
Detecting Interleaving

Spencer Rugaber� Kurt Stirewalt� and Linda M� Wills

College of Computing

Georgia Institute of Technology

Atlanta� Georgia ����������

fspencer� kurt� lindag�cc�gatech�edu

Abstract

The various goals and requirements of a system are

realized in software as fragments of code that are typi�

cally �interleaved� in that they may be woven together

in the same contiguous textual area of code� The frag�

ments of code are often delocalized and overlap rather

than being composed in a simple linear sequence� In�

terleaving severely complicates software comprehen�

sion and maintenance� To address this problem� we

are developing analysis tools� based on the Software

Re�nery� This paper describes our experiences in de�

tecting interleaving in a corpus of mathematical soft�

ware written in Fortran from the Jet Propulsion Labo�

ratory� In particular� it discusses how feasible it is to

detect interleaving of various types and the ability of

existing tools to assist these types of detection�

� Introduction and Motivation
To understand a program� one often has to unravel

multiple� interwoven strands of computation� each re�
sponsible for accomplishing a distinct purpose� We use
the term plan to denote a description or representation
of a computational structure that the designers have
proposed as a way of achieving some purpose or goal
in a program ���� ���� Plans can occur at any level
of abstraction from architectural overviews to code�
Interleaving expresses the merging of two or more dis�
tinct plans within some contiguous textual area of a
program�

A trivial example is a single loop responsible for
computing both the maximum element of a vector
and its position� A less trivial example is a program
intended to write a report that summarizes data ex�
tracted from sorted input records� The program has
two purposes� computing the summary data and man�
aging the construction of the report 	headers� page
breaks� page counts� etc�
 In an object�oriented pro�
gram� these two purposes might well be realized by

two separate objects� In traditional code� however�
the implementations of these functions are often in�
terleaved� and understanding the code is signi�cantly
complicated�

Interleaving may arise for e�ciency reasons� For
example� it may be more e�cient to compute two re�
lated values in one place than to do so separately� Or
interleaving may be the result of inadequate software
maintenance� such as adding a feature locally to an
existing routine rather than undertaking a thorough
redesign� Or interleaving may arise as a natural by�
product of expressing separate but related plans in
a linear� textual medium� For example� accessors and
constructors for manipulating data structures are typ�
ically interleaved throughout programs written in tra�
ditional programming languages due to their procedu�
ral� rather than object�oriented structure� Regardless
of why interleaving is introduced� it severely compli�
cates understanding a program� This makes it di��
cult to perform a variety of tasks� including extracting
reusable components� localizing the eects of mainte�
nance changes� and migrating to object�oriented lan�
guages�

What is needed is to isolate the separate strands of
computation� understand them individually and then
see how they interrelate� We are building analysis
tools to do this� Traditional slicing techniques ���� are
applicable to this problem but are not powerful enough
to disentangle all forms of interleaving� They rely only
on data and control �ow� whereas our tools also use
deeper knowledge of what plans are interleaved in the
code�

��� Case Study Context

Software must be understood at multiple levels of
abstraction simultaneously� Plans can occur and be
interleaved at any abstraction level from source code
text to application domain structures� The process of



understanding a piece of software involves two parallel
knowledge acquisition activities ��� ��� ����

�� using domain knowledge to understand the code
� knowledge about the application sets up expec�
tations about how abstract concepts are typically
manifested in concrete code implementations�

�� using knowledge of the code to understand the
domain � what is discovered in the code is used
to build up a description of various aspects of the
application and help to answer questions about
why certain code structures exist and what is their
purpose with respect to the application�

We are studying interleaving in the context of per�
forming these activities� In particular� we have a cor�
pus of software and an incomplete model of the soft�
ware�s application domain� We are targeting our de�
tection of interleaving toward elaborating the existing
domain model for this software� We are also looking
for ways in which the current knowledge in the domain
model can guide detection and ultimately comprehen�
sion�

SPICELIB

Our corpus of software is a library� called SPICELIB� of
approximately ��� mathematical programs� written in
Fortran at the Jet Propulsion Laboratory 	JPL
 for an�
alyzing data sent back from space missions� The soft�
ware performs calculations in the domain of solar sys�
tem geometry� such as coordinate frame conversions�
intersections of rays� ellipses� planes� and ellipsoids�
and light�time calculations�

Amphion Domain Model

We have obtained a partial model of the applica�
tion domain of this software from NASA Ames re�
searchers� who have developed a component�based
software synthesis system� called Amphion ����� Am�
phion composes routines from SPICELIB by making
use of a domain theory that includes formal speci�
�cations of the library routines� connecting them to
abstract concepts in the solar system geometry do�
main� The knowledge of the domain is encoded in
a structured representation� expressed as axioms in
�rst�order logic with equality� A space scientist us�
ing Amphion can schematically specify the geometry
of a problem through a graphical user interface� and
Amphion automatically generates Fortran programs
to call library routines to solve the described problem�
Amphion is able to do this by proving a theorem about

the solvability of the problem in the domain and� as a
side eect� generating the appropriate code�

In collaboration with NASA Ames researchers� we
are detecting ways in which the domain model Am�
phion uses is incomplete and developing program com�
prehension techniques to extend it�

Some of the primarymotivations for doing this from
the synthesis perspective are to make component re�
trieval more accurate� to assist in updating and grow�
ing the domain model as new software components are
added 	perhaps extracted from legacy software
� and
to improve the software synthesized� From the pro�
gram comprehension perspective� the re�nement and
elaboration of domain knowledge� based on what is
discovered in the code� is a primary activity� driv�
ing the generation of hypotheses and informing future
analyses�

There are at least two ways in which the existing
domain model is incomplete that are particularly in�
teresting from the point of view of interleaving� One
incompleteness is that the model does not fully cover
the functionality of the routines� Some routines com�
pute more than one result 	e�g�� the nearest point on
an ellipsoid to a line and the shortest distance between
that point and the ellipsoid
� However� the domain
model does not always capture all the values that are
computed� In these routines� it is often the case that
the code responsible for the secondary functionalities
is interleaved with the code for the primary function
covered by Amphion�s domain model� A second ex�
ample of incompleteness is that the current domain
model does not capture preconditions on the use of
the library routines 	e�g�� that a line given as input
to a routine is not the zero vector or that an ellip�
soid�s semi�axes must be large enough to be scalable
�
The code responsible for checking these preconditions
is usually tightly interleaved with the code for the pri�
mary computation as it is sprinkled throughout the
routine and often uses intermediate results computed
for the primary computation�

Software Re�nery

We are developing mechanisms for detecting various
classes of interleaving with the aim of growing a par�
tial model of the application domain� We are building
these mechanisms on a collection of commercial tools�
called the Software Re�nery ����� This is a compre�
hensive tool suite including language�speci�c analyz�
ers and browsers for Fortran� C� Ada� and Cobol� lan�
guage extension mechanisms for building new analyz�
ers� and a user interface construction tool for display�
ing the results of analysis� It maintains an object�



oriented repository for holding the results of anal�
yses� such as abstract syntax trees and symbol ta�
bles� It provides a powerful wide�spectrum language�
called Re�ne ����� which supports pattern matching
and querying the repository� Using the Software Re�n�
ery allows us to leverage commercially available tools
as well as evaluate the strengths and limitations of its
approach to program analysis�

��� Contributions and Outline of Paper

We have developed an initial characterization of in�
terleaving ����� based primarily on an empirical study
of SPICELIB� We brie�y summarize our characteriza�
tion in Section �� We then present a detailed exam�
ple of one of the mechanisms we have built to detect
a particular type of interleaving � the interleaving of
exception�handling code with the program�s primary
computation� This simple but pervasive type of inter�
leaving is particularly useful to detect and extract for
the purposes of elaborating speci�cations with precon�
ditions� In Section �� we describe a set of analyses that
we have formulated to detect various types of inter�
leaving� in addition to exception handling� We discuss
the results we have obtained so far in implementing
these analyses using the Software Re�nery and pre�
dict what is needed to carry out the rest� In Section
�� we re�ect on our experiences in using the Software
Re�nery to build interleaving detection mechanisms
and discuss future directions we would like to explore
in detecting and extracting interleaving�

� Characterizing Interleaving
Interleaving expresses the merging of two or more

distinct plans within some contiguous textual area of
a program� Interleaving can be characterized by the
delocalization of the code for the individual plans in�
volved� the sharing of some resource� and the perfor�
mance of multiple� independent roles in the program�s
overall purpose� 	Our characterization of interleaving
and several detailed examples are presented in more
depth in �����


There are several reasons why interleaving is a
source of di�culties� The �rst has to do with delo�
calization� Because two or more design purposes are
implemented in a single segment of code� each individ�
ual code fragment responsible for a separate purpose
is more spread out than it would be if it were encapsu�
lated� This makes it di�cult to gather together all the
pieces to ensure consistent maintenance ����� Distract�
ing details also get in the way and must be �ltered out
from the midst of the delocalized plan�

Another reason why interleaving presents a problem
is that it may be the result of poorly thought out main�

tenance activities� where the original� highly coherent
structure of the system has degraded as �patches� and
�quick �xes� are introduced�

There may also be occasions where interleaving is
intentionally introduced� such as for purposes of op�
timization� But expressing intricate optimizations in
a clean and well�documented fashion is not typically
done� The sharing of some resource is characteristic
of intentional interleaving� When interleaving is intro�
duced into a program� there is normally some implicit
relationship between the interleaved plans� motivat�
ing the designer to choose to interleave them� Often
this relationship centers on some common resource�
such as intermediate data results� control �ags� and
lexical module structures� This causes the implemen�
tations of the interleaved plans to overlap in that a
single structural element contributes to multiple goals�
In general� the di�culty that resource sharing intro�
duces is that it causes ambiguity in interpreting the
purpose of program pieces� This can lead to incorrect
assumptions about what eect changes will have� since
the maintainer might be focusing on one of the actual
uses of the resource 	variable� value� control �ag� data
structure slot� etc�
�

While interleaving is introduced to take advantage
of commonalities� the �ip side of the coin is that the
interleaved plans each have a distinct purpose� Al�
though interleaving is necessary for e�ciency� it ob�
scures the independence of the components involved�
Ironically� this hinders activities like parallelization
and objectivization that improve the e�ciency and
reusability of the code�

For all of these reasons� our ability to comprehend
code containing interleaved fragments is compromised�
Hopefully� we can have more success by isolating the
separate concerns� understanding them individually�
and only then seeing how they relate�

� Extraction of Preconditions
Using the Software Re�nery� we have been able to

automate a number of program analyses� one of which
is the detection of subroutine parameter precondition
checks� Because precondition checks are often inter�
spersed throughout a subprogram� they tend to delo�
calize the plans that perform the primary computa�
tional work� In particular� they are usually part of
a larger plan that detects exceptional 	usually erro�
neous
 conditions in the state of a running program�
and takes alternative action when these conditions
arise 	such as returning with an error code� signalling�
or invoking error handlers
�

Precondition checks make explicit the assumptions
a subprogram places on its inputs� Ideally a tool to



C�Procedure SURFPT � Surface point on an ellipsoid �

SUBROUTINE SURFPT � POSITN� U� A� B� C�

� POINT� FOUND �

DOUBLE PRECISION U � � �

���declarations���

C Check the input vector to see if its the zero

C vector� If it is signal an error and return�

C

IF � � U��� �EQ� ���D� � �AND�

� � U��� �EQ� ���D� � �AND�

� � U��� �EQ� ���D� � � THEN

CALL SETMSG �

� 	SURFPT
 Input vector is zero vector�	 �

CALL SIGERR � 	SPICE�ZEROVECTOR�	 �

CALL CHKOUT � 	SURFPT	 �

RETURN

END IF

���

Figure �� A fragment of the subroutine SURFPT in
SPICELIB� This fragment shows a precondition check
which invokes an exception if all of the elements of
the U array are ��

aid in program understanding removes the interleaved
precondition checks from the code and uses the in�
formation they represent to help the user elaborate a
high�level speci�cation of the subprogram� Such a tool
addresses program understanding by extracting an in�
terleaved plan� and by assisting in the composition of a
speci�cation by suggesting subprogram preconditions�
We have created a tool that detects these checks and
extracts the preconditions into a documentation form
suitable for expression as a partial speci�cation�

We found numerous examples of precondition
checks in our empirical analysis of the SPICELIB� One
such check occurs in the subprogram SURFPT shown
in Figure �� SURFPT �nds the intersection 	POINT
 of
a ray 	represented by a point POSITN and a direction
vector U
 with an ellipsoid 	represented as three semi�
axes lengths A� B� and C
� if such an intersection exists
	indicated by FOUND
�

Precondition checks are particularly di�cult to un�
derstand when they are sprinkled throughout the code
of a subroutine as opposed to being localized at the be�
ginning� We discovered that� though interleaved� these
checks could be reliably identi�ed by searching for IF
statements whose conditions are a function of the in�
put parameters and whose bodies handle exceptions�
The analysis that decides whether or not IF statements
test only input parameters is speci�c to the Fortran
language� whereas the analysis that decides if a code

fragment is an exception plan is application domain
speci�c� The implication of this is that the Fortran
speci�c portion is not likely to need changing when we
apply the tool to a new application� whereas the appli�
cation speci�c portion will certainly need to change�
With this in mind� we chose a tool architecture that
gives a great deal of freedom in the expression of the
procedure for detecting exception plans�

Detecting Exception Handlers In general� we
need application speci�c knowledge about usage
patterns in order to discover exception handlers�
SPICELIB� for example� provides a routine SIGERR that
sets an error condition� Typically� SIGERR is followed
almost immediately by a RETURN statement� Hence� a
call to SIGERR followed closely by a RETURN indicates a
plan for handling an exception� In some other appli�
cation� the form of this plan will be much dierent�
It is� therefore� necessary to design the plan detection
component of our architecture around this need to spe�
cialize the tool with knowledge about the application
of a system being analyzed�

The Software Re�nery provides excellent support
for this design principle through the use of the rule
construct and a tree�walker that applies these rules
to an abstract syntax tree 	AST
� Brie�y� a rule is
a construct in the Re�ne language that encapsulates
a transformation of the state of the system 	that is�
a side eect
� Rules are speci�cally designed to be
applied to the nodes of an AST during tree walks�
so they always have a single input parameter that is
some subclass of AST nodes� Rules are more declara�
tive than functions in that they specify state changes
by listing the conditions before and after the change
without specifying exactly how the change must occur�
Syntactically� this is expressed through the form� pre�
conditions � postconditions� This is useful for linking
application speci�c pattern knowledge into a system
because it allows the independent� declarative expres�
sion of the dierent facets of the pattern�

We represent application speci�c exception handler
plan clues using two rules� The �rst searches for a
RETURN statement in an AST�

rule IS�RETURN � s 
 rf

program�unit�statement �

�FOUND�RETURN �

rf

return�statement�s�

���

FOUND�RETURN

This rule states that if� during an AST walk� a RETURN

statement has not yet been discovered 	represented by
the negating the value of the boolean global variable



