
REQUIREMENTS FOR A HYPERTEXT SOFTWARE
MAINTENANCE SYSTEM

Spencer Rugaber

Software Engineering Research Center
Georgia Institute of Technology

ABSTRACT

Hypertext is an appealing technology for automat-
ing the software maintenance process.Mainte-
nance tasks such as locating an error or confirm-
ing that a modification does not break existing
code are naturally implemented as link-following
exploration activities in a hypertext system.This
paper describes the requirements process for a
hypertext software maintenance system called
Hypermaint. It also discusses how the require-
ments affect the overall architecture of the hyper-
text system.

Hypertext and Software Maintenance

Software maintenance is the single most
costly aspect of software development. Asmuch
as 75% of a software developer’s time is spent
performing maintenance activities [7].Commer-
cially available tools of limited functionality exist
to support software maintenance. Examples are
language processors, cross-referencers, and pro-
gram restructurers.However, none of these tools
attempt to automate the overall process of soft-
ware maintenance.Moreover, they fail to take
advantage of emerging technologies such as
hypertext and semantic data modeling.

Hypertext is an appropriate and promising
technology that addresses many of the problems
confronting software maintainers.Hypertext sys-
tems are primarily intended to support exploration
of "non-linear text" [3] (also called "hyperspace").
Hyperspace can be thought of as the visual mani-
festation of a complex information structure.
Some hypertext systems are specifically designed
to support a particular information structure or
application arena.For example, the SAM system
facilitates exploration and report generation of a
single, albeit large, document that provides guide-
lines for designing user interface software [10].
Other hypertext systems, such as NoteCards [4],
are designed to deal with general text, allowing
the user or system administrator to specify "links"
(explicitly designated, possibly attributed

connections) among text "nodes" (sections of
text).

The purposeof this paper is to describe the
requirements that a hypertext system must satisfy
in order to address the software maintenance
problem. Inparticular, it discusses two topics: 1)
what is the maintenance process, what activities
comprise it, and how can they be facilitated by a
hypertext system? 2) Of the many architectural
possibilities for a hypertext system, which choices
are best suited to support maintenance?These
questions will be answered as part of the specifi-
cation and design steps of the development of
Hypermaint, a hypertext software maintenance
system.

Modeling Software Maintenance

Software maintenance consists of those
activities which involve the modification of soft-
ware while keeping its major purpose intact [1].
It is the single most costly part of the software
development process and has been largely ignored
by the research community. Maintenance has
been characterized as being either corrective,
adaptive, or perfective depending on whether its
intent is to correct problems, to adapt to new envi-
ronments, or to add features.In all cases, the
source code comprising the software must be
examined to ascertain its overall purpose and
function and to determine the area in which a spe-
cific modification will be made.It must be under-
stood so that the appropriate alterations may be
made and so that all consequences of the modifi-
cations on the remainder of the program can be
detected and investigated.

A model of software maintenance must be
consistent with observations and experimental
results from several other areas of computer sci-
ence. Inparticular, we are looking at the follow-
ing five fields: 1)debugging - how do program-
mers explore and understand code in order to
determine the location of an error?2) software
psychology [12] - which (human) factors bear

upon the ease of comprehending and modifying
code? 3)error data studies - what types of errors
are made by programmers and in which program-
ming language constructs do they occur? 4)cog-
nitive science [13] - what models of the program
understanding process are relevant to maintenance
tasks? 5)software engineering [8] - how must the
source code intensive aspects of software mainte-
nance fit in with the overall software engineering
process.

An example of a requirement concerns
indentation. Theuse of indentation can improve
the comprehensibility of a program. The exact
amount of indentation to use, however, is ques-
tionable. Thisleads to a possible requirement to
support user-specified indentation levels for dis-
played programs.That is, the user of Hypermaint
would be able to control how a program is dis-
played, independently of how it was originally
written.

Another example concerns mistake-prone
programming language constructs.For a particu-
lar language, certain constructs, such as the loop-
ing mechanism, will be the locus of a dispropor-
tionally large number of programmer errors.This
indicates that a hypertext system to support error
finding should be able to make the maintenance
programmer aware of uses of these constructs.

Results from these five areas together com-
prise a set of requirements for Hypermaint.They
must, however, be integrated into an overall
model of the process that can then be automated.
The modeling will be done using semantic data
modeling [6, 9]. This approach has two benefits.
First, it serves as a formalism for expressing the
model. Becauseof its generality, it is well-suited
for dealing with requirements from disparate
domains. Secondly, the resulting data model can
serve as a description of the information structure
that underlies the hypertext system.

Software Maintenance Activities

The software maintenance process involves
several activities that should each be supported by
tools. (Thefollowing discussion is couched in
terms of error correction maintenance tasks but
could as well address enhancement and adapta-
tion.) A program to be modified first needs to be
explored in order to gain an understanding of its
overall function and the possible location of a
problem. Thepreliminary exploration leads to the
construction of a hypothesis about the nature of a

problem and how it should be fixed. Thehypoth-
esis must then be confirmed.This involves
searching for possible side effects of a modifica-
tion, including running experiments. Theactual
modification, retry, and testing processes com-
prise the next activity. Finally, overall manage-
ment is needed in order to facilitate coordination
and thoroughness.

Together, all these activities form the com-
ponents of a maintenance process model.
Requirements from the five areas described in the
previous section serve to put constraints on how
the activities should be carried out and in what
form the intermediate results should be repre-
sented.

Global Requirements

There are, of course, other requirements
that constrain a hypertext software maintenance
system. Ofparticular interest are the questions of
populating the hypertext information structure,
the user interface presented to the maintenance
programmer, and the integration of the system
with other software tools, either existing or built
upon the hypertext system.

