
Reverse Engineering�

Resolving Con�icts between Expected and

Actual Software Designs

Stephen B� Ornburn and Spencer Rugaber

College of Computing and Software Research Center

Georgia Institute of Technology

Atlanta� GA ����������

Abstract

A real�time embedded system was the subject of a

series of experiments in reverse engineering� These

experiments employed a method of reverse engineer�

ing� called Synchronized Re�nement� that analyzes a

program� describing its behavior in the vocabulary of

the application domain and its structure in terms of

design decisions� The results provide insight into the

role of domain knowledge in this type of analysis to�

gether with the tools used in the detailed analysis of

code� The experiments� which included the re�design

of a component and the diagnosis of a critical software

failure� showed how the real work of software mainte�

nance is in resolving apparent inconsistencies between

the expectations that have been derived from domain

knowledge and the facts that have been uncovered by

applying reverse engineering tools to the software�

� Introduction

Synchronized Re�nement ��� ��� a method for
reverse engineering� is a process by which a re�
engineered design is constructed from an existing soft�
ware system� Synchronized Re�nement consists of two
parallel activities� the synthesis of functional and non�
functional behavioral descriptions and the code�level
analysis of the program text� In the synthesis process�
the software engineer 	executes
 design decisions that
expand� combine and re�ne descriptions of the pro�
gram�s various functional and nonfunctional descrip�
tions� producing a design which is expected to re�ect
the actual structure of the program text� These func�
tional and nonfunctional descriptions constitute a con�
ceptual model of the software� As part of comparing
the program to the conceptual model� considerable
code�level analysis is necessary� Code�level analysis

includes the restructuring of the program text by de�
tecting and then 	undoing
 design decisions� When a
design decision is undone� the original code is rewrit�
ten in an abbreviated form� possibly in terms of pseu�
docode such as might be used for detailed program
designs� As more and more design decisions are un�
done� the program description becomes smaller and
more abstract�

Synchronized Re�nement attempts to con�rm an
expected design by comparing it to the actual design
recovered through code�level analysis� If the expec�
tations are not con�rmed� then they must be revised
and the code�level analysis must be extended� Code�
level analysis� including both the testing of expecta�
tions and code restructuring� is supported by simple
queries against a database of information extracted
from the program text� The design that emerges by
resolving con�icts between the expected and recovered
designs will still di
er in structure from the recovered
design and is a re�engineered design for the software
system�

The processes for synthesizing an expected design
and for code�level analysis feed into each other� the
synthesis process establishes expectations about what
should be found in the code� and the code�level analy�
sis tests those expectations against the actual code�
Generally� code�level analysis con�rms the expecta�
tions and then �lls in additional details� The pay�
o
 from a disciplined approach to reverse engineer�
ing comes� however� when code�level analysis fails to
con�rm the expectations� it is in coping with these
inconsistencies that the software engineer comes face�
to�face with the hard�to�understand portions of the
software� If software engineers are to use reverse en�
gineering techniques to redesign a software system or�
more simply� to explain what a software system does
and how it works� they must resolve inconsistences be�
tween the design they expect to �nd and the design



actually used� It is in this resolution process that the
hard work of software maintenance gets done�

� Design decisions

When an experienced software engineer looks at a
program� he expects to see it built around an appro�
priate architecture� If on reading the code he does not
see the expected landmarks� he must begin a more
careful study to determine how the developers solved
various design problems� This determination becomes
more complex if the original developers did not ad�
dress important design problems before they begin
coding� keeping their options open so that they could
more easily incorporate ad hoc solutions to unexpected
design problems during implementation and later dur�
ing maintenance�

We have observed that because of the �exibility
multiprocessing a
ords� there is an especially strong
temptation to use ad hoc solutions to design prob�
lems when developing real�time systems� For example�
synchronization mechanisms can be used to carefully
control the order in which tasks execute� thereby com�
pensating for a designer�s careless functional decom�
position of the original problem�

��� Expected vs� actual designs

Chikofsky and Cross��� de�ne reverse engineering as
	the process of analyzing a subject system to identify
the system�s components and their interrelationships
and create representations of the system in another
form or at a higher level of abstraction�
 Typically�
this means constructing a re�engineered architectural
design of a system from its source code� To be com�
prehensible� the re�engineered design must improve on
the actual design of the software� Of course� the re�
engineered design will re�ect the preferences and ex�
pectations of the software engineer doing the analysis�

Since the re�engineered and original designs often
di
er� the re�engineered design must be accompanied
by a set of design decisions� some times complex and
di�cult to recognize� that transform it into the origi�
nal design� Synchronized Re�nement� one strategy for
recognizing these decisions� requires that the software
engineer hypothesize a conceptual model� an expected
software design� and a set of design decisions linking
them� This initial set of design decisions is then mod�
i�ed to account for the extra complexity of the actual
code� Because of this extra complexity� much of the
e
ort in understanding a software component is ex�
pended in resolving con�icts between it and the ex�

pected design� Once the con�icts have been resolved�
the software engineer is in possession of two sets of de�
sign decisions� one linking the conceptual model to the
actual code and the other to a re�engineered design�
Furthermore� the re�engineered design can be use to
reimplement the software�

In our experiments with real�time embedded soft�
ware� there were several ways of resolving con�icts be�
tween the expected and actual design�

� modify the conceptual model because the pro�
gram supports unexpected features or a variant
of the expected behavior�

� modify the program text because a coding or de�
sign error has been uncovered and must be �xed
before the analysis can be completed�

� reject a hypothesized design decision because the
program supports the expected behavior but in
an unanticipated way� and

� accept a hypothesized design decision while not�
ing that evidence of the decision was obscured by
other� irrelevant decisions�

When evaluating a hypothesized design or resolv�
ing design con�icts� the software engineer must often
trace data and control �ows in search of missing opera�
tions� data� and data structures� Because the expected
landmarks usually associated with a particular design
decision may not really be missing but merely hidden
by other decisions� tracing data and control �ows re�
quires close� tool�supported analysis of the code�

Furthermore� in resolving design con�icts� the soft�
ware engineer can backtrack and modify some of the
previously hypothesized design decisions� This back�
tracking can relate both to the design decisions 	un�
done
 as part of the code analysis or to the ones 	ex�
ecuted
 to derive the expected design�

The top�down aspects of this process are similar
to the psychological model of code comprehension de�
scribed by Ruven Brooks���� While it is important
that the reverse engineering process and tools be com�
patible with the underlying psychological process� con�
siderable elaboration and re�nement of the model is
required if it is to be tool supported� To this end�
Synchronized Re�nement highlights the interplay of
conceptual knowledge of the application and computer
science domains� on the one hand� and data about the
program being analyzed� on the other� Because of the
large volume of detailed information that must be ma�
nipulated� tool support is required� and even relatively
crude� 	throw�away�
 tools su�ce for collecting data



from the source code and subsequently reducing it to
answer speci�c questions about the code and struc�
tural relationships among its parts�

The analysis of program text� as driven by design
decisions� is new� Previous experiments contributing
towards the development of this approach have been
reported in ��� and ���� Procedures based on control
�ow analysis and program slicing are described in a
paper by Hausler����

��� An embedded software system

Synchronized Re�nement was applied in exper�
iments performed on several software components
within a large� real�time software system built and
maintained by a major telecommunications company�
This product� a digital subscriber carrier that has un�
dergone signi�cant modi�cation and enhancement in
the �ve years it has been on the market� extends both
regular and special telephone services from a switch�
ing center to residential and business communities� Its
main application is to increase the number of sub�
scribers that can be economically served by a feeder
cable� Functionally� it converts between the digital
signals carried on the telephone network and the ana�
log signals required by telephone subscribers� It also
does the time�slot management and multiplexing re�
quired to complete the interface between the telephone
network and telephone subscriber�

Implementation� The application software is coded
in a system programming language and consists of ap�
proximately ���K lines of code� The operating system
on which the application runs is custom�built and con�
sists of an additional ��K lines of assembly language
code� Software engineers assigned to the product are
responsible for maintaining both the application and
the operating system�

The system is based on a multitasking operating
system implemented on a single processor� The op�
erating system schedules tasks in response to either
internal or external events� The events may be sig�
naled by messages� timers� or hardware interrupts�
Events requesting action within real�time constraints
are monitored by hardware detectors� and overall sys�
tem sanity is maintained by a hardware�based watch�
dog timer�if the watchdog timer is not periodically
reset� it will� on expiring� force the system to reinitial�
ize�

The software running in this environment is respon�
sible for system initialization� call processing and asso�
ciated messaging� periodic audits and on�demand tests
of selected components� failure analysis and recovery�

which includes notifying the network that faults have
occurred� and periodic switch�overs in which primary
and backup components exchange roles�

Some of the experiments were run on a task re�
sponsible for scheduling and carrying out a variety of
system tests� This automated system testing �AST�
is responsible for verifying transmission paths and
for auditing the operational status of line cards� the
hardware components in the digital subscriber car�
rier to which the subscriber�s telephone line connects�
Other experiments included a study of the interactions
among the watch�dog timer� interrupt service routines�
and system tasks�

Design and design documentation� Design docu�
mentation was not systematically archived during the
early years of the product�s life� Consequently� design
descriptions for many components are incomplete or
unavailable� A considerable amount of information
is available from personnel assigned to the product�
but� because of the poor documentation� the learning
curve�s slope is relatively shallow and� once having
mastered the design� engineers are not quickly rotated
to other products�

There is a one�to�one correspondence between tasks
and modules� Activities carried out in a module gen�
erally exhibit logical cohesion�� each task providing a
designated class of services� e�g�� testing� fault diag�
nosis� and network interface� This is not rigorously
observed� however� and for the sake of optimization
or as the consequence of previous maintenance� a task
can bypass the designated service provider and im�
plement certain operations itself� as is frequently the
case with testing and fault diagnosis operations� If
one task requires a service provided by another� it can
also bypass the second task�s interface and directly in�
voke the lower�level procedures� While the operating
system supports interprocess messaging� many of the
processes interact through a combination of common
and control coupling� one procedure communicating
with another by manipulating global data structures
and changing values in global logical �ags� Frequently�
one task will set global �ags to in�uence the path an�
other task takes through a conditional� and this is of�
ten the means by which exceptions are raised and han�
dled� Procedures use this same mechanism to inform
their invokers of exceptions� and� to conserve stack
space� procedures frequently communicate with their
invokers by referencing global variables�

Context switches occur when tasks explicitly give

�This term and related phrases used below are part of Struc�
tured Design����



up control� there is no round�robin scheduling� Syn�
chronization� when necessary� is by means of globally�
accessible �ags�

Finally� while the code is structured in the sense
that there are no explicit 	go�tos�
 procedures are
generally not well organized� they have been de�
composed into monolithic� deeply�nested conditionals
rather than sequences of simply described functions�
algorithms are often implemented using convoluted id�
ioms� and there is no distinction between the normal
execution paths through a procedure and those asso�
ciated with exception handling�

� Design analysis

Design decisions are used to derive an expected de�
sign from a conjectured conceptual model� In addi�
tion� code�level analysis simpli�es and abstracts source
code by recognizing and undoing design decisions� In
order for this process to reveal the underlying struc�
ture of the code� it is often necessary to extract and
analyze a large amount of data from the program text�
For example� if the expected design decomposes the
system into a sequence of simply speci�ed functions
and includes explicit exception handling� the code�
level analysis is needed to con�rm this design and �ll
in additional details� This code�level analysis sepa�
rates the normal execution paths from those followed
in exceptional circumstances� In addition� code�level
analysis modi�es the structure of the actual design by
reordering program statements to match the expected
design�

Whether deriving an expected design or performing
code�level analysis� the software engineer must be fa�
miliar with a wide range of techniques for recognizing
design decisions� This section describes several tech�
niques for recognizing a decision�s imprint on the code
and distinguishes between high�level design decisions�
which determine the overall software architecture� and
low�level design decisions� which determine the data
representations and control structures used within a
functional component�

��� Recognizing high�level decisions

Many design decisions contribute to the design of
the mechanisms responsible for program control� and
the most prominent of these mechanisms constitute
the software architecture� The architecture can in�
clude mechanisms for sequencing operations� manag�
ing memory� and controlling access to and representa�
tion of data� These architectural mechanisms supple�

ment the program control provided by the program�
ming language primitives and the run�time environ�
ment including the programming language�s run�time
system and the machine�s operating system� In com�
plex systems� this additional program control can be
provided by layers of custom�built code running be�
tween the application and the prede�ned run�time en�
vironment�

Generally� we use an intermediate�level design lan�
guage� i�e�� a pseudocode� to express a simpli�edmodel
of program control� In this model� control decisions�
which are actually made by the application itself� ap�
pear as separate lower�level services� We �nd that the
extra level of abstraction in the description of program
control adds considerable clarity to our software mod�
els� hiding the application�level program control logic
that makes code di�cult to comprehend� Several ex�
amples of these simpli�cation techniques are summa�
rized here�

When recognizing the primary program control
mechanisms in the software architecture� we begin by
looking for mechanisms controlling the component as a
whole and for idioms� or programming clich�es� that are
repeated throughout the program text� For example�
in many programs a particular combination of control
constructs and data structures are used throughout
the text to support behaviors such as backtracking
and lookahead� Similarly� a program can provide its
own run�time support for services not normally pro�
vided by the run�time environment� Services that can
be provided in this way include exception handling�
inheritance� and dynamic memory management based
on reference counts� automatic garbage collection� and
structure sharing�

In the AST software� variables are used to support
operation sequencing� For example� when faults are
detected� the alarm is not sent immediately� instead
the alarm operation is scheduled for later execution�
In a related example� logical �ags are set by one task
or procedure to direct the �ow of control in another�

Another technique� generalization� also plays an im�
portant role in recognizing a program�s primary con�
trol mechanisms� For example� in these experiments
we introduced explicit exception handling and showed
many procedure and task interactions in terms of data
coupling� deferring to lower levels decisions about how
data coupling might be simulated by common or con�
trol coupling� Such generalization is important be�
cause the details of the simulation may di
er from
context to context�

In recognizing the program�s primary control mech�
anisms� we also used a third technique� factoring� In



factoring� an existing design is divided into function�
ally cohesive units� For example� we isolated various
non�critical behaviors as independent activities� local�
izing information that is distributed throughout the
actual implementation� thereby hiding many impor�
tant but conceptually intrusive design optimizations�
Factoring is accomplished by dividing a block of se�
quential code into a number of small� short�lived pro�
cesses� each describing a conceptually distinct activity�

Because of the low cohesion within modules and
the heavy use of control coupling� factoring was dif�
�cult and time consuming� Considerable e
ort was
expended in understanding the application�level logic
for sequencing operations� A list of program state�
ments� in e
ect� hard wires a sequence of operations
while parallel processes defer many of those sequenc�
ing decisions until run time� In much of the design
we studied� conceptually parallel activities were imple�
mented sequentially but included conditionals� logical
�ags� and loops to reintroduce some of the �exibility
that had been lost by eliminating the explicit paral�
lelism�

��� Recognizing low�level decisions

There is no strict order for detecting low�level
design decisions� though in some cases considerable
data manipulation is required to reveal the underlying
structure of the code� Complex programs are typically
designed as layers of abstraction� During the reverse
engineering process� as one layer is detected it opens
the door for the detection of other decisions in higher
layers� The following is a short summary of how we
attempted to recognize and undo low�level design de�
cisions� A more detailed description of this aspect of
Synchronized Re�nement is given in ����

Even if the program does not enhance its own run�
time environment� it may simulate advanced program�
ming language features in selected contexts� Thus� we
speci�cly look for advanced language features which
have been simulated by combinations of more prim�
itive constructs� i�e�� application�level simulations of
program control mechanisms� A common example of
this is the recognition of code that uses nested IF
statements or GOTOs to implement a CASE state�
ment�

Similarly� we look for the use of primitive data
structures to represent unavailable ones� such as the
use of speci�c integer or character constants to encode
the elements of a set of values� More di�cult examples
arise when the program� intentionally or not� contains
numerous violations of the principles of data encapsu�
lation and information hiding�

The control �ow of the programmust often be mod�
i�ed during code analysis� For example� in these ex�
periments we reduce conditionals to decision trees and
decision tables� and then resequence the operations
around a di
erent functional decomposition�

It is also important to look for special cases that can
be related by a common generalization� We do this by
looking for similar sections of code that di
er only in a
small number of ways� These sections are replaced by
the parameterized use of a more abstract construct�
In these experiments� we generalized several scenarios
for testing line cards to obtain a single test procedure�

When the implementation language does not sup�
port modularization or when the program has been
improperly modularized� we look for code that should
be grouped together and separated from the rest of
the program by an abstract interface� In these ex�
periments� the language did support some measure of
modularization� but many modules were not cohesive
and there was strong intermodule coupling� In con�
trast� the re�engineered design exhibited considerable
functional cohesion�

� Experiments

Re�design is an inherent part of reverse engineer�
ing� a clear design summarizes a software engineer�s
understanding of how the code works� and a convo�
luted original design may require a new design with
a structure substantially di
erent from the original�
Of course� the penalty for a comprehensible design is
an o
setting complexity in the set of design decisions
linking the new design to the original code�

The two experiments described in this section illus�
trate the range of ways in which domain knowledge
can be combined with data about speci�c software ar�
tifacts to recover� validate� and improve a design� In
both experiments insight into the design is obtained
by manipulating a simple database tabulating the lo�
cations in which procedures� functions� and variables
are de�ned or used� The database holds information
on over two thousand procedures de�nitions and more
than twenty��ve thousand procedure calls� Many of
the queries against this database involved construct�
ing calling chains or identifying the global data struc�
tures and variables through which particular proce�
dures or tasks communicate� More generally stated�
the database is referenced as part of code analysis�
both in restructuring the program text and in com�
paring it to the expected design�



��� Diagnosing and �xing a design error

The software engineers responsible for the digital
subscriber carrier� at the time they approached us� had
a plausible hypothesis that a rare system failure was
the coincidence of an error in the software controlling
the watchdog timer and stack over�ow�

Reverse engineering techniques were used to an�
alyze low�level data to identify circumstances under
which stack over�ow was possible� Reverse engineer�
ing techniques were also used to abstract the actual
code� thereby constructing a model of the interaction
between stack over�ow and the design error in the
watchdog timer� The model was a simple software
system� capturing the salient aspects of the problem�
In the actual code� the problem began when a task�s
stack over�owed� The over�ow corrupted the lower
portion of a second task�s stack� Following a proce�
dure return� this second task loaded a corrupted value
into the program counter� Because of the corrupted
program counter� the software began executing data
and randomly modifying memory� Under these con�
ditions� the watchdog timer was supposed to expire�
causing the software to reinitialize� On rare occasions�
however� the software� after it had 	gone random�

instead corrupted a �ag� disabling the timer and pre�
venting the system from resetting�

The model describing this interaction was used to
test the e�cacy of the repair proposed by the soft�
ware engineers� The tests had to be run against the
model because the combination of events leading to
the system failure involved interactions among inter�
nal components and could not be recreated by simply
manipulating the system�s environment� The model
was derived primarily from an expected design pro�
vided by the software engineers� however� code�level
analysis was necessary to con�rm the model�s appli�
cability�

Queries run against the database proved to be of
particular importance in this problem because the
transitive closure of the 	calls
 relation� in which tu�
ples denote 	Procedure X calls Procedure Y�
 gener�
ates a set of calling chains� Analysis of these chains
is an important part of estimating stack requirements�
To complete the analysis� however� additional data de�
scribing the type and number of parameters to each
procedure was required� A tool was built that ex�
tracted this data from the code� and from the ex�
tracted data we estimated the amount of stack space
required for each procedure�s activation record� By
constructing calling chains from cross reference data
and then joining them with data on the size of the
activation record for each call� estimates of stack us�

age were constructed� A similar procedure was used
to calculate the stack requirements for interrupt ser�
vice routines� which run in the context of the current
process�

Software maintenance had over the years increased
stack requirements� but the stacks had not been rou�
tinely resized because of the tedious nature of the cal�
culation� After several years of maintenance� worst
case combinations of interrupts on nearly full stacks�
while a rare event� could cause stack over�ow and sys�
tem failure� With the new tools derived from our re�
verse engineering work� it is now possible to period�
ically re�estimate stack requirements and to con�rm
that maintenance has not reintroduced the possibility
of stack over�ow�

��� Redesigning a component

One of the tasks in the software system� the auto�
matic system test task �AST�� is responsible for pe�
riodically testing transmission paths and line cards�
Since the code for this task is known to be particularly
di�cult to understand� reverse engineering techniques
were applied to one of its most di�cult components�
line card testing�

Process summary� The process we used in this
experiment was a direct application of Synchronized
Re�nement� Since Synchronized Re�nement is an it�
erative process� its steps can be carried out in various
sequences� The process as it was applied in this ex�
periment began with few initial expectations regard�
ing design or function� but in the end� had developed a
conceptual model that factored the computation into
several parallel activities� In addition� a new program�
level design was obtained in which the parallel activ�
ities had been interleaved and the code had been de�
composed into a sequence of simple functions� This
contrasted with the original design in which the paral�
lel activities had been combined into a single� complex
functional component consisting of a large� deeply�
nested conditional�

While the goal of this experiment was to redesign
the line card testing component� the work began with
code analysis� This initial analysis was exploratory
and was not guided by any expectations about how
line cards were tested or how the code was designed�
The initial analysis concentrated on extracting data
from the source code and undoing a number of low�
level design decisions� Only after completing this ex�
ploratory code�level analysis did we develop expecta�
tions about the overall design of the component� and
the design we eventually constructed to explain line



card testing di
ered considerably from the actual de�
sign of the original code� We were able to use this
alternate design to hide a large number of convoluted
design decisions linking it to the original implemen�
tation� We were also able to reimplement line card
testing around an alternate design� using a consider�
ably simpler set of design decisions�

We represented the design using pseudocode and� in
doing so� availed ourselves of a wide range of language
constructs� The enriched vocabulary we used allowed
us to clarify relationships between the structure and
behavior of the software� and we used context�speci�c
translation rules��� �� ��� to represent design decisions
linking the pseudocode to the implementation�

For example� we used this technique to introduce
exception handlers at the pseudo�code level� We
also used this technique to abstract away the many
resource�speci�c details associated with requesting
and releasing resources� The deeply�nested condition�
als proved particularly di�cult to understand� and
only after considerable code�level analysis were we able
to factor them into the functions of line card test�
ing� selecting resources� acquiring and releasing the
resources� and deadlock prevention�

Code analysis� In the original component� a typical
procedure consisted of a single� deeply�nested condi�
tional� In the AST code� conditionals were nested as
many as fourteen levels deep and could span a dozen or
more pages� Primitive operations in one procedure of�
ten were calls to other procedures having similar struc�
ture� Adding to the complexity of the code were the
individual conditions� often large Boolean expressions
referencing many variables and functions�

After considerable code�level analysis we eventually
discovered that the fragment shown in Figure � could
be paraphrased as shown in Figure ��

IF ��READ AB SUS CND �ABORT AUTO CND� � FALSE GL�
AND

�ABORT FLAG G � RESET GL�
AND

AUTO SYS TST ENABLE G �
THEN DO�

IF ��TST RDY �LN TST TYPE GL� GRP LPT��TRUE GL�
AND

�RT MTNC CP � TRUE GL��
THEN DO�

DO WHILE ��PROCEED � FALSE GL�
AND

ATTEMPT � ���

�

�

�

Figure �� Extract from sample code

	if the test has not been aborted and
the �rst two resources have been acquired then

try three times to get the next resource


Figure �� Paraphrased code extract

get Resource Set �S �� fR�� R�� R�� R�� R	g�
on Resource Unavailable exception

Release Resources�S�
Skip Test

end

Figure �� A higher�level paraphrase

With further restructuring� exception handlers were
uncovered that directed execution when the test was
aborted by other tasks or when resources were unavail�
able� e�g�� Figure ��

Our �rst step towards these higher�level models was
to understand the various combinations of conditions
that could cause primitive operations to be invoked�
and we represented this model as a decision table� We
also described the sequences of primitive operations
on the various paths through the conditional� and at�
tempted to identify the signi�cance of the various tests
controlling the path through the conditional�

Next� we recognized many of the conditions in�
volved �ags with names suggesting exceptional condi�
tions� Following up on this recognition� we reorganized
the decision table and path expressions to isolate the
code related to exception handling from the main line
of the line card test� In some cases� we examined refer�
ences to a variable in several tasks before determining
whether it was used to raise exceptions or for some
other purpose� Further consideration revealed some
similarities among the alternative normal paths and
the various sequences of operations performed once
an exception �ag has been set� Our next step was to
make sense of these apparent similarities�

Expected design� As has been mentioned� the ex�
pected design was formulated after some of the code�
level analysis was completed� For example� landmarks
in the program text suggested that the normal paths
through the code were similar� all specializations of
the same function� 	line card testing�
 Our �rst con�
jecture for the structure of the canonical line card test
was the following� set the test up� perform the test�
collect� analyze and report the results� and� �nally�



take the test down� After comparing this expected
pattern to the actual paths through the code� we de�
veloped a re�ned set of expectations� shown in Figure
�� that �t the code quite well� Observe that this ex�
pected design composes theGather Resources com�
ponent from Figure � with other operations�

Decide On Required Resources
Gather Resources
Perform Test
if Test Failed then Diagnose Fault
Record and Report Test Results
Release Resources
on Resource Unavailable or Test Abandoned exception

Release Resources
end

Figure �� Expected design

The model in Figure � has several virtues� including
the use of small functional components that divide the
procedure into conceptually simple phases�

Similar techniques were also used to restructure the
Diagnose Fault component� Fault diagnosis tries
various combinations of primary and backup equip�
ment until it isolates the faulty component� Whereas
the original design used the location in the conditional
as an implicit record of events� the new model broke
the process into phases and introduced additional vari�
ables to explicitly remember those events� Modifying
the decomposition removed considerable redundancy
in the code� allowed the reporting of test results to
be separated from the process of diagnosis� and made
explicit the circumstances under which various alarms
are sent�

Testing expectations� The revised design set up
several expectations that were di�cult to verify� re�
quiring the analysis of a large amount of data ex�
tracted from the code� For example� the order in which
two operations were performed was not the same in
all paths� i�e�� one path showed A followed by B and
other� B followed by A� We were concerned that the
di
erence in order may have been signi�cant� By trac�
ing calling chains and collecting global variable refer�
ences� including accesses to physical devices� we were
able to determine that there were no read�write con�
�icts and the distinction between the two cases could
be eliminated�

Once the existence of the exception handlers was
recognized� we were still faced with the task of deter�

mining their role in the overall behavior of the com�
ponent� In �lling in these details we analyzed data
recovered from the code� We made the empirical ob�
servation that many of the operations in the exception
handlers were releasing resources� This led us to ob�
serve that many of the resources required for a test
were shared among several tasks� This allowed us to
recognize the potential for deadlock� and we then con�
sidered how deadlock was prevented� While there were
no obvious landmarks in the code� we guessed that
the software used a version of the deny�hold�and�wait
strategy���� i�e�� if a resource could not be obtained�
all resources acquired so far were released and the test
was abandoned� From this we were able to produce an
improved design showing how a deny�hold�and�wait
strategy could be implemented using exception han�
dlers�

Our analysis eventually con�rmed this expectation�
and by tracing calling chains and control and data
�ow� we were able to construct a list of resources� in�
cluding some synchronization �ags� that were not well
marked� Code�level analysis also pointed out some
variations on the basic pattern� One variation pro�
vided for preemption� if a high priority task set a
global �ag� for example� testing is abandoned and re�
sources released�

Additional variations were discovered in the way
some of the resources were handled� There were�
for example� a number of variations in the protocols
used for selecting� acquiring� and releasing various re�
sources� In the case of two resources� we were ini�
tially unable to �nd evidence that they were being
released when exceptions occurred� But� by referring
to our database� we were able to construct and trace
the calling chains associated with line card testing�
For one resource we were able to �nd the 	missing

release operations� It turned out that some of the
low�level procedures were designed to be paranoid� as
soon as a low�level procedure determined that the test
could not be completed� this particular resource was
immediately released� even before the exception �ag
was set or control returned to the main testing pro�
cedure� In the second case� we observed that along
some paths a message releasing a resource was never
being sent� While this appears to have been a bug in
the original program� by examining various references
to the resource� we found evidence that the bug was
�xed� though in a convoluted way� Rather than �g�
uring out who was failing to release the resource� the
maintenance programmer modi�ed other components
so that they would forcibly reclaim that resource with�
out ever identifying and notifying the task currently



holding it� The underlying assumption� correct but
undocumented� was that the unidenti�ed task was by
that time no longer using the resource and had merely
neglected to release it�

� Conclusions

Our original purpose in these experiments was to
evaluate the power of techniques that relied primarily
on data extracted from the program text� e�g�� con�
structing models of control �ow� calling chains and
variable references� While the database could be built
and manipulated using simple tools� we quickly recog�
nized that program text is inherently ambiguous� the
purpose being served by a particular program struc�
ture depends on contextual information not found in
the program text� Consequently� a software engi�
neer engaged in reverse engineering must draw on a
broader knowledge base� reconstruct that missing con�
text� and derive expectations regarding the software
design� In these experiments� we were able to improve
both on the original developers� understanding of the
program�s context and on the program�s basic design�

Acknowledgements

The authors gratefully acknowledge the coopera�
tion and support of Richard LeBlanc� Jacques Bolduc�
David Cullen� Yernie Rafol� Sharad Rao� and Jim
White�

References

��� Ruven Brooks� 	Towards a Theory of the Com�
prehension of Computer Programs�
 International
Journal of Man�Machine Studies� vol� ��� pp� ����
���� �����

��� Elliot J� Chikofsky and James H� Cross� II� 	Re�
verse Engineering and Design Recovery� A Tax�
onomy�
 IEEE Software� vol� �� no� �� pp� ������
January �����

��� Philip A� Hausler� Mark G� Pleszkoch� Richard
C� Linger� and Alan R� Hevner� 	Using Function
Abstraction to Understand Program Behavior�

IEEE Software� vol� �� no� �� pp� ������ January
�����

��� Kit Kamper and Spencer Rugaber� 	A Reverse En�
gineering Methodology for Data Processing Appli�
cations�
 GIT�SERC������� Software Engineering
Research Center� Georgia Institute of Technology�
March �����

��� James M� Neighbors� 	Draco� A Method for Engi�
neering Reusable Software Components�
 Software
Reusability� Concepts and Models� ed� Ted J� Big�
gersta
 and Alan J� Perlis� vol� �� Addison Wesley�
�����

��� James L� Peterson and Abraham Silberschatz� Op�

erating Systems Concepts� second edition� Addison
Wesley� �����

��� Spencer Rugaber� Stephen B� Ornburn� and
Richard J� LeBlanc� Jr�� 	Recognizing Design De�
cisions in Programs�
 IEEE Software� vol� �� no� ��
pp� ������ January �����

��� W� P� Stevens� G� J� Myers� and L� L� Constantine�
	Structured Design�
 IBM Systems Journal� vol�
��� no� �� pp� �������� �����

��� David S� Wile� 	Program Developments� Formal
Explanations of Implementations�
 Communica�

tions of the ACM� vol� ��� no� ��� pp� ��������
November �����

���� D� S� Wile� 	Local Formalisms� Widening the
Spectrum ofWide�Spectrum Languages�
 Program
Speci�cation and Transformation� L� G� L� T�
Meertens� Elsevier North Holland� pp� ��������
�����


