

Architectural Synthesis: Integrating Multiple

Architectural Perspectives

Robert Waters and Gregory D. Abowd
College of Computing

Georgia Institute of Technology
{ watersr, abowd }@cc.gatech.edu

Abstract
Many tools and techniques are available to help under-
stand and analyze a system at the architectural level.
Each of these provides its own perspective of the key ar-
chitectural elements of the system. We introduce the
process of architectural synthesis to deal with the prob-
lem of integrating these different architectural perspec-
tives. The four steps of the synthesis process form an
iterative cycle and include acquiring different perspec-
tives (extraction), grouping related perspectives (classifi-
cation), combining all perspectives that apply to the same
architectural view (union), and finally composing views
to determine consistency (fusion). We apply the synthesis
process to the architecture of a software visualization
tool. Our preliminary investigation shows that synthe-
sized architectural perspectives provide a more complete
and consistent representation of a real system. We con-
clude with directions for future research in this area.

1. Introduction

Although the exact percentage varies, most researchers
agree that somewhere between 40 and 80 percent of de-
velopment activities are focused on maintenance, en-
hancement or evolution of existing systems. To perform
enhancement and evolution activities effectively, an ana-
lyst must recover high-level architectural information so
as to understand the best way to make changes to the leg-
acy system under study. Kazman et al. [19] aptly de-
scribe this process of recovery as “playing detective”.

There is no single reverse engineering tool or method
that can give an analyst all the information they need to
describe the software architecture of an existing system.

Each method or tool provides instead valuable clues
about the structure or behavior of the system which must
be pieced together to find the ultimate answer [19].

Over the last seven years, the study of software archi-
tecture has been a focal point of many research efforts
[10]. Several different methods and tools have been de-
veloped which analyze different aspects of a software
system from the standpoint of its architecture. Some of
these approaches include architectural definition lan-
guages (ADLs) [22], simulation tools such as Rapide
[25], and analysis methods such as the Software Architec-
ture Analysis Method (SAAM) [17] and the Architecture
Tradeoff Analysis Method (ATAM) [4]. Unfortunately,
most of these techniques are focused on new development
activities. This makes them difficult to use while reverse
engineering since they require one or more accurate archi-
tectural representations to work with. For legacy sys-
tems, where do these representations come from?

Like Kazman’s detective, we have plenty of clues, a
few suspects, but no complete case to take to the district
attorney. Just as a detective takes fingerprints, shell cas-
ings and witness interviews to make his case, we take
call-graphs, design documents and developer interviews
to make ours. As shown in Figure 1, there is a void be-
tween the arbitrarily many architectural perspectives of a
legacy system and the refined inputs which most software
architectural analysis tools desire. Our work looks at the
broad problem of developing a consistent, complete and
useful set of representations for a legacy system’s soft-
ware architecture to enable developers to evolve the sys-
tem in an efficient and effective manner. The architec-
tural synthesis process fills the void between the inputs
required for forward engineering and architectural analy-
sis and the outputs produced by reverse engineering tools
and techniques by providing a general repeatable process
with integrated tool support. Although this statement
gives the impression the problem is one solely of tools
and techniques, we recognize that the problem is actually
one of architectural information management. An inexpe-
rienced analyst can be quickly overcome by the volumes
of information at multiple levels of abstraction that can be

produced by many of to-
day’s sophisticated tools.
We want to aid the analyst
in managing and process-
ing this information by
helping her separate the
wheat from the chaff.

Since the vocabulary
for software architecture
has not yet been standard-
ized, we first present the
definitions of key terms.
An overview of the archi-
tectural synthesis process
and finally a discussion of
our experience using the
synthesis process to extract
the architecture of a non-
trivial software system
follow the definitions and
a summary of related
work.

2. Definitions

Before discussing the synthesis process in detail, we
define the terms architecture, representation, view and
perspective. These terms are used throughout software
architecture literature, but with overloaded or conflicting
meanings.

Architecture. When we discuss software architecture
and the synthesis process, we are focusing primarily on
the structural aspects of the architecture. We use the fol-
lowing definition from Bass, Clements and Kazman [5]:
“The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software components, the externally visible
properties of those components, and the relationships
among them.” The relationships are commonly called
connectors. A similar definition can be found in ISO
10746 [15], defining an architecture as: “a set of rules to
define the structure of a system and the interrelationships
of its parts.” So architecture is fundamentally informa-
tion about the system at a high level of abstraction that
describes how the system is designed to meet its func-
tional and non-functional requirements. This information
includes syntactic information such as component names
and semantic information such as descriptions of compo-
nent functionality and interfaces.

For generality, we refer to components and connectors
collectively as elements. Any element may be further
decomposed into another collection of elements that rep-
resent lower levels of abstraction. We refer to a decom-
position of a component or connector as a subsystem.

Representation. Software architectures can be textually
or graphically described. We refer to any of these de-
scriptions as a representation. In our work we frequently
use an attributed graph, where nodes denote components
and edges denote connectors, as a common representa-
tion. If a representation is purely textual, we convert it to
an attributed graph. We will present the attributes for
these elements when discussing the union phase of the
synthesis process.

Perspective. An architectural perspective is a representa-
tion of an architecture created directly by some method or
tool. Perspectives vary in their degree of precision and
include both unsubstantiated opinion, such as a simple
box and arrow diagram drawn on a napkin, and precisely
defined analyses, such as a call graph generated from
source code. If we continue the detective analogy, per-
spectives are the individual clues on which we will build
the case.

View. Researchers disagree about whether a single archi-
tectural representation can accurately portray a complete
system. The existence of some ideal single representation
is still an open question [10]. The current consensus is
that a variety of representations is necessary to fully de-
scribe the architecture of any non-trivial system. We use
the definition of view as presented by Clements and
Northrup [9] to describe this set of representations. A
view is a representation of an architecture that reflects a
specific set of concerns that are of interest to a given
group of stakeholders in the system. There is no gener-
ally accepted required set of representations that might be
necessary to fully describe a system. Kruchten [24] pro-

Analysis
Performance

Legacy
System

Architectural
Perspective

A

Architectural
Perspective

B

Architectural
Perspective

Z

Reve
rse

 Engineerin
g

Tool A

Reverse Engineering

Technique B

Design Documentation

Analysis

SAAM
Analysis?

Architectural
Representation

Simulation
Analysis

Program
Understanding

{Architectural

Representation}

Architectural

Representation

Architectural
RepresentationArchitectural

Perspective
Y

Designer Interview

Reverse Engineering/
Reverse Architecting

Software Architecture
Analysis/ ADL’s?????

Figure 1: The Multiple Perspective Problem

poses that such a set should include four different views.
These include logical (focusing on software functional-
ity), process (focusing on concurrency, fault-tolerance,
and synchronization), module (focusing on division of the
software into subsystems assigned to different program-
mers) and physical (focusing on assignment of functional-
ity to specific hardware devices) views. Likewise Perry
and Wolf [30] describe at least three separate views in-
cluding processing (focusing on the flow of control
through processing elements), data (focusing on the flow
of data through the system) and connections (focusing on
interactions between elements). For complex systems,
there may even be views associated with specific non-
functional requirements, such as a security view of the
architecture. Our use of the phrase architectural view is
consistent with all these uses. For any given software
architecture there are potentially multiple views (some
overlapping and some disjoint) that exist to describe it.

If we use an analogy from the requirements engineer-
ing world, it might make the perspective–view relation-
ship clearer. When gathering requirements, we obtain
raw information from different sources about what a spe-
cific requirement might be. These raw elements are like
perspectives. By using different requirements analysis
techniques we can refine this raw information into a final
specification. These refined elements are equivalent to
views.

3. Related Work

Several other research projects relate to the area of ar-
chitectural recovery and development of multiple views
of a system’s architecture. These include DALI [18],
CANTO [3] and MANSart [40]. Of these approaches,
CANTO and MANSart are tied to specific extraction
methods that focus on analysis of code-based artifacts to
find architectural styles or patterns. DALI is more gen-
eral in that it tries to incorporate multiple extraction
methods into a tool framework—however it still relies
primarily on code-based artifacts. Information extracted
is placed into a database and then views can be built via
queries created by the analyst. Recovery of design pat-
terns [13, 40] by automated searching as well as classifi-
cation of architectural components based upon matching
their characteristics [21] has also been a focus of prelimi-
nary research.

Eixelsberger et al. [11] have a philosophy similar to
ours, but with a different approach to realizing it. They
recognize the need to use non-code-based information in
the recovery process, but they emphasize recovering a
single representation focused on a specific view of the
system. For instance the safety architecture might be the
focus of the extraction effort. While this single-aspect
recovery has the advantage of requiring less time than our

process, it does not attempt to ensure completeness or
consistency of the produced view.

4. Architectural Synthesis

Architectural synthesis consists of a cycle of activities
that integrates the raw information in perspectives into a
synthesized set of views. The synthesized views form a
complete and consistent architectural representation of the
legacy system under study. Architectural synthesis is a
semi-automatic task (shown graphically in Figure 2) con-
sisting of the following four steps: Extraction, Classifica-

tion, Union and Fusion. As we combine the various per-
spectives of the system, we create better and more com-
plete representations. We may also find incompleteness
and inconsistency that needs further resolution, thus the
synthesis process is shown as a cycle. We do not claim
that this process creates “the” software architecture, but
rather that it creates a reasonably complete and consistent
set of representations describing the architecture through
various views of the system.

4.1. Extraction

The first step in the synthesis process is to obtain the
perspectives to be synthesized. These perspectives may
come from existing documentation, source code analysis,
domain analysis, interviews with human experts, or any
other source that may provide an idea of what the legacy
system’s architecture might be.

Following the philosophy of DALI [19], there is no
prescribed set of extraction mechanisms that must be used
to develop a set of perspectives. It is unclear at this time
whether there might exist a set of extraction methods
which could be prescribed that would give an adequate
set of perspectives from which to derive a set of represen-

Extraction Classification

Fusion Union

Software
Architecture

Figure 2: The Architectural Synthesis Cycle

tations which are complete, consistent, useful, and have
the desired content.

4.2. Classification

The next step is for the analyst to group perspectives
into their respective views. This helps an analyst to focus
initially on reconciliation of perspectives that are intended
to describe the same aspects of a system. This is not nec-
essarily a one-to-one function, as an individual perspec-
tive may map to two or more views.

We generally limit the classification step to the four
major views (physical, logical, process and module). In
larger systems classification may need to be expanded to
include other views. For instance, the logical view might
be separated into a data and control view if this is neces-
sary to better understand a complex system. The main
purpose of classification is to group perspectives in such a
way that a common aspect of the system being analyzed
relates the elements being combined.

4.3. Union

The union phase analyzes and combines all perspec-
tives representing a specific view. During this step we
manipulate a perspective as a graph where nodes denote
components (boxes) and edges denote connectors (lines).
Each element within a perspective has some set of attrib-
utes that describe properties of that element. These at-
tributes include the name of the component (or its domain
synonym), topological characteristics such as port count,
general attributes, and a set of domain terms. General
attributes consist of (attribute-value) pairs. Some com-
mon examples of these general attributes are shown in
Table 1.

While the previously described attributes focus on syn-
tactic information about the architecture, we use domain
terms to approximate semantic information about the
various elements in an architecture. Domain terms are
obtained by dowsing [8] the available system artifacts.
Dowsing is a technique that scans textual artifacts such as
source code, design documents and user’s manuals and
extracts frequently occurring key words or phrases (n-
grams). A set of these n-grams is chosen by the analyst to
represent the key terms in the domain. A subset of these
terms forms the set of domain terms associated with each
element. It is important to note that any duplication of

terms (or synonyms) amongst the domain terms is han-
dled during the dowsing process. The set of domain
terms to be associated with each element are thus unique.
Since architecture addresses how the system solves the
problem within a specific domain, we feel the use of these
domain terms is an adequate, lightweight approximation
to the semantics of the various elements.

The union phase derives its name from the set-union
operation. During union we combine perspectives by
matching elements or by recognizing new elements in the
perspectives until we have combined all the perspectives
into a single view. We repeat the union process for each
view into which we classified perspectives during the
classification phase. We discuss this matching process in
detail in the case-study section.

4.4. Fusion

We adopt this term from DALI [19] and use it to rep-
resent analysis across different views of the system. Fu-
sion serves two purposes: first it provides a check on the
consistency of the views [18, 19] and secondly, it pro-
vides additional information about the architecture
through the composition of related views.

For instance, consider the fusion of the process and
physical views as a mapping of runtime processes onto
the hardware elements on which they run. Potential in-
consistencies include processes that have no hardware or
hardware that supports no processes. Inconsistencies
might be caused by either a lack of information, i.e. the
extraction phase failed to elicit enough information, or
because there is an erroneous element in one of the repre-
sentations. The following case study focuses on the un-
ion phase of the synthesis process.

5. Case Study

We present a case study of architectural synthesis
which looks at evolving a medium-complexity system
called ISVis (Interaction Scenario Visualizer) [16]. ISVis
is a three-year-old C++/X-Motif/Perl application consist-
ing of 30 separate source files containing 24,333 lines of
commented source code. Functionally, ISVis is a reverse
engineering tool used to abstract an architectural perspec-
tive based upon both source code static information and a
behavioral trace of program execution.

We are in the process of preliminary design for the
next version of ISVis and wish to perform an ATAM
analysis. Many perspectives of ISVis were obtainable,
but no single perspective was accurate enough to begin
the process. We decided to do an architectural synthesis
to obtain an accurate set of architectural representations to
begin the analysis.

Table 1: Sample Attribute/Value Pairs
Attribute Values

Abstraction Level composite or atomic
Behavior Type passive or active
Component Type function or procedure
Connector Type shared_memory, socket or file

5.1. Extraction

An analyst first generated several perspectives of the
ISVis architecture, which are briefly described below.
Only two of the graph representations generated are pre-
sented as figures in this paper, but all are available in the
technical report [37]. The perspectives generated ranged
from a generic, abstract reference architecture to a con-
crete, code-level call-graph.

5.1.1. Domain-Specific (Reference) Software Architec-
ture. For many legacy systems, a Domain-Specific
Software Architecture (DSSA) [35] or a reference archi-
tecture describing it may exist. A DSSA can be thought
of as “an assemblage of software components, specialized
for a particular type of task (domain), generalized for
effective use across that domain, composed in a standard-
ized structure (topology) effective for building successful
applications” [1]. For this case study, a simple reference
architecture for the reverse engineering domain, (the do-
main of the ISVis tool) was constructed using Tilley’s
reverse engineering framework [36] and Rugaber’s Syn-
chronized Refinement process [31].

5.1.2. DARE (Domain Analysis for Reverse Engineer-
ing) Model. This model is derived from textual analysis
created by using the DARE process [7]. This gives an-
other domain-oriented view derived directly from the
ISVis documentation. The DARE tool first analyzed the
ISVis user’s manual and tutorial extracting all unique
words by dowsing. A filter then removed words of no
interest to the analysis and the remaining words were
counted to produce a frequency list. The most common
domain-significant words were then analyzed and an
OMT [32] model was produced. The dowsed word list
also formed the basis for the set of domain terms assigned
to the various extracted architectural elements. For the
case study, these domain terms included such words as
Disk File, Actor, Scenario, Utility, Source Code, Event,
Trace, Visual, Mural and Static. In all, the analyst se-
lected 18 domain terms.

5.1.3. ISVis Documented Architecture. Figure 3 repre-
sents a part of the original developer’s view of the archi-
tecture typical of the box-and-arrow diagrams available
for most legacy systems. Also available in this category
were context diagrams and OMT object models of the
legacy system.

5.1.4. ISVis Derived Architecture. Figure 4 presents
one of the architectures derived by using the ISVis tool
on itself to create an architectural perspective from the
source code. This process, which uses architectural lo-
calization and visualization, is described in [16]. In this
particular case, the use of the ISVis tool gives rise to the

interesting situation where the legacy system is used to
analyze itself. The analyst first instrumented the ISVis
source code and then executed two usage scenarios.
From the two generated event traces, the analyst created
abstracted components and scenarios which were manu-
ally translated into two different architectural perspec-
tives.

5.1.5. RMTool Representations. RMTool perspectives
were the output of the Murphy, Notkin and Sullivan Re-
flexion tool [28] applied to the ISVis source code. The
input models used by RMTool were based upon the in-
formation derived from the ISVis analysis. The high-
level model of components was based upon the abstract
components identified by the analyst. The mapping of
classes and functions to components was based upon IS-
Vis information as to the actors contained in each compo-
nent of the high-level model. The Reflexion tool helped
to provide a measure of the relative accuracy of the IS-

View
View

Manager

Program
Model

Trace
Analyzer

Event
Stream

Static
Analyzer Instrumentor

Solaris
DB

Database

Source
Code

Static
Information

File

Instrumented
Source
Code

Trace
Info
File

Event
Trace

Session
File

Figure 3: ISVis Design

Overhead

Controller

Model

ViewFileProcessors

Create
Gui

Prompt

GetText

Create/Modify
Components

Set Item
State

ReadTrace

GetText

Redraw
Mouse/Key
Data

Create

Prompt

Update

Figure 4: ISVis Extracted Architecture

Vis-derived architecture and thus was a complementary
perspective rather than one which added totally new in-
formation.

5.1.6. Call Graph. This type of diagram is a basic
“who-calls-who” analysis typical of many reverse engi-
neering static analysis tools such as cflow [2]. To obtain
the call graph, we wrote simple filter programs to act on
the Solaris C++ compiler browser files to produce dot
[23], gml [14], vcg [33] and rigi [38] graphics files. This
approach allowed us to use a wide variety of visualization
tools to view and refine the graphs. The raw ISVis graph
had over 800 nodes and well over one thousand edges.
This information was used much as it was in DALI [18]
to aggregate the call information into an architectural
perspective.

5.1.7. Make Analysis. The Makefiles [29] for the appli-
cation were analyzed, and two perspectives were created.
One dealt with the process view that resulted from make
target analysis and the other was a module view that was
derived from the dependency analysis.

5.1.8. Summary. By the end of the generation phase, 13
perspectives had been generated. These perspectives are
summarized in Table 2 (note that some lines of the table
represent more than one perspective.) For each perspec-
tive generated from a given source, the table shows the
number of components and connectors in that perspective
and the number of levels of abstraction in the perspective.
It is immediately evident that most sources produce a
relatively flat representation.

5.2 Classification

The classification task for this case study was fairly
simple because most of the perspectives dealt with a logi-
cal view of the system. Primarily this was because ISVis
runs on a single machine with three easily identified
processes greatly reducing the complexity of the physical
and process views.

Classification uses not only the content of a perspec-
tive, but also its source to determine the view to which it
pertains. Some general (but certainly not all-inclusive)
rules for classification are:

• If the perspective came from an object-model dia-
gram (such as an OMT diagram) it is a logical view.

• If the perspective came from a call-graph repre-
sentation then it is a logical view.

• If the perspective contains hardware elements then
it is a physical view.

• If the perspective contains component names that
can be matched to static source code entities, it is a logi-
cal view.

• If the perspective contains names that can be
matched to make targets it is a process view.

• If the perspective came from a legacy “box-and-
arrow” diagram, it is a logical view.

• If the perspective contains information derived
from the source code directory structure or dependency
sections of the make file it is a module view.

At the end of the classification phase of the case study,
there were 11 perspectives grouped into the logical view,
and one each in the process and module views.

5.3. Union

With the perspectives generated and classified, the real
work of uniting these multiple perspectives to obtain a
single set of views to describe the architecture can begin.
The first step during union is to choose a perspective to
act as the base representation for the remainder of the
process. This base representation should be the perspec-
tive that represents the highest level of confidence and a
high level of abstraction for the view under consideration.
Eixelsberger et al. [11] for example recommend the de-
sign documentation be used as the starting point. For this
case study, we selected the ISVis-derived architecture of
Figure 4. We did not chose the design perspective as
recommended by other researchers because we felt in this
case that the code-derived perspective was more accurate.
This base representation is then extended by unioning it
with the other perspectives in the logical view. We
briefly discuss issues in the union of the design perspec-
tive (Figure 3) with the base representation in this section.
More details can be found in the technical report [37].

We begin by picking an element in the design repre-
sentation and attempt to match it to an element in the base

Table 2. Extraction Phase Results Summary
Source Component

Count
Connector

Count
Levels

DSSA 12 15 1
ISVis Design 14 26(1) 1
OMT Design 28 0 1
Context Dia-
gram

5 5 1

Designer/
Interview
ISVis Derived
(2 models)

39 38 2

Reflexion (3
models)

5 9(1) 1

DARE 15 7(2) 1
Call-Graph 820 1500(3) 1
Make 3 3 1
Make Depend 30 83 1

(1) Denoted as control or data only
(2) Labeled associations only
(3) Function calls only

representation. Elements are described in a perspective
with the following characteristics:

• N: the lexical name of the element. Equality of
lexical names is determined by either string equality or by
determining the names are domain synonyms.

• D: the full set of domain terms dowsed from the
legacy system’s artifacts.

• De: the set of domain terms associated with the
element e. De ⊆ D

• A: the full set of general attributes for the legacy
system

• Ae: the set of attributes associated with the ele-
ment e. Ae ⊆ A

• Va: the value of the attribute associated with a
specific element

• {(Ae, Va)}: the set of all general attribute-value
pairs associated with the element

We begin element matching by looking at nodes in the
graphical representation of the perspectives. Let P1 and
P2 be two perspectives pertaining to the same view and
let element e1∈P1 and e2∈P2. We have five possibilities
for the comparison of e1 and e2 (listed from highest con-
fidence to lowest confidence):

• EXACT: A node in one perspective has the exact
same general attribute-value pairs, domain terms and
lexical name as a node in another perspective and is there-
fore the same element. Thus EXACT(e1,e2)≡(Ne1=Ne2)∧
(De1=De2)∧({(Ae1, Va)}={(Ae2,Va)}). EXACT is a sym-
metric relation. Name equality includes the idea of syno-
nym comparison.

• SUBSUME: A node in one perspective is a more
detailed description of a node in a different perspective
and therefore is subsumed by that node. Thus SUB-
SUME ≡ ((Ne1=Ne2) ∧ (De1⊆De2) ∧ ({(Ae1,Va)}⊆ {(Ae2,
Va)}). SUBSUME is an antisymmetric relation.

• CONTAIN: A node in one perspective is a com-
ponent (node) in the subsystem of the node in another
perspective. We can determine the CONTAIN relation
by finding an EXACT, SUBSUME or OVERLAP rela-
tion between the contained node and a node in the subsys-
tem of the containing node. CONTAIN is an antisym-
metric relation.

• OVERLAP: A node in one perspective has some
domain terms in common with a node in a different per-
spective, but other domain terms are different. OVER-
LAP(e1, e2) ≡ (De1 ∩ De2 ≠ ∅) ∧ (De1 − De2 ≠ ∅) ∧ (De2 −
De1 ≠ ∅). OVERLAP is the weakest of the 3 matches and
the most prone to false positives. When determining an
OVERLAP relation, we use only the domain concepts to
reduce false positives. If we did not, then every compos-
ite element that was an abstraction of other atomic ele-
ments would satisfy the OVERLAP relation. OVERLAP
is a symmetric relation.

• NOREL: A node in one perspective does not
match any node in a different perspective. This indicates
discovery of a new element and thus this node should be
treated as a new node in the result. NOREL(e1,e2)≡
(Ne1≠Ne2)∨((De1∩De2=∅)∨({(Ae1,Va)}∩{(Ae2,Va)}=∅).
If a node cannot satisfy the SUBSUME, OVERLAP,
CONTAIN or EXACT relation with any other node in
another perspective then it is treated as a new node.

We now give concrete examples of these relations as
applied to the union of Figures 3 and 4. We initially se-
lect a node in Figure 3, Program Model, and try to match
it to a node in the base representation using one of our
five relations. Searching the nodes in the base representa-
tion, we first look for lexical name matches and find
Mode, which is a domain synonym. We now compare
domain terms as dowsed from the ISVis textual artifacts
and the general attribute-value pairs. Comparing the do-
main terms we find that they all match, therefore we have
an EXACT relation. Figure 5 shows the result view after
the Model node is matched. We now try to match the
edges flowing from Program Model to those in the base
representation. We generally refer to the process of edge
matching after a node match as resolving the edge.

We see there are control and data connectors between
Program Model and Trace Analyzer. We first have to
find Trace Analyzer in the base representation. Doing the
initial lexical comparison we do not find a match so our
choices are narrowed down to CONTAIN or NOREL.

We do get an EXACT match to the TraceAnalyzer sub-
component of the File Processors node. This produces a
CONTAIN relationship between Trace Analyzer and File
Processors. Looking at the base representation, there is
no connector between the Program Model and the File
Processors, so we must add one for control and one for
the data connectors in effect giving us NOREL relations
for these connectors. We choose NOREL since we can-
not find a match for this element using any other relation
and therefore assume this is a newly identified element.
Later by using the perspective produced by the Reflexion
Model, we find that the control connector is an error and

Model

ViewFileProcessors

Create/Modify
Components

Set Item
State

ReadTrace

Create

Update

View

Program
Model Trace

Analyzer

Figure 5: EXACT match for Model, Resolving Edges

should not exist in the final logical view. We also record
a binding in the FileProcessors subsystem so that we
know that the Trace Analyzer sub-component has a con-
nector that reaches the Model component in the top-level
diagram.

We now resolve a new edge leading out of Program-
Model and choose the control and data edges connecting
to the View component. When we match the View com-
ponent in the design representation to the base representa-
tion, the initial lexical evaluation points us to the View
node. If we did not have additional attributes, we might
make an incorrect match. Using our relation rules, we
find it is in the CONTAIN relation and therefore a sub-
component of the View element in the base representa-
tion. This is why the domain terms and attribute-value
pairs are so important. They help to prevent false
matches that might otherwise occur if we depended solely
on lexical names.

The design representation has several passive elements
that are not present in the base representation. This is
because the ISVis perspective is generated from dynamic

event traces that do not do a good job of identifying pas-
sive data elements. For all the file-type components we
have a NOREL with the elements in the base representa-
tion. Based on the attributes, they could be placed as sub-
components in the File Processors component via a
CONTAIN relation. As shown in Figure 6, the analyst
actually placed them at the top level rather than as a sub-
component of File Processors because modification of
these files was projected for the new version of ISVis and
we wanted to emphasize them for the analysis. This is a
good example of how the use to which the representation
will be put influences the content. It also demonstrates

that there is no one “right” answer when someone asks to
see an architecture. Rather there are many equivalent
representations that might be developed. The important
thing for the analyst is to develop a complete, consistent
and useful set of views.

Figure 6 presents the final top-level logical systems
view obtained after unioning all perspectives classified to
the logical view. The components with thick outlines
have subsystems associated with them. One might be
struck immediately by the inclusion of the analyst as a
component in the top-level system. Normally the human
user is not explicitly modeled in an architectural represen-
tation – yet in this case, the analyst not only is a top-level
component, but has a subsystem representation also! This
occurs because the analyst has significant computation
and data responsibilities within the ISVis architecture.
For instance, from the DSSA, we know there exists both
an architectural style library and a component that uses
the library to understand an architecture. In ISVis these
functions are performed manually by the analyst making
them significant enough to include in the architectural
diagram. Later, if we need to use this top-level represen-
tation for impact analysis using either SAAM or ATAM,
we can better understand where style-related information
comes from. If we had a code-extracted perspective alone
this type of information would not be available.

Handling of connectors is one of the more difficult
parts of the union process. The reasons for this are two-
fold. First, connectors are usually second-class citizens in
the world of legacy architectures. As the ISVis design in
Figure 3 demonstrates, many documented legacy
architectures do not even label the connectors. They may
be annotated (as this one is) for differentiating control
versus data, but they have no precise meaning. For
example they might mean calls, uses, or talks-to.
Promoting these ill-defined connectors to first-class
elements of the architecture requires critical thinking and
use of domain and application knowledge by the person
doing the synthesis.

A principle function of an analyst in connector resolu-
tion is looking for name changes from the generic to the
specific. For instance, in the DSSA mapping information
connectors indicate architectural information that has
been synthesized by an analyst or tool. In ISVis these
mappings correspond to the visual information provided
the analyst. The need for these types of complex trans-
forms motivates our belief that the synthesis process can
never be fully automated.

The second complexity for connectors is resolving
their bindings (determining which components are at-
tached to each end of the connector). This is especially
challenging when placing connectors in subsytems, and
determining how these connect back to the upper-level
system. This again requires the analyst to have an under-
standing of how the components communicate. Some of

Analyst

Model

View

Controller

Overhead

Compiler
FIles

Source
Code

Trace
Information

Files

Text Editor

File
Processors

Static
Information

Files

Update/
Redraw/
Create GUI

Mouse/
Key Data

Visual Data

A
bs

tr
ac

tio
ns

Source Code
File Line Info

Mod
el

Infor
mati

on

Pro
m

pt

Get T
ex

t

C
re

at
e

R
ea

d
T

ra
ce

Static Info

Trac
e In

fo

S
ta

tic
 C

od
e

In
fo

Instrum
entation Data

Set Item
 State

Create/Modify Components

Figure 6: Final ISVis Top-Level Logical View

this understanding comes from observing the contained
interactions that can be represented through an analy-
sis/visualization tool like ISVis that provides the abstrac-
tion needed over sequences of program events. A call-
graph perspective can also help with this task when de-
veloping the logical view.

At the end of the union process, the 11 perspectives
representing the logical view—with their single level of
abstraction, over 750 potential components and 1600 po-
tential connectors—were reduced to three levels of ab-
straction with a total of 26 components and 40 connec-
tors. By following the union process, different perspec-
tives comprising very flat information (at most two levels
of hierarchy), were refined into a single perspective, with
multiple levels of abstraction that more accurately por-
trayed the actual ISVis architecture. We felt that this re-
duction made the representations more understandable
and usable for other analysis activities.

It is interesting to note that although the component
count (disregarding the call-graph case) did not increase
significantly, the connector count did. Many reverse en-
gineering tools do well at identifying components, but do
not fare so well at finding connectors. The union of sev-
eral different perspectives we were able to find additional
relationships between components that might have been
lost if a single perspective had been used.

The top-level representation has only 11 components
and 16 connectors, a configuration easily analyzed during
an ATAM session [4]. If questions arise during the ses-
sion, there are subsystem representations that clearly
identify the functionality in each of the top-level compo-
nents. Again this is better than using any of the initial
perspectives by themselves.

6. Future Work And Conclusions

The case study described here was primarily con-
ducted manually to develop ideas for what can and cannot
potentially be automated and to refine the synthesis proc-
ess itself. We believe the processes of union and fusion
described in this paper can never be totally automated,
but there are possibilities for performing many of these
tasks in a semi-automated fashion.

Automating much of the union and fusion process re-
quires that elements in different perspectives be matched
and the EXACT, CONTAIN, SUBSUME, OVERLAP,
and NOREL relations be determined for the analyst.
These relations provide a mechanism for conveying
matching information to an analyst. We are looking at
four primary technologies to perform these actions.

The first is the application of type-inferencing [27],
commonly used in compiler construction to suggest
matches among the components and connectors that make
up the architectural structure. If we consider elements to
be types then the partial knowledge we have about their

attributes at any stage of analysis is analogous to the par-
tial knowledge a compiler has about a variable's type in
languages without explicit type declarations. We have
developed a prototype of this technique using the unifica-
tion features of Prolog.

The second technique focuses on assisting with the
lexical matching activities of the element names. Match-
ing these names lexically is similar to traditional database
schema integration activities [12]. If we treat components
as entities and connectors as relations we can mirror some
of the well-developed techniques already existent in the
database world. Other metrics for disambiguating lexical
names have been developed for assisting in reuse of code
libraries by Michail and Notkin [26]. We are currently
considering adapting these metrics to the synthesis proc-
ess to assist the dowser in determining domain terms of
extracted elements.

We have already mentioned that we use a graph to rep-
resent the different perspectives during analysis. There
exist many algorithms for graph manipulation such as
sub-graph isomorphism. These might be useful during
perspective manipulation, but many are computationally
expensive. Kazman has developed a technique called
IAPR [20] that uses a constraint algorithm to limit the
search space and allow graph matching to find architec-
tural patterns. This technique holds promise to allow
graph-level matching of perspectives.

Finally, the area of concept analysis has received much
attention of late in reverse engineering [34]. If we use
elements as objects and domain terms as attributes, we
can build a concept lattice representing the perspectives
under union. We are presently refining an algorithm that
traverses the lattice and detects our five relations. The
analyst then uses this information to combine the perspec-
tives.

One potentially significant issue that did not arise in
the case study, primarily because one person conducted
the activities, is that of human conflict resolution.
Clearly, when multiple analysts are involved, there will
be human issues that must be resolved in addition to sim-
ply technical ones. We plan to incorporate some of the
lessons learned by Win-Win [6] and other conflict-
resolution strategies into the synthesis process.

To address these open issues, our future research will
center on refining the architectural synthesis process and
its supporting toolkit REMORA (Resolution of MO-
RALE Architectures). REMORA provides a graphical
environment where the different representations can be
visualized and manipulated. Many of the lexical match-
ing, overlaying and binding tasks can be done semi-
automatically so that an analyst is free to concentrate on
the difficult parts of the synthesis process that require
human reasoning.

Performing architectural recovery and synthesis using
a repeatable process helps analysts to produce usable ar-

chitectural products for evolving legacy systems. Some
form of automated support, however, is required to make
the process feasible for large-scale industrial systems.

Acknowledgements

This work supports MORALE (Mission-Oriented Ar-
chitectural Legacy Systems Evolution) a part of the
DARPA EDCS project and was sponsored by the Defense
Advanced Research Projects Agency, and Air Force Re-
search Laboratory, Air Force Material Command, USAF,
under agreement number F30602-96-2-0229. We are also
indebted to Rich Clayton and Dean Jerding whose work
on ISVis and Dowsing was critical to the success of this
study.

References

[1] “Architecture-Based Acquisition and Development of Soft-
ware Guidelines and Recommendations from the ARPA Do-
main-Specific Software Architecture (DSSA) Program,”
Teknowledge Federal Systems 1994.

[2] cflow homepage available at: http://www.paranoia.com/
~vax/cflow/cflow.html.

[3] G. Antoniol, G. Fiutem, G. Lutteri, P. Tonnella, S. Zanfei,
and E. Merlo, “Program Understanding and Maintenance with
the CANTO Environment,” International Conference on Soft-
ware Maintenance, IEEE, 1997.

[4] M. Barbacci, S. Carriere, P. Feiler, R. Kazman, M. Klien, H.
Lipson, T. Longstaff, and C. Weinstock, “Steps in an Architec-
ture Tradeoff Analysis Method: Quality Attribute Models and
Analysis,” Carnegie Mellon University, Technical Report
CMU/SEI-97-TR-029, 1998.

[5] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice: Addison Wesley Longman, 1998.

[6] B. Boehm, P. Bose, E. Horowitz, and M. Lee, “Software
Requirements Negotiation and Renegotiation Aids: A Theory-W
based Spiral Approach,” 17th International Conference on
Software Engineering (ICSE-17), Seattle, 1995.

[7] R. Clayton, S. Rugaber, L. Taylor, and L. Wills, “A Case
Study of Domain-Based Program Understanding,” Workshop
on Program Comprehension, 1998.

[8] R. Clayton, S. Rugaber, and L. Wills, “Dowsing: A Tool
Framework for Domain-Oriented Browsing of Software Arti-
facts,” 13th International Conference on Automated Software
Engineering, Honolulu, Hawaii, 1998.

[9] P. Clements and L. Northrop, “Software Architecture: An
Executive Overview,” Carnegie Mellon University, Technical
Report CMU/SEI-96-TR-003, 1996.

[10] P. Clements and N. Weiderman, “Report on the Second
International Workshop on Development and Evolution of
Software Architectures for Product Families,” Carnegie Mellon
University, Technical Report CMU/SEI-98-SR-003, 1998.