One of the most difficult problems in build-
ing hypertext systems is automating the process
of building the underlying information structure.
In the case of source code maintenance, it should
be possible to use the techniques of optimizing
compilers, particularly data flow analysis, to auto-
mate this task.For example, the determination of
the set of statements that could affect the value of
a variable contained in a node [14] is an example
of the "Reaching Definitions" data flow analysis
problem [5].

Hypertext systems support the process of
exploring non-linear text. The exploration may
involve link following, searching, or browsing
guided by a graphical representation of the infor-
mation structure. The presentation of the data and
the interaction required to explore it are part of
the user interface to the system. So too are the
activation mechanisms for the tools that support
the maintenance activities. It is intended that this
interface takes advantage of large screen, bit-
mapped displays, and "point-and-click" operation
invocation.

Powerful systems are realized when an
extensible set of primitive operations can be com-
bined by a small set of "combining forms".A
popular example is the "Bourne" shell interface to

the UNIX operating system* [2]. It is desirable
that Hypermaint be constructed in such a way that
new tools can be easily added by the maintenance
programmer. It is also desirable that the system
allow easy integration of existing tools, such as
pretty printers or cross referencers.

The Architecture of Hypertext Systems

Conklin, in his impressive survey of hyper-
text systems [3], presents a table listing features
of current hypertext systems.An example feature
is whether the links between nodes have data
types. Typed links serve as a further organizing
discipline for the set of nodes. Some hypertext
systems provide typed links, and others do not.
This is an example of an architectural design deci-
sion that confronts the developer of a hypertext
system. For Hypermaint, the decisions will be
based on the requirements described above. In
the case of maintenance, typed links can serve to
implement relations taken from the semantic
model. In this way, the maintenance process
model will drive the design process for Hyper-
maint.

Another design issue from Conklin’s list
concerns version control.Of course, this is an
important software engineering concern, and
exploration of old versions of the source code
should be facilitated by Hypermaint. What is not
clear, howev er, is who should be responsible for
providing the versions. Possibilitiesinclude the
file system, the data base management system, or
including old versions as nodes in the information
structure itself.

One other example relates to searching for
strings. In software, a given collection of text
characters may be used in a variety of ways: as
the name of a variable, within a comment, or as
part of literal string.Hypermaint’s search facility
should be aware of these differences and provide
the user with a mechanism for searching for the
correct type of string occurrence.

Conklin’s table serves as a list of issues to
drive Hypermaint’s design process. The resolu-
tion of the issues depends on the results of the
requirements process described above.

Summary

* UNIX is a trademark of AT&T Bell Laboratories.

This paper has described the requirements
process that will lead to a functional specification
of a hypertext software maintenance system
called Hypermaint.When this is combined with
Conklin’s list of features, an overall architectural
design can be constructed.The actual implemen-
tation will include the use of user interface soft-
ware (built on the X Windows System [11]), a
heavily instrumented compiler (in which data
flow and symbol table information is exported),
and an underlying database system to support the
information structure.

Of course, specific tools must also be built
to automate the maintenance activities discussed
above. Initially, the exploration activity is tar-
geted and two tools will be built. They are a
graphical browser for viewing the overall program
structure and a "grazer" for making detailed
examinations of specific program constructs.

Acknowledgements

I would like to thank Timothy Tiemens and
Victoria Tisdale for conversations that helped for-
mulate the ideas presented in this paper.

References

[1] Barry W. Boehm, Software Engineering,IEEE
Tr ansactions on Computers, Vol. C-25, No. 12,
December 1976.

[2] S. R. Bourne, An Introduction to the UNIX
Shell, In UNIX User’s Manual / Supplementary
Documentation, University of California, 1980.

[3] J. Conklin, Hypertext: An Introduction and
Survey, IEEE Computer, Vol. 20, No. 9, Septem-
ber, 1987.

[4] Frank Halasz, Reflections on NoteCards:
Seven Issues for the Next Generation of Hyper-
media Systems,Communications of the ACM,
Vol. 31, No. 7, July 1988.

[5] Matthew S. Hecht,Flow Analysis of Computer
Programs, North-Holland, 1977.

[6] Richard Hull and Roger King, Semantic
Database Modeling:Survey, Applications and
Research Issues,ACM Computing Surveys, Vol.
19, No. 3, September 1987.

[7] Bennet P. Lientz, Issues in Software Mainte-
nance,ACM Computing Surveys, Vol. 15, No. 3,
September 1983.

[8] Jay Arthur Lowell, Software Evolution, John
Wiley, 1988.

[9] Joan Peckham and Fred Maryanski, Semantic
Data Models,ACM Computing Surveys, Vol. 20,
No. 3, September 1988.

[10] Gary Perlman, Hypertext: An Information
Delivery Mechanism, Talk given at Georgia Insti-
tute of Technology, March 29, 1988.

[11] Robert W. Scheifler and Jim Gettys, The X
Window System,ACM Transactions on Graphics,
Vol. 5, No. 2, April 1986.

[12] Ben Shneiderman,Software Psychology:
Human Factors in Computer and Information
Systems, Winthrop Publishers, 1980.

[13] Eliot Soloway, Jeffrey Bonar, and Kate
Ehrlich, Cognitive Strategies and Looping Con-
structs: An Empirical Study, Communications of
the ACM, Vol. 26, No. 11, November 1983.

[14] Mark Weiser, Program Slicing,5th Interna-
tional Conference on Software Engineering, IEEE
Computer Society, March 1981.

