in the 
perspectives until we have combined all the perspectives 
into a single view.  We repeat the union process for each 
view into which we classified perspectives during the 
classification phase.  We discuss this matching process in 
detail in the case-study section. 
 
4.4.  Fusion 
 

We adopt this term from DALI [19] and use it to rep-
resent analysis across different views of the system.  Fu-
sion serves two purposes: first it provides a check on the 
consistency of the views [18, 19] and secondly, it pro-
vides additional information about the architecture 
through the composition of related views.  

For instance, consider the fusion of the process and 
physical views as a mapping of runtime processes onto 
the hardware elements on which they run.  Potential in-
consistencies include processes that have no hardware or 
hardware that supports no processes.  Inconsistencies 
might be caused by either a lack of information, i.e. the 
extraction phase failed to elicit enough information, or 
because there is an erroneous element in one of the repre-
sentations.   The following case study focuses on the un-
ion phase of the synthesis process. 
 
5.  Case Study  
 

We present a case study of architectural synthesis 
which looks at evolving a medium-complexity system 
called ISVis (Interaction Scenario Visualizer) [16].  ISVis 
is a three-year-old C++/X-Motif/Perl application consist-
ing of 30 separate source files containing 24,333 lines of 
commented source code.  Functionally, ISVis is a reverse 
engineering tool used to abstract an architectural perspec-
tive based upon both source code static information and a 
behavioral trace of program execution.   

We are in the process of preliminary design for the 
next version of ISVis and wish to perform an ATAM 
analysis.  Many perspectives of ISVis were obtainable, 
but no single perspective was accurate enough to begin 
the process.  We decided to do an architectural synthesis 
to obtain an accurate set of architectural representations to 
begin the analysis.   

 

Table 1: Sample Attribute/Value Pairs 
Attribute Values 

Abstraction Level composite or atomic 
Behavior Type passive or active 
Component Type function or procedure 
Connector Type shared_memory, socket or file 

 



 

5.1.  Extraction 
 

An analyst first generated several perspectives of the 
ISVis architecture, which are briefly described below.  
Only two of the graph representations generated are pre-
sented as figures in this paper, but all are available in the 
technical report [37].   The perspectives generated ranged 
from a generic, abstract reference architecture to a con-
crete, code-level call-graph.  

 
5.1.1.  Domain-Specific (Reference) Software Architec-
ture.   For many legacy systems, a Domain-Specific 
Software Architecture (DSSA) [35] or a reference archi-
tecture describing it may exist.   A DSSA can be thought 
of as “an assemblage of software components, specialized 
for a particular type of task (domain), generalized for 
effective use across that domain, composed in a standard-
ized structure (topology) effective for building successful 
applications” [1]. For this case study, a simple reference 
architecture for the reverse engineering domain, (the do-
main of the ISVis tool) was constructed using Tilley’s 
reverse engineering framework [36] and Rugaber’s Syn-
chronized Refinement process [31].   
 
5.1.2.  DARE (Domain Analysis for Reverse Engineer-
ing) Model.  This model is derived from textual analysis 
created by using the DARE process [7].  This gives an-
other domain-oriented view derived directly from the 
ISVis documentation.  The DARE tool  first analyzed the 
ISVis user’s manual and tutorial extracting all unique 
words by dowsing.  A filter then removed words of no 
interest to the analysis and the remaining words were 
counted to produce a frequency list.  The most common 
domain-significant words were then analyzed and an 
OMT [32] model was produced.   The dowsed word list 
also formed the basis for the set of domain terms assigned 
to the various extracted architectural elements.  For the 
case study, these domain terms included such words as 
Disk File, Actor, Scenario, Utility, Source Code, Event, 
Trace, Visual, Mural and Static.  In all, the analyst se-
lected 18 domain terms.  

 
5.1.3.  ISVis Documented Architecture.  Figure 3 repre-
sents a part of the original developer’s view of the archi-
tecture typical of the box-and-arrow diagrams available 
for most legacy systems.   Also available in this category 
were context diagrams and OMT object models of the 
legacy system. 
 
5.1.4.  ISVis Derived Architecture.  Figure 4 presents 
one of the architectures derived by using the ISVis tool 
on itself to create an architectural perspective from the 
source code.   This process, which uses architectural lo-
calization and visualization, is described in [16].  In this 
particular case, the use of the ISVis tool gives rise to the 

interesting situation where the legacy system is used to 
analyze itself.  The analyst first instrumented the ISVis 
source code and then executed two usage scenarios.  
From the two generated event traces, the analyst created 
abstracted components and scenarios which were manu-
ally translated into  two different architectural perspec-
tives.  

 
5.1.5.  RMTool Representations.   RMTool perspectives 
were the output of the Murphy, Notkin and Sullivan Re-
flexion tool [28] applied to the ISVis source code.  The 
input models used by RMTool were based upon the in-
formation derived from the ISVis analysis.  The high-
level model of components was based upon the abstract 
components identified by the analyst. The mapping of 
classes and functions to components was based upon IS-
Vis information as to the actors contained in each compo-
nent of the high-level model.  The Reflexion tool helped 
to provide a measure of the relative accuracy of the IS-
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Vis-derived architecture and thus was a complementary 
perspective rather than one which added totally new in-
formation. 

 
5.1.6.  Call Graph.  This type of diagram is a basic 
“who-calls-who” analysis typical of many reverse engi-
neering static analysis tools such as cflow [2].  To obtain 
the call graph, we wrote simple filter programs to act on 
the Solaris C++ compiler browser files to produce dot 
[23], gml [14], vcg [33] and rigi [38] graphics files.  This 
approach allowed us to use a wide variety of visualization 
tools to view and refine the graphs.  The raw ISVis graph 
had over 800 nodes and well over one thousand edges.  
This information was used much as it was in DALI [18] 
to aggregate the call information into an architectural 
perspective.   

 
5.1.7.  Make Analysis.  The Makefiles [29] for the appli-
cation were analyzed, and two perspectives were created.  
One dealt with the process view that resulted from make 
target analysis and the other was a module view that was 
derived from the dependency analysis. 

 
5.1.8.  Summary.  By the end of the generation phase, 13 
perspectives had been generated.  These perspectives are 
summarized in Table 2 (note that some lines of the table 
represent more than one perspective.)  For each perspec-
tive generated from a given source, the table shows the 
number of components and connectors in that perspective 
and the number of levels of abstraction in the perspective.  
It is immediately evident that most sources produce a 
relatively flat representation. 
 
5.2 Classification 
 

The classification task for this case study was fairly 
simple because most of the perspectives dealt with a logi-
cal view of the system. Primarily this was because ISVis 
runs on a single machine with three easily identified 
processes greatly reducing the complexity of the physical 
and process views.   

Classification uses not only the content of a perspec-
tive, but also its source to determine the view to which it 
pertains.  Some general (but certainly not all-inclusive) 
rules for classification are: 

• If the perspective came from an object-model dia-
gram (such as an OMT diagram) it is a logical view. 

• If the perspective came from a call-graph repre-
sentation then it is a logical view. 

• If the perspective contains hardware elements then 
it is a physical view. 

• If the perspective contains component names that 
can be matched to static source code entities, it is a logi-
cal view. 

• If the perspective contains names that can be 
matched to make targets it is a process view. 

• If the perspective came from a legacy “box-and-
arrow” diagram, it is a logical view. 

• If the perspective contains information derived 
from the source code directory structure or dependency 
sections of the make file it is a module view. 

At the end of the classification phase of the case study, 
there were 11 perspectives grouped into the logical view, 
and one each in the process and module views. 

 
5.3.  Union 
 

With the perspectives generated and classified, the real 
work of uniting these multiple perspectives to obtain a 
single set of views to describe the architecture can begin. 
The first step during union is to choose a perspective to 
act as the base representation for the remainder of the 
process.  This base representation should be the perspec-
tive that represents the highest level of confidence and a 
high level of abstraction for the view under consideration. 
Eixelsberger et al. [11] for example recommend the de-
sign documentation be used as the starting point.  For this 
case study, we selected the ISVis-derived architecture of 
Figure 4.   We did not chose the design perspective as 
recommended by other researchers because we felt in this 
case that the code-derived perspective was more accurate.  
This base representation is then extended by unioning it 
with the other perspectives in the logical view.  We 
briefly discuss issues in the union of the design perspec-
tive (Figure 3) with the base representation in this section.  
More details can be found in the technical report [37]. 

We begin by picking an element in the design repre-
sentation and attempt to match it to an element in the base 

Table 2.  Extraction Phase Results Summary 
Source Component 

Count 
Connector 

Count 
Levels 

DSSA 12 15 1 
ISVis Design 14 26(1) 1 
OMT Design 28 0 1 
Context Dia-
gram 

5 5 1 

Designer/ 
Interview 
ISVis Derived  
(2 models) 

39 38 2 

Reflexion (3 
models) 

5 9(1) 1 

DARE 15 7(2) 1 
Call-Graph 820 1500(3) 1 
Make 3 3 1 
Make Depend 30 83 1 

(1) Denoted as control or data only 
(2) Labeled associations only 
(3) Function calls only 



 

representation.  Elements are described in a perspective 
with the following characteristics: 

• N: the lexical name of the element. Equality of 
lexical names is determined by either string equality or by 
determining the names are domain synonyms.  

• D: the full set of domain terms dowsed from the 
legacy system’s artifacts. 

• De: the set of domain terms associated with the 
element e. De ⊆ D 

• A: the full set of general attributes for the legacy 
system 

• Ae: the set of attributes associated with the ele-
ment e.  Ae ⊆ A 

• Va: the value of the attribute associated with a 
specific element 

• {(Ae, Va)}: the set of all general attribute-value 
pairs associated with the element 

We begin element matching by looking at nodes in the 
graphical representation of the perspectives.  Let P1 and 
P2 be two perspectives pertaining to the same view and 
let element e1∈P1 and e2∈P2.  We have five possibilities 
for the comparison of e1 and e2 (listed from highest con-
fidence to lowest confidence): 

• EXACT:  A node in one perspective has the exact 
same general attribute-value pairs, domain terms and 
lexical name as a node in another perspective and is there-
fore the same element.  Thus EXACT(e1,e2)≡(Ne1=Ne2)∧ 
(De1=De2)∧({(Ae1, Va)}={(Ae2,Va)}).  EXACT is a sym-
metric relation.  Name equality includes the idea of syno-
nym comparison. 

• SUBSUME:  A node in one perspective is a more 
detailed description of a node in a different perspective 
and therefore is subsumed by that node.   Thus SUB-
SUME ≡ ((Ne1=Ne2) ∧ (De1⊆De2) ∧ ({(Ae1,Va)}⊆ {(Ae2, 
Va)}).  SUBSUME is an antisymmetric relation.  

• CONTAIN:  A node in one perspective is a com-
ponent (node) in the subsystem of the node in another 
perspective.  We can determine the CONTAIN relation 
by finding an EXACT, SUBSUME or OVERLAP rela-
tion between the contained node and a node in the subsys-
tem of the containing node.  CONTAIN is an antisym-
metric relation. 

• OVERLAP:  A node in one perspective has some 
domain terms in common with a node in a different per-
spective, but other domain terms are different. OVER-
LAP(e1, e2) ≡ (De1 ∩ De2 ≠ ∅) ∧ (De1 − De2 ≠ ∅) ∧ (De2 − 
De1 ≠ ∅).  OVERLAP is the weakest of the 3 matches and 
the most prone to false positives.  When determining an 
OVERLAP relation, we use only the domain concepts to 
reduce false positives.  If we did not, then every compos-
ite element that was an abstraction of other atomic ele-
ments would satisfy the OVERLAP relation.  OVERLAP 
is a symmetric relation. 

• NOREL:  A node in one perspective does not 
match any node in a different perspective.  This indicates 
discovery of a new element and thus this node should be 
treated as a new node in the result.  NOREL(e1,e2)≡ 
(Ne1≠Ne2)∨((De1∩De2=∅)∨({(Ae1,Va)}∩{(Ae2,Va)}=∅).  
If a node cannot satisfy the SUBSUME, OVERLAP, 
CONTAIN or EXACT relation with any other node in 
another perspective then it is treated as a new node.   

We now give concrete examples of these relations as 
applied to the union of Figures 3 and 4.  We initially se-
lect a node in Figure 3, Program Model, and try to match 
it to a node in the base representation using one of our 
five relations.  Searching the nodes in the base representa-
tion, we first look for lexical name matches and find 
Mode, which is a domain synonym.  We now compare 
domain terms as dowsed from the ISVis textual artifacts 
and the general attribute-value pairs.  Comparing the do-
main terms we find that they all match, therefore we have 
an EXACT relation.  Figure 5 shows the result view after 
the Model node is matched.  We now try to match the 
edges flowing from Program Model to those in the base 
representation.  We generally refer to the process of edge 
matching after a node match as resolving the edge.   

We see there are control and data connectors between 
Program Model and Trace Analyzer.  We first have to 
find Trace Analyzer in the base representation.  Doing the 
initial lexical comparison we do not find a match so our 
choices are narrowed down to CONTAIN or NOREL.  