�FOUND�RETURN�
 and the current AST node 	bound
by the parameter s
 in the tree walk is of class
rf

return�statement� then establish that a RETURN has
been found 	similarly represented by the global vari�
able FOUND�RETURN
� The careful reader may note that
the �rst conjunct in the precondition of this rule is not
logically necessary 	�FOUND�RETURN
� It is included
here because rule application in Re�ne continues un�
til no more rules can be matched on any AST node�
So rules must somehow invalidate their precondition
when they are applied or else the rule application will
go into an in�nite loop�

The other rule we use to analyze SPICELIB is�

rule IS�SIGERR � s 
 rf

program�unit�statement �

�FOUND�SIGERR �

rf

call�statement�s� �

rf

identifier�name�rf

called�object�s�� �

	RFU

SIGERR

���

FOUND�SIGERR

This rule is similar to the rule to detect RETURN�
but in this case we are checking not only that the
current AST node 	s
 belongs to a certain class
	rf

call�statement
� but also that the name of the
called object is SIGERR� The code that applies these
rules to sequences of statements is shown in Fig�
ure �� Note here the application of the function
preorder�transformwhich applies a sequence of rules to
an AST until no more rules apply� We specify the ac�
tual sequence of rules to apply by de�ning the variable
CHECK�EXCEPTION�RULES as follows�

var CHECK�EXCEPTION�RULES 
 seq�symbol� �

� 	IS�RETURN�

	IS�SIGERR �

That is� CHECK�EXCEPTION�RULES is a variable whose
type is a sequence of symbols� assigned to the literal
sequence of symbols denoting the rules we have de�
�ned�

Detecting Guards Discovering IF statements that
depend only upon input parameters 	guards
 involves
keeping track of whether or not these parameters have
been modi�ed before the check� If they have been
modi�ed before the check� then the check probably
is not a precondition check on inputs� We address
this problem in our analysis by using an approxi�
mate data�ow algorithmwhich propagates a set of im�
mutable variables through the sequence of statements
in the subroutine� 	We do this in the absence of a
robust and complete data�ow analysis tool�
 At each

�Given a sequence of Fortran statements

�assumed to be the body of an IF�THEN�ELSE

block�� report whether or not the statements

appear to be raising an exception��

function Looks�Like�Exception�

stmt�seq 
 seq�program�unit�statement� � 


boolean �

let �FOUND�RETURN 
 boolean � false�

FOUND�SIGERR 
 boolean � false�

�enumerate a�stmt over stmt�seq do

preorder�transform�

a�stmt�CHECK�EXCEPTION�RULES���

FOUND�RETURN � FOUND�SIGERR

Figure �� Re�ne code that checks for exception plans
by applying the pattern our initial analysis allowed us
to deduce�

statement� if a variableX in the set might be modi�ed
by the execution of the statement� then X is removed
from the propagating set� We de�ne a Re�ne function
Propagate�Through�Statement that does this propaga�
tion on a per statement basis� The function is used in
our function Get�Preconditions shown in Figure ��

Intuitively� Get�Preconditions computes the pa�
rameters of its input subr using Re�ne�Fortran prim�
itives and then puts these parameters into a working
set worklist that is propagated through statements
in the subprogram� The local variable candidates is
used to store the candidate preconditions found dur�
ing a propagation� When an IF�THEN�ELSE statement is
found� candidates is updated to be the concatenation
of its previous value and a new sequence of precon�
ditions� The function Match returns these sequences
of preconditions� returning the empty sequence if the
given IF statement did not match our pattern�

Results The result of this analysis is a table of
preconditions associated with each subroutine� Since
we are targetting partial speci�cation elaboration� we
chose to make the tool output the preconditions in
LaTEX form so as to generate nicely formatted reports�
We include an example here of the preconditions for
the subroutine SURFPT� When applied to SURFPT our
tool generated the LaTEX source which when included
without change into this document looks like�

�		U 	�
 � ���D�
�	U 	�
 � ���D�
�	U 	�
 � ���D�



Taken literally� this states that one of the �rst three
elements of the U array parameter must be non�zero�
In the domain model� U is seen as a vector� so the



function Get�Preconditions� subr 
 program�unit � 


condition�tuple�type �

let � parameters 
 set�symbol� �

f Get�Parameter�Name�p� �

�p� p in formals�unit�heading�subr�� g�

let �worklist 
 set�symbol� � params�

candidates 
 condition�tuple�seq � ���

�enumerate s over unit�body�subr� do

�if block�if�statement�s�

then candidates ��

concat�candidates�

Matches�s� worklist����

worklist �� Propagate�Through�Statement�

s�worklist���

candidates

Figure �� Given the AST representation of a Fortran
subprogram� compute a candidate set of preconditions
for the subprogram�

more abstract precondition can be stated as �U is not
the zero vector�� Extracting the precondition into the
literal representation is the �rst step to being able to
express the more abstract precondition�

� Experiences
We formulated a number of other interleaving anal�

yses in addition to precondition detection� Each an�
swers some empirical question related to interleaving
in code libraries� Since some depend upon applica�
tion domain information� we took advantage of the
information encoded in the Amphion domain axioms�
We were� however� careful to design the tools so as
not to restrict their applicability to this particular do�
main� We have used our experience with the Software
Re�nery to implement some of these analyses and to
estimate the di�culty of implementing the others�

Inde�nite Loops and Data�ow Analysis Preci�

sion� Most of the analyses for detecting interleaving
rely on some form of data�ow analysis� Data�ow anal�
ysis propagates data usage information along all pos�
sible sequences of statements in a subprogram� The
accuracy or precision of a data�ow analysis depends
upon the ability to cover all such sequences� Unfortu�
nately� programs with loops can sometimes represent
inde�nite sequences of statements� When posed with
such programs we must settle for only approximate
data�ow information� On the other hand� subpro�
grams whose loops are bounded by constants may be
unrolled into code each of whose statement sequences

may be determined statically� Such subprograms can
be analyzed exactly with data�ow techniques� Loops
of this nature occur frequently in SPICELIB� For ex�
ample� because three�dimensional vectors are stored
as arrays of length three� it is typical to see many DO

loops with only three iterations�
Since so many of our interleaving analyses depend

upon the precision of data�ow analyses� we would like
some measure of a tool�s maximum analysis potential
over the library� We chose to measure this as the per�
centage of routines with only de�nite 	statically de�
terminable bounds
 loops and developed a statistics
gathering tool in Re�ne� The tool works by de�n�
ing rules to detect inde�nite loops and then applying
these rules through an AST walk similar to that of the
precondition detection tool�

The analysis showed that roughly �� percent of the
subprograms had no inde�nite loops� This number
indicates that we will be able to completely analyze
two thirds of the routines� Moreover� in the other
cases� approximate data�ow information may be good
enough to capture the spirit of the analysis�

Routines with Multiple Outputs� Some subrou�
tines in SPICELIB compute more than one output�
When this occurs� the subroutine is returning either
the results of multiple distinct computations or a re�
sult whose type can not be directly expressed in the
Fortran type system 	e�g�� as a data aggregate
� In
the former case� the subroutine is realized as the in�
terleaving of multiple distinct plans� This interleaving
not only complicates the task of understanding the
code� but also clouds a maintainer�s conceptual cate�
gorization of the subroutine�

In the latter case� the subroutine may be imple�
menting only a single plan� but a maintainer�s concep�
tual categorization of the subroutine is still obscured
by the appearance of some number of seemingly dis�

tinct outputs� A good example of this case occurs in
the SPICELIB subroutine SURFPT�

SUBROUTINE SURFPT �POSITN�U�A�B�C�POINT�FOUND�

which conceptually returns the intersection of a vector
with the surface of an ellipsoid� However� it is possible
to give a vector and an ellipsoid that do not intersect�
In such a situation the output parameter POINT will
be unde�ned� but the Fortran type system cannot ex�
press the type� DOUBLE PRECISION � Unde�ned� The
programmer was forced to simulate a variable of this
type using two variables� POINT and FOUND� adopting
the convention that when FOUND is false� the return
value is Unde�ned� and when FOUND is true� the re�
turn value is POINT�



Clearly subprograms with multiple outputs compli�
cate program understanding� We built a tool that de�
termines the multiple output subprograms in a library
by analyzing the direction of data�ow in parameters
of functions and subroutines� A parameter�s direc�
tion is either� in if the parameter is only read in the
subprogram� out if the parameter is only written in
the subprogram� or in�out if the parameter is both
read and written in the subprogram� Multiple output
subprograms will have more than one parameter with
direction out or in�out�

Fortunately� the Software Re�nery provides a pack�
age to create structure chart 	call graph
 objects� The
nodes of these structure charts are annotated with di�
rection information about parameters� We were thus
able to build our entire analysis using only the struc�
ture chart object without having to do any Fortran
AST analysis� This greatly simpli�ed the implemen�
tation�

The resulting analysis showed that �� percent of
the subprograms had multiple output parameters� We
were thus able to focus our work on these routines �rst�
as they are likely to involve interleaving�

Domain Model Coverage� NASA has developed
a formalmodel of SPICELIB�s application domain� This
model is incomplete with respect to the library� One
analysis that would focus eorts to complete the do�
main model stems from a notion of coverage� We say
a subprogram is an element of the cover induced by
a domain model if it is either directly linked to some
entity in the domain model or is invoked by another
subprogram that is in the cover� A domain model cov�
ers a library if every subprogram in the library is in
the domain model�s cover�

We constructed a tool that determines the set of
subroutines in the cover of a domain model� The rich
choice of data structures in Re�ne signi�cantly eases
this task� The major constituent of the tool converts a
structure chart into a relation that maps subprograms
to the subprograms that they call and then computing
the transitive closure of this relation� Since Re�ne
provides a transitive closure operation 	tclosure
 in
the language� this was a simple task� The result of
this analysis was that only �� percent of the library
was covered by the domain model�

Dead End Data�ows� Many of the SPICELIB sub�
programs that exhibit interleaving also exhibit a be�
havior detectable in the domain model� called a �dead
end data�ow�� It occurs when the domain model ref�
erences a subprogram in the library� and this subpro�

gram returns a value that is not mapped to anything
in the domain model� For example� a SPICELIB sub�
program that computes the nearest point on an el�
lipsoid to a line also computes the shortest distance
between the line and the ellipsoid� but only the near
point output is mapped to a domain entity 	the near�
est point
� the distance output is a dead end data�ow�
Dead end data�ows imply interleaving in the subpro�
gram and�or an incompleteness in the domain model�
Our analysis revealed that of the subroutines covered
by the domain model� ��� have some output param�
eters that are dead end data�ows�

Control Coupling� Sometimes a programmer will
implement a subprogram that uses one of its input
parameters as a �ag to choose among a set of possi�
ble computations to perform� This is a form of con�
trol coupling ����� �any connection between two mod�
ules that communicates elements of control�� and it
is a class of interleaving involving delocalized control�
Subprogram calls with constant parameter values are
potentially involved in control coupling� Our strat�
egy for detecting control coupling instances �rst com�
putes a set of candidate subprograms that are invoked
with a constant parameter in the library or the domain
model� Each member of this set is then analyzed to
see if the formal parameter associated with the con�
stant actual parameter is used to conditionally execute
disjoint sections of code�

We have not yet implemented this analysis� but the
two components of our strategy should be easy to im�
plement in Re�ne� In addition to applying this infor�
mation to the elaboration of speci�cations� we are also
interested in seeing if the strategy is signi�cantly more
precise than the following variant� It seems likely that
if every call of a subprogram passes a constant pa�
rameter� then that subprogram is involved in control
coupling interleaving� We expect to test this variant
along with the original analysis to see if there is a
correspondence of results�

Routine Co�occurrence Properties� In ���� we
described a general form of interleaving called refor�

mulation wrappers� A reformulation wrapper is used
to transform one problem into another that is sim�
pler to solve and then to transfer the solution back
to the original situation� Some examples of reformu�
lation wrappers in SPICELIB are� reducing a three�
dimensional geometry problem to a two�dimensional
one and mapping an ellipsoid to the unit sphere to
make it easier to solve three�dimensional intersection
problems�



Often reformulation wrappers are realized as two
functions� one that transforms a problem into a dif�
ferent 	usually easier or more stable
 problem� and
one that transforms the result back� We would like
to detect instances of this in arbitrary codes� and we
believe that the key to this detection is embodied in a
notion of subprogram co�occurrence� We say that two
subprograms S� and S� in a library co�occur if� 	�

every subroutine in the library that references S� also
references S�� 	�
 execution of S� implies execution of
S� and vice versa� and 	�
 there is �ow of computed
data from S� to S��

This is by far the most ambitious interleaving anal�
ysis we have mentioned here� Its solution requires sub�
stantial data�ow infrastructure� To get a feel for this
requirement� we examine each point in the de�nition�

Given a pair 	S�� S�
� it is relatively simple to de�
termine if each subprogram in the library references
both of them� Re�ne provides language constructs for
specifying �rst order logic predicates� Using this fea�
ture of the language� we could implement this test as�

fa�x��x in SPICELIB ��

�contains�x�s�� �� contains�x�s��� �

�contains�x�s�� �� contains�x�s����

and de�ne the function contains to return whether or
not the subprogram in the �rst parameter contains a
call to the subprogram in the second parameter� It
should be obvious from our other examples that the
contains function is simple to construct in Re�ne�

We can express the execution conditions regarding
S� and S� using a construct from �ow analysis called
a dominator ���� We say that the call of S� dominates

the call of S� if the call of S� implies that S� has
already been called in that routine� Similarly� the call
of S� post�dominates the call of S� if calling S� implies
there will be a call to S� in that routine� Re�ne does
not provide an analysis for dominators� but we have
built our own from other Re�ne packages�

To complete the analysis of reformulationwrappers�
we still need to check that data computed in S� some�
how �ows into the inputs of S�� To compute this� we
need a full data�ow analysis component� Re�ne does
not provide such a component� but we are working on
one of our own�

� Conclusions
Interleaving is a pervasive and troubling problem�

Disentangling interleaved program strands can im�
prove understandability and provide opportunities for
reuse� thus extending the value and lifetime of software
assets� Detecting and extracting interleaved strands
is a complex problem that we are just beginning to

understand� This section describes the strengths and
weaknesses of available tools and the successes and
failures we have had in understanding instances of in�
terleaving� We also comment on the role of domain in�
formation in understanding interleaved code and our
plans for continuing to explore this area�

��� Tools

We used the Re�ne tools from Reasoning Systems
in our analysis� This comprehensive toolkit provides
a set of language�speci�c browsers and analyzers� a
parser generator� a user interface builder� and an
object�oriented repository for holding the results of
analysis� We made particular use of two other fea�
tures of the toolkit� The �rst was called the Work�
bench� and it provided pre�existing analyses for tra�
ditional graphs and reports such as structure charts�
data�ow diagrams� and cross reference lists� The re�
sults of the pre�existing analyses can be accessed from
the repository using small� Re�ne language programs
such as those described in this paper� The Re�ne com�
piler was the other feature we used� compiling a Re�ne
program into compiled Lisp�

The approach taken by the Re�ne language and
tool suite has many advantages for attacking problems
like ours� The language itself combines features of im�
perative� object�oriented� functional� and rule�based
programming� thus providing �exibility and general�
ity� Of particular value to us is its rule�based con�
structs� By merely de�ning pre� and post�conditions
we are easily able to de�ne the properties of constructs
without worrying about how to �nd them� We had
merely to add a simple tree walking routine to ap�
ply the rules to the AST� Furthermore� the language
provides abstract data structures� such as sets� maps�
and sequences� which manage their own memory re�
quirements� thereby reducing programmer work� The
object�oriented repository further reduced program�
mer responsibility by providing persistence and mem�
ory management�

We also take full advantage of Reasoning Sys�
tems� existing Fortran language model and its struc�
ture chart analysis� These allowed us a running
start on our analysis and also provided a robust han�
dling of Fortran constructs that are not typically
available from non�commercial research tools� Fi�
nally� we had occasion to take advantage of the ex�
isting Re�ne user community through its mailing list
	refine�users�grace�rt�cs�boeing�com
� Our techni�
cal questions were answered nearly instantaneously
and always accurately�

We can see several ways in which the Re�ne ap�
proach can be further extended� In particular� the



availability of other analyses� such as control �ow
graphs for Fortran and general data�ow analysis�
would have given us more leverage� The Re�ne lan�
guage itself might be extended further� such as by
supporting function parameters and more transparent
rule application�

In summary� the Re�ne approach and tool suite
provided extensive leverage without which we would
not have been able to adequately explore the inter�
leaving question�

��� Interleaving

In Section �� we characterized interleaving in terms
of delocalization� resource sharing� and independence�
The particular analyses we performed can be viewed
in terms of these dimensions� For example� precondi�
tion checks are often spread throughout 	delocalized
in
 a routine� The same holds true for reformulation
wrappers� In the absence of full data�ow analysis�
we approximated the actual analysis we would like to
have made� albeit in a safe way� That is� all of the
results produced were accurate� but some additional
ones may have been missed due to missing informa�
tion about data�ow relationships� However� we expect
these to be few in number�

Resource sharing and independence are related con�
cepts� There must be some reason� usually expressible
as a shared resource� for two independent fragments
to be interleaved� For example� routines with multiple
outputs share intermediate computations as a way of
improving run�time e�ciency� This particular kind of
interleaving was also easily detected�

In general� the detection and extraction of in�
terleaved fragments is a hard problem� It is re�
lated to overlapping implementations ����� potpourri

module detection ���� slicing ���� ���� cluster analy�

sis ��� ��� ���� and objectivization 	the extraction of
candidate objects from non�object oriented programs

��� �� ��� To the extent that the analysis can be based
on program information only� the approach we have
undertaken appears adequate� However� interleaved
fragments are instantiations of plans� and many plans
are direct expressions of application domain require�
ments� Hence� extensive use of domain knowledge may
be a prerequisite to complete analysis�

��� Domains

In our analysis� we had the bene�t of an existing
partial domain model� The domain model provides
expectations and data to be used in analyzing a pro�
gram� For example� there were several readily distin�
guishable instances in the domain model of pairs of
routines that we used as candidates for detection of
reformulation wrappers� On the other hand� we have

been able to use the results of program analysis to
validate and extend the domain model� For example�
there were situations where a routine computed sev�
eral results� but the domain model only described one
of them�

The simultaneous elaboration of application and
program understanding is characteristic of Synchro�
nized Re�nement� the overarching approach we take
to reverse engineering ����� How best to express and
use the domain information is still an open question�
however� but some discussion of the issues is provided
in ���� We expect the use of domain information to be
a prerequisite for further signi�cant increases in the
power of program understanding technology�

��� Future Directions

The work described here raises several further ques�
tions related to interleaving� One of these concerns the
appropriate level of abstraction in the domain model�
In our case� the domain model that we used was fairly
low level� If the ultimate goal is to map a program
back to its requirements� then� program constructs
must be described in terms of domain vocabulary� For
example� if we can detect certain stereotypical con�
structs 	called clich�es ����
 and map them back to a
domain concept 	such as an ellipsoid or an orthogonal
projection
� then we can use our knowledge of geom�
etry to further understand and describe a program�
This requires the use of clich�e recognition techniques
	e�g�� ���� ��� ���
� It also raises the question of de�
scribing the domain itself in Re�ne� and consequently
being able to reason about it�

We would also like to look at architectural issues�
In particular� the analyses we performed were fairly
low level� and� in fact� the SPICELIB software itself has
a fairly straightforward architecture� But this will not
always be true� In fact� architectures can be inter�
leaved just like programs� This problem appears to
be quite hard� but we can see attacking it both from
the top down� by trying to detect instances of spe�
ci�c architectural styles ���� and from the bottom up�
by trying to detect speci�c kinds of module groupings�
such as the aerent� eerent� and transformer modules
that are a part of Structured Design �����

Acknowledgments

Support for this research has been provided by
ARPA under order number A���� contract number
NAG ������ We would like to thank Larry Markosian
for helping us to obtain the Software Re�nery and the
NAIF group at JPL for enabling our study of SPICELIB�
We also bene�ted from insightful discussions with
Michael Lowry at Nasa Ames Research Center con�
cerning this research�



References

��� A� Aho� R� Sethi� and J� Ullman� Compilers� Princi�

ples� Techniques� and Tools� Addison�Wesley� �����

�	� T� Biggersta
� B� Mitbander� and D� Webster� Pro�

gram understanding and the concept assignment prob�

lem� Comm� of the ACM� ������	���� May �����

��� R� Bowdidge and W� Griswold� Automated support

for encapsulating abstract data types� In Proc� �nd

ACM SIGSOFT Symp� on Foundations of Software

Engineering� pages ������� New Orleans� Dec� �����

��� R� Brooks� Towards a theory of the comprehension

of computer programs� Int� Journal of Man�Machine

Studies� ����������� �����

��� F� Calliss and B� Cornelius� Potpourri module detec�

tion� In IEEE Conf� on Software Maintenance � �����

pages ������ San Diego� CA� November ����� IEEE

Computer Society Press�

��� G� Canfora� A� Cimitile� and M� Munro� A reverse en�

gineering method for identifying reusable abstract data

types� In Proc� of the First Working Conference on Re�

verse Engineering� pages ����	� Baltimore� Maryland�

May ����� IEEE Computer Society Press�

��� A� Cimitile� M� Tortorella� and M� Munro� Program

comprehension through the identi�cation of abstract

data types� In Proc� �rd Workshop on Program Com�

prehension� pages �	���� Washington� D�C�� November

����� IEEE Computer Society Press�

��� J�M� DeBaud� B� Moopen� and S� Rugaber� Domain

analysis and reverse engineering� In IEEE Conf� on

Software Maintenance � ���	� pages �	������

��� A� Garlan and M� Shaw� Software Architecture� Per�

spectives on an Emerging Discipline� Prentice Hall�

Englewood Cli
s� NJ� �����

���� D� Hutchens and V� Basili� System structure analy�

sis� Clustering with data bindings� IEEE Trans� on

Software Engineering� ����� August �����

���� Reasoning Systems Incorporated� Software Re
nery

Toolkit� Palo Alto� CA�

��	� W� Kozaczynski and J�Q� Ning� Automated program

understanding by concept recognition� Automated Soft�

ware Engineering� ���������� March �����

���� S� Letovsky and E� Soloway� Delocalized plans and

program comprehension� IEEE Software� ���� �����

���� M� Lowry� A� Philpot� T� Pressburger� and I� Under�

wood� A formal approach to domain�oriented software

design environments� In Knowledge�based Software En�

gineering Conference� �����

���� J�Q� Ning� A� Engberts� and W� Kozaczynski� Auto�

mated support for legacy code understanding� Comm�

of the ACM� ����������� May �����

���� S� Ornburn and S� Rugaber� Reverse engineering� Re�

solving con�icts between expected and actual software

designs� In IEEE Conf� on Software Maintenance �

����� pages �	���� Orlando� Florida� November ���	�

���� A� Quilici� A memory�based approach to recognizing

programming plans� Comm� of the ACM� �����������

May �����

���� C� Rich� A formal representation for plans in the

Programmer�s Apprentice� In Proc� �th Int� Joint

Conf� Arti
cial Intelligence� pages ��������	� Vancou�

ver� British Columbia� Canada� August �����

���� C� Rich and R� C� Waters� The Programmer�s Ap�

prentice� Addison�Wesley and ACM Press� �����

�	�� S� Rugaber� K� Stirewalt� and L� Wills� The interleav�

ing problem in program understanding� In Proc� of the

Second Working Conference on Reverse Engineering�

July ����� IEEE Computer Society Press�

�	�� R� Schwanke� An intelligent tool for re�engineering

software modularity� In IEEE Conf� on Software Main�

tenance � ����� pages ����	� �����

�		� D� Smith� G� Kotik� and S� Westfold� Research on

knowledge�based software environments at Kestrel In�

stitute� IEEE Trans� on Software Engineering� Novem�

ber �����

�	�� E� Soloway and K� Ehrlich� Empirical studies of pro�

gramming knowledge� IEEE Trans� on Software Engi�

neering� ������������� September �����

�	�� W� Stevens� G� Myers� and L� Constantine� Struc�

tured design� IBM Systems Journal� ��	����������

�����

�	�� M� Weiser� Program slicing� IEEE Trans� on Software

Engineering� �����	����� �����

�	�� L� Wills� Automated program recognition by graph

parsing� Technical Report ����� MIT Arti�cial Intelli�

gence Lab�� July ���	� PhD Thesis�

�	�� E� Yourdon and L� Constantine� Structured Design�

Fundamentals of a Discipline of Computer Program

and Systems Design� Prentice�Hall� �����


