
Design Studies in Software Engineering Courses

Spencer Rugaber
Georgia Institute of Technology
spencer@cc.gatech.edu

Categories and Subject Descriptors
D.2.10 [Design]; K.3.2 [Computer science education]

General Terms
Design

Keywords
Software engineering education, design studies

1. BACKSTORY: CÉSAR PELLI
Several years ago, I was visiting the National Building Mu-

seum in Washington D.C. At the time of my visit, there was
an exhibit spotlighting the architect César Pelli, designer of,
among other things, the Ronald Reagan National Airport in
Washington, the World Financial Center in New York, and
the Petronas Towers in Kuala Lumpur, Malaysia. But on
this day, much of the exhibit was devoted to a more modest
building, a small hutlike abode in a natural setting. There
were perhaps a dozen variations, built from wood and stand-
ing several inches tall. This was labeled a “design study”,
and it raised in my mind the question of whether software
engineering students could undertake such exercises as part
of their training. Since that time, as part of an advanced
software engineering course, Software Architecture and De-
sign1, I have incorporated design studies as a learn-by-doing
project element. By design study I mean a systematic explo-
ration of a theme, including the construction of more than
one solution to a problem and a comparison of the results.

2. COURSE BACKGROUND AND STRUC-
TURE

The content covered by the course comprises the design as-
pects of software development including specification, design

1http://www.cc.gatech.edu/classes/
AY2008/cs4330_spring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOD’07 Science of Design Symposium 2007, Humboldt State University,
Arcata, California, USA
Copyright 2008 ACM 978-1-60558-436-2/07/03 ...$5.00.

notations, software architecture and architectural styles, mid-
dleware, components, design patterns, and design reviews.
The course normally includes between 30-40 students, all
with advanced software engineering backgrounds. There
are several skill-based assignments and three interrelated
projects, all organized as design studies.

For the projects, the students are divided into teams of ap-
proximately four persons to solve a design problem. Teams
are shuffled for each project so that the students are forced to
work with a variety of teammates. Teams are balanced with
respect to programming skills and graduate/undergraduate
participants.

The projects build on each other in the sense that the so-
lution begins with the selection of appropriate pieces from
preceding projects. This has several advantages. First it
means that any given project can be somewhat more ambi-
tious because some of the software for it already exists. This,
in turn, means that the students can focus more of their at-
tention on design and less on coding. Second, the students
must evaluate each other’s work, a skill important in ac-
tual industrial practice. Third, they realize that what they
produce will be reused rather than thrown away and that
they must, therefore, work harder at improving its quality,
its generality, and its documentation. Finally, it means that
the amount of domain knowledge the students must acquire
to solve the problem is amortized across the three projects.

3. SOFTWARE DESIGN STUDIES
For all three projects, the teams must construct multiple

solutions, compare the results and prepare a report. In the
reports, the students must describe their designs, not only
with UML diagrams and accompanying text, but also in
terms of rationale. That is, they must explicitly list their
major design decisions, the alternatives they considered and
the reasons for their choices. After the design description,
the reports must contain the results of their design study.
This includes the following material:

• Experimental conditions: machines; operating system,
language version and APIs; database technology

• Procedure: number of runs made, run configurations,
initial conditions

• Variables: independent and dependent variables

• Measurements: how measured, metrics, statistical anal-
ysis, anomalies detected, presentation of data

• Code: source and byte code sizes, classes, interfaces,
and methods used

28

• Reuse: extent to which code was reused and how much
it had to be adapted

• Analysis: how the results relate to the design decisions
made: precise statement of tradeoff in nonfunctional
properties, discussion of any anomalous measurements

After turning in their reports, students present their re-
sults in class to each other, both as a demonstration of the
executing solution and with a description of their particular
design choices. Teams can see what the other teams have
done. Audience questioning enables students to determine
how other teams solved difficult parts of the design problem.

4. EXAMPLE: HEAT DIFFUSION
As an example of the sort of projects that can be used for

design studies, this section describes a connected series of
three projects built on the domain of heat diffusion through
an orthogonally gridded medium. The spread of heat is
modeled using a discrete version of the Fick’s Law diffusion
equations, which are provided to the students in pseudocode
form. The three projects respectively model the warming of
a rectangular metal plate, a rotating sphere, and a tilted and
orbiting sphere. For each of the studies, the students are
also confronted with design tradeoffs among nonfunctional
requirements. Respectively for the three studies they are 1)
performance, precision, and flexibility; 2) performance and
modularity; and 3) persistence, accuracy, storage, and per-
formance. That is, the student teams must provide multiple
solutions in each of which a nonfunctional factor is domi-
nant. They then perform an analysis that makes explicit
the tradeoffs involved.

4.1 Study 1: Heated Plate
For Study 1, the students must provide five solutions to

the Heated Plate problem. Topically, the first project em-
phasizes design notation (UML), modularity, and adaptabil-
ity. The design study itself consists of solving the diffu-
sion problem five different ways. One dimension involves
the choice of whether or not the topology of the grid is en-
coded in an array or as connected objects. Presumably,
arrays are more efficient, but objects are more adaptable to
future changes. Another dimension is whether the informa-
tion about the temperature is saved in doubles or in floats.
The natural assumptions are that doubles are more precise,
but operations on them are more costly.

The first four solutions are tightly constrained. Because
their outputs are produced as text, automated testing can be
performed to determine their correctness. But tightly con-
strained solutions limit another aspect of design—creativity.
Therefore, the fifth solution asks them to provide a graphical
user interface and a visualization. They are free to structure
these as they see fit as long as they can argue for the usabil-
ity of their approach.

4.2 Study 2: Rotating Sphere
The second project builds upon the first in the following

ways. First, the rectangular plate, becomes a sphere. This
means that the grid cells are no longer uniformly sized. Now,
instead of heat transferring between adjacent cells uniformly
in all directions, the amount of heat spread is proportional
to the length of the shared boundary. With the sphere,
there are no longer any edges to act as a source of heat.
Consequently an external heat source must be provided to

radiate heat to the surface of the sphere. Moreover, the
sphere rotates so that only part of its surface faces the heat
source at any given time.

At this time during the course, the lecture topic is soft-
ware architecture. Consequently, the teams must produce
solutions that vary architecturally. In particular, they must
produce singlethreaded and multithreaded versions, as well
as versions that run in a distributed fashion using multiple
virtual machines.

4.3 Study 3: Tilted, Orbiting Sphere
The third design study also adds both functional and

nonfunctional enhancements to the previous design studies.
Functionally, the sphere is now tilted toward the heat source,
engendering seasonal variations. Moreover the sphere orbits
the heat source in an elliptical path. Both the degree of tilt
of the sphere’s axis and the eccentricity of the orbit can be
set by the end user.

Nonfunctionally the students must deal with the issue of
persistence. That is, the computed data values that are to be
visualized may be produced in real-time or they may come
from a database. Choice of mechanism for persistence (flat
files, XML, relational database) is up to the teams, but they
must justify their choices. The visualization should be inde-
pendent of whether the data is persistent or not. This means
that interpolations must be provided. Interpolations are of
two sorts. They may be temporal; that is, the visualization
may need temperature values for time intervals that were
not computed. They may also be geographic; that is, the
display grid on the visualization side may be finer grained
than that produced by the original simulation. Persistence
requires storage space, and the amount of data to be stored
can grow quite large. So the students must make a decision
about how much data to store, both in terms of sampling
rate and precision.

The lecture topic during this period of the course is De-
sign Patterns. Hence, in addition to persistence, teams are
encouraged via extra credit to incorporate and document
any design patterns they used on the third project.

5. CONCLUSIONS
Design studies have succeeded in encouraging students to

focus on design issues. Nevertheless, there are further im-
provements that can be made.

• Provide even more pseudo code to reduce further the
amount of coding required of the students.

• Have students individually prepare a postmortem anal-
ysis. The intent is to encourage more of the students
to become engaged in the design process rather than
relying on a single team member to be chief architect.

• Perform in-class design reviews of student solutions.
Design is largely a process of synthesizing a solution
to a problem. Reviews complement this activity by
stressing analysis. Moreover, public reviews would en-
courage teams to write higher quality code.

• More strongly formalize the reusability aspects of the
project. Require justification for the selection of reused
code. Specifically track the amount of reuse and the
amount of adaptation required.

29