We do get an EXACT match to the TraceAnalyzer sub-
component of the File Processors node.  This produces a 
CONTAIN relationship between Trace Analyzer and File 
Processors.  Looking at the base representation, there is 
no connector between the Program Model and the File 
Processors, so we must add one for control and one for 
the data connectors in effect giving us NOREL relations 
for these connectors.  We choose NOREL since we can-
not find a match for this element using any other relation 
and therefore assume this is a newly identified element.  
Later by using the perspective produced by the Reflexion 
Model, we find that the control connector is an error and 
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should not exist in the final logical view.  We also record 
a binding in the FileProcessors subsystem so that we 
know that the Trace Analyzer sub-component has a con-
nector that reaches the Model component in the top-level 
diagram.   

We now resolve a new edge leading out of Program-
Model and choose the control and data edges connecting 
to the View component.  When we match the View com-
ponent in the design representation to the base representa-
tion, the initial lexical evaluation points us to the View 
node.  If we did not have additional attributes, we might 
make an incorrect match.  Using our relation rules, we 
find it is in the CONTAIN relation and therefore a sub-
component of the View element in the base representa-
tion.  This is why the domain terms and attribute-value 
pairs are so important.  They help to prevent false 
matches that might otherwise occur if we depended solely 
on lexical names. 

The design representation has several passive elements 
that are not present in the base representation.  This is 
because the ISVis perspective is generated from dynamic 

event traces that do not do a good job of identifying pas-
sive data elements.  For all the file-type components we 
have a NOREL with the elements in the base representa-
tion. Based on the attributes, they could be placed as sub-
components in the File Processors component via a 
CONTAIN relation.   As shown in Figure 6, the analyst 
actually placed them at the top level rather than as a sub-
component of File Processors because modification of 
these files was projected for the new version of ISVis and 
we wanted to emphasize them for the analysis.  This is a 
good example of how the use to which the representation 
will be put influences the content.  It also demonstrates 

that there is no one “right” answer when someone asks to 
see an architecture.  Rather there are many equivalent 
representations that might be developed.  The important 
thing for the analyst is to develop a complete, consistent 
and useful set of views.     

Figure 6 presents the final top-level logical systems 
view obtained after unioning all perspectives classified to 
the logical view.  The components with thick outlines 
have subsystems associated with them.  One might be 
struck immediately by the inclusion of the analyst as a 
component in the top-level system.  Normally the human 
user is not explicitly modeled in an architectural represen-
tation – yet in this case, the analyst not only is a top-level 
component, but has a subsystem representation also!  This 
occurs because the analyst has significant computation 
and data responsibilities within the ISVis architecture.  
For instance, from the DSSA, we know there exists both 
an architectural style library and a component that uses 
the library to understand an architecture.  In ISVis these 
functions are performed manually by the analyst making 
them significant enough to include in the architectural 
diagram.  Later, if we need to use this top-level represen-
tation for impact analysis using either SAAM or ATAM, 
we can better understand where style-related information 
comes from.  If we had a code-extracted perspective alone 
this type of information would not be available. 

Handling of connectors is one of the more difficult 
parts of the union process.  The reasons for this are two-
fold.  First, connectors are usually second-class citizens in 
the world of legacy architectures.  As the ISVis design in 
Figure 3 demonstrates, many documented legacy 
architectures do not even label the connectors.  They may 
be annotated (as this one is) for differentiating control 
versus data, but they have no precise meaning.  For 
example they might mean calls, uses, or talks-to.  
Promoting these ill-defined connectors to first-class 
elements of the architecture requires critical thinking and 
use of domain and application knowledge by the person 
doing the synthesis.  

A principle function of an analyst in connector resolu-
tion is looking for name changes from the generic to the 
specific.  For instance, in the DSSA mapping information 
connectors indicate architectural information that has 
been synthesized by an analyst or tool.  In ISVis these 
mappings correspond to the visual information provided 
the analyst.  The need for these types of complex trans-
forms motivates our belief that the synthesis process can 
never be fully automated.   

The second complexity for connectors is resolving 
their bindings (determining which components are at-
tached to each end of the connector).  This is especially 
challenging when placing connectors in subsytems, and 
determining how these connect back to the upper-level 
system.  This again requires the analyst to have an under-
standing of how the components communicate.  Some of 
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this understanding comes from observing the contained 
interactions that can be represented through an analy-
sis/visualization tool like ISVis that provides the abstrac-
tion needed over sequences of program events.   A call-
graph perspective can also help with this task when de-
veloping the logical view. 