[11] W. Eixelsberger, M. Kalan, M. Ogris, H. Beckman, B.
Bellay, and H. Gall, “Recovery of Architectural Structure : A
Case Study,” Proceedings : Development and Evolution of
Software Architecture for Product Families, Las Palmas de
Gran Canaria, Spain, Springer-Verlag, 1998.

[12] R. Elmasri and S. Navathe, Fundamentals of Database
Systems, Second ed. New York: Addison-Wesley, 1994.

[13] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo, “A Cli-
che-Based Environment to Support Architectural Reverse Engi-
neering,” IRST, Povo, Italy, Technical Report 9602-02, 1996.

[14] M. Himsolt, "GML: Graph Modeling Language", available
electronically from http://www.fmi.uni-passau.de/Graphlet
GML/index.html, 1996.

[15] ISO 10746, Basic Reference Model of Open Distributed
Processing, available electronically at http://archive.dstc.edu.au/
AU/staff/kerry-raymond/rmodp/P0.html

[16] D. Jerding and S. Rugaber, “Using Visualization for Archi-
tectural Localization and Extraction,” Working Conference on
Reverse Engineering, 1997.

[17] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Sce-
nario-Based Analysis of Software Architecture,” IEEE Soft-
ware, vol. 13, 1996, pp. 47-56.

[18] R. Kazman and S. Carriere, “View Extraction and View
Fusion in Architectural Understanding,” Fifth International
Conference on Software Reuse, 1998.

[19] R. Kazman and S. J. Carriere, “Playing Detective: Recon-
structing Software Architecture from Available Evidence,” Car-
negie Mellon University, Technical Report CMU/SEI-97-TR-
010, 1997.

[20] R. Kazman and M. Burth, “Assessing Architectural Com-
plexity,” 2nd Euromicro Working Conference on Software
Maintenance and Reengineering (CSMR '98), 1998

[21] R. Kazman, P. Clements, L. Bass, and G. Abowd, “Classi-
fying Architectural Elements as a Foundation for Mechanism
Matching,” COMPSAC, Washington, DC, 1997.

[22] P. Kogut and P. Clements, “Features of Architecture De-
scription Languages,” Software Technology Conference, Salt
Lake City, 1995.

[23] E. Koutsofis and S. C. North, "Drawing graphs with dot",
available electronically from http://www.research.att.com/sw/
tools/graphviz/refs.html, 1996.

[24] P. Krutchen, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, 1995.

[25] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D.
Bryan, and W. Mann, “Specification and Analysis of System
Architecture Using Rapide,” IEEE Transactions on Software
Engineering, Special Issue on Software Engineering, vol. 21,
pp. 336-355, 1995.

[26] A. Michail and D. Notkin, “Accessing Software Libraries
by Browsing Similar Classes, Functions, and Relationships,”
21st International Conference on Software Engineering, Los
Angeles, 1998.

[27] J. Mitchell, “Chapter 11 Type Inferencing,” in Founda-
tions of Programming Languages, MIT Press, 1998.

[28] G. Murphy, D. Notkin, and K. Sullivan, “Software Reflex-
ion Models: Bridging the Gap between Source and High-Level
Models,” ACM SIGSOFT, vol. 1995, 1995.

[29] R. Necaise, "gmake: The GNU Make Utility", available
electronically from http://www.cs.wm.edu/~necaise/refs/unix/
gmake.html, 1996.

[30] D. Perry and A. Wolf, “Foundations for the Study of Soft-
ware Architecture,” iACM SIGSOFT Software Engineering
Notes, vol. 17, pp. 40-52, 1992.

[31] S. Rugaber, “MORALE METHODOLOGY GUIDE-
BOOK: Methodology Guidebook for Synchronized Refine-
ment,” Georgia Institute of Technology, 1998.

[32] J. Rumbaugh, Blaha, M. , Premerlani, W., Eddy, F. ,
Lorensen, B., Object-Oriented Modeling and Design. Engle-
wood Cliffs, NJ, Prentice Hall, 1991.

[33] G. Sander, "Visualization of Compiler Graphs", available
electronically from http://www.ca.uni-sb.de/RW/users/
sander/html/gsvcg1.html, 1995.

[34] I. Schmitt and G. Saake, “Merging Inheritance Hierarchies
for Schema Integration based on Concept Lattices,” Universitat
Magdeburg, Magdeburg, Germany, Technical Report 1997.

[35] R. Taylor, W. Tracz, and L. Coglianese, “Software Devel-
opment Using Domain-Specific Software Architectures,” ACM
Software Engineering Notes, vol. 20, 1995.

[36] S. Tilley, “A Reverse Engineering Environment Frame-
work,” Carnegie Mellon University, Technical Report
CMU/SEI-98-TR-005, 1998.

[37] R. Waters, S. Rugaber, and G. Abowd, “Using the Archi-
tectural Synthesis Process to Analyze the ISVis System—A
Case Study,” Georgia Institute of Technology, Technical Report
GIT-CC-98-22, 1998.

[38] K. Wong, "Rigi User's Manual : Version 5.4.4", available
electronically from http://www.rigi.csc.uvic.ca/
rigi/rigiframe1.shml, 1998.

[40] A. Yeh, D. Harris, and M. Chase, “Manipulating Recov-
ered Software Architectural Views,” 19th International Confer-
ence on Software Engineering, 1997.