At the end of the union process, the 11 perspectives 
representing the logical view—with their single level of 
abstraction, over 750 potential components and 1600 po-
tential connectors—were reduced to three levels of ab-
straction with a total of 26 components and 40 connec-
tors.   By following the union process, different perspec-
tives comprising very flat information (at most two levels 
of hierarchy),  were refined into a single perspective, with 
multiple levels of abstraction that more accurately por-
trayed the actual ISVis architecture.  We felt that this re-
duction made the representations more understandable 
and usable for other analysis activities. 

It is interesting to note that although the component 
count (disregarding the call-graph case) did not increase 
significantly, the connector count did.  Many reverse en-
gineering tools do well at identifying components, but do 
not fare so well at finding connectors.  The union of sev-
eral different perspectives we were able to find additional 
relationships between components that might have been 
lost if a single perspective had been used.  

The top-level representation has only 11 components 
and 16 connectors, a configuration easily analyzed during 
an ATAM session [4].  If questions arise during the ses-
sion, there are subsystem representations that clearly 
identify the functionality in each of the top-level compo-
nents.  Again this is better than using any of the initial 
perspectives by themselves. 

 
6. Future Work And Conclusions 
 

The case study described here was primarily con-
ducted manually to develop ideas for what can and cannot 
potentially be automated and to refine the synthesis proc-
ess itself.  We believe the processes of union and fusion 
described in this paper can never be totally automated, 
but there are possibilities for performing many of these 
tasks in a semi-automated fashion.   

Automating much of the union and fusion process re-
quires that elements in different perspectives be matched 
and the EXACT, CONTAIN, SUBSUME, OVERLAP, 
and NOREL relations be determined for the analyst.  
These relations provide a mechanism for conveying 
matching information to an analyst.  We are looking at 
four primary technologies to perform these actions. 

The first is the application of type-inferencing [27], 
commonly used in compiler construction to suggest 
matches among the components and connectors that make 
up the architectural structure. If we consider elements to 
be types then the partial knowledge we have about their 

attributes at any stage of analysis is analogous to the par-
tial knowledge a compiler has about a variable's type in 
languages without explicit type declarations.  We have 
developed a prototype of this technique using the unifica-
tion features of Prolog. 

The second technique focuses on assisting with the 
lexical matching activities of the element names.  Match-
ing these names lexically is similar to traditional database 
schema integration activities [12].  If we treat components 
as entities and connectors as relations we can mirror some 
of the well-developed techniques already existent in the 
database world.  Other metrics for disambiguating lexical 
names have been developed for assisting in reuse of code 
libraries by Michail and Notkin [26].  We are currently 
considering adapting these metrics to the synthesis proc-
ess to assist the dowser in determining domain terms of 
extracted elements. 

We have already mentioned that we use a graph to rep-
resent the different perspectives during analysis.  There 
exist many algorithms for graph manipulation such as 
sub-graph isomorphism.  These might be useful during 
perspective manipulation, but many are computationally 
expensive.  Kazman has developed a technique called 
IAPR [20] that uses a constraint algorithm to limit the 
search space and allow graph matching to find architec-
tural patterns.  This technique holds promise to allow 
graph-level matching of perspectives. 

Finally, the area of concept analysis has received much 
attention of late in reverse engineering [34].  If we use 
elements as objects and domain terms as attributes, we 
can build a concept lattice representing the perspectives 
under union.  We are presently refining an algorithm that 
traverses the lattice and detects our five relations.  The 
analyst then uses this information to combine the perspec-
tives. 

One potentially significant issue that did not arise in 
the case study, primarily because one person conducted 
the activities, is that of human conflict resolution.  
Clearly, when multiple analysts are involved, there will 
be human issues that must be resolved in addition to sim-
ply technical ones.  We plan to incorporate some of the 
lessons learned by Win-Win [6] and other conflict-
resolution strategies into the synthesis process.  

To address these open issues, our future research will 
center on refining the architectural synthesis process and 
its supporting toolkit REMORA (Resolution of MO-
RALE Architectures). REMORA provides a graphical 
environment where the different representations can be 
visualized and manipulated.  Many of the lexical match-
ing, overlaying and binding tasks can be done semi-
automatically so that an analyst is free to concentrate on 
the difficult parts of the synthesis process that require 
human reasoning. 

Performing architectural recovery and synthesis using 
a repeatable process helps analysts to produce usable ar-



 

chitectural products for evolving legacy systems.  Some 
form of automated support, however, is required to make 
the process feasible for large-scale industrial systems. 
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