
A Software Re-Engineering Method using Domain Models

Jean-Marc DeBaud and Spencer Rugaber
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

Current software re-engineering technology is typi-
cally based on program analysis methods such as pars-
ing and data flow analysis. This is inadequate for two
reasons. First, such methods inherently fail to capture
the context or purpose of the program. Second, the re-
sults of the program comprehension are not directly us-
able in program evolution. In this paper, we introduce a
method that addresses both of these problems. We use a
domain model to understand the context of a program
and an object-oriented framework to record that under-
standing. The main step of this method consists of the
construction of an executable domain model whose scope
covers a family of target programs. A program is then
reverse engineered using the domain model both as a
guide and as a recording medium. In the last step, de-
velopers re-engineer the target artifact using its abstract
domain-driven representation. We present a thorough
example to illustrate this approach. Issues raised by the
confluence of domain analysis and representation, re-
verse engineering, and artifact evolution are discussed.
Implications on future work in the area are suggested.

Keywords: Program re-engineering, domain analysis,
reverse engineering, program evolution, program under-
standing, reuse infrastructure, software architecture, ob-
ject-oriented framework.

1. INTRODUCTION

1.1. The Problem

The process of software re-engineering is multi-
phased. In the first phase, the re-engineering of a soft-
ware artifact entails the comprehension of both what the
artifact does, i.e., its context, and how it accomplishes its
purpose, i.e., its structure and control flow. This phase
traditionally corresponds to reverse engineering. In the

second phase, the artifact is evolved using both the in-
formation gained in the first phase and its new specifica-
tions. Because of the difficulties of each of these phases,
program re-engineering is a complex endeavor.

An artifact’s structure and control flow can be de-
termined by lexical, syntactic, and semantic rules for
legal program constructs. We know how to do these
kinds of analyses well. Tools such as Reasoning Sys-
tems’ Software Refinery [18] alleviate most practical
problems in discovering a program structure and control
flow. But knowledge of program structures is alone in-
sufficient to achieve program understanding.

Programs have a purpose. They exist because of
some computational needs. But a computation has value
only if it models or approximates some aspects of the real
world. Insofar as the model is accurate, the program will
succeed in performing as expected. And, to the extend
that the model is comprehended by the reverse engineer,
the process of understanding the program will be eased.
Hence, to understand what a program does, one must
understand the context in which it evolves; that is, the
part of the world it is modeling or its application domain.

To complete the re-engineering process, a software
artifact must be evolved once it is fully comprehended.
The form and representation used to record the compre-
hension of an artifact are critical to its utilization in the
evolution step. Should the new evolution specifications
concern the artifact’s application domain, then it may be
necessary for the programmer to use the domain model to
implement them or to acquire some domain knowledge.
Hence, the evolution step also benefits from the existence
of a domain model.

1.2. Approach Taken and Results

In a previous paper [7] we have argued that applica-
tion domain modeling provides key concepts to facilitates

program context comprehension. In this paper we argue
that an executable application domain model provides a
key technique to perform the two phases of software arti-
fact re-engineering.

The gist of our re-engineering method consists of the
construction of an executable, domain-specific reuse in-
frastructure and its use to drive, record and evolve soft-
ware artifacts. The main steps of the method are as fol-
lows. First, an application domain must be chosen. Sec-
ond, a domain analysis is performed upon that realm and
a domain model is created. Third, that model is ex-
pressed in executable form. The particular technology
we use is object-oriented frameworks [12]. At that stage,
what is indeed a domain-specific reuse infrastructure is
in place. Fourth, the application domain model is used to
guide artifact comprehension, i.e., the reverse engineer-
ing. By a process of instantiating the object-oriented
framework, the results of the artifact comprehension are
recorded. This process in fact amounts to specializing
the reuse infrastructure according to the recovered arti-
fact specifications. At the end of the artifact understand-
ing process, its functionality is replicated by the frame-
work. Now, as the fifth and last step, the evolution of the
artifact can begin. This is done by augmenting and/or
modifying the previous set of instantiations.

While the process of domain analysis and framework
construction is difficult and time consuming, we found
our efforts rewarded in many respects. First, we experi-
enced a substantial improvement in the time it took us to
comprehend existing programs. We estimate, conserva-
tively, to have speeded the understanding step by a factor
of two. Second, recording the artifact specifications gen-
erated from the comprehension process was vastly sim-
plified by simply having to parametrize the framework.
Third, artifact evolution was also greatly simplified be-
cause that process meant evolving the artifact specifica-
tion as opposed to the source-code. Our experience
shows that complex artifact evolution became a matter of
minutes for someone familiar with the domain.

 This paper is organized as follows. In Section 2, we
introduce the domain model used throughout this paper.
Section 3 describes the concurrent process of artifact re-
verse engineering and framework instantiation. Section
4 illustrates artifact evolution. The final section of this
paper discusses issues raised by the integration of domain
analysis, domain evolution, reverse engineering and vali-
dation.

1.3. Related Work

The software engineering community has lately
taken a great interest in domain centered approaches.
The seminal work of DRACO [16] has been followed by
a substantial number of research endeavors [13] [14] [17]
[19]. Arango and Prieto-Diaz present current directions
on domain analysis and software system modeling in [2].
Yet domain based re-engineering is relatively new.

To develop a domain model of programming lan-
guage tools, Devambu [9] reverse-engineers it from an
existing meta model, GENOA/GENII [8], that he had previ-
ously developed. This domain model is then used to
construct analysis tools such as CFLOW, CSCOPE and CIA

[10]. To produce a domain of acceptable quality this
approach pre-supposes input programs embodying a
model of the target domain. Another approach, illus-
trated by Hildreth [11], proposes to use the existence of
an ad-hoc, i.e., non-formal domain model to help recover
program requirements. In successfully recovering TCAS
requirements from specification, Hildreth exposes the
power of domain-centered reverse engineering, even us-
ing a non-formal domain. This method is somewhat
similar to ours but lacks the second phase.

1.4. Research Context

The domain that we have chosen to use is Report-
Writing. This is a mature, well-understood domain that
has been successfully modeled by database management
system vendors in the form of report-writing tools. By
report writing we mean that a program’s responsibility is
to generate an output report whose contents represent
and/or summarize data taken from one or more databases
or input files.

The software system that we analyzed for this re-
search is the Installation Material Condition Status re-
porting System (IMCSRS) [3]. This standard U.S. Army
management information system consists of approxi-
mately 10,000 lines of COBOL code, broken into 15 pro-
grams. IMCSRS is responsible for using input transac-
tions to update a master file and then producing a variety
of reports describing the status of Army materiel.

2. THE REPORT-WRITING DOMAIN

MODEL

This section covers the first three steps of our
method. We choose a domain (step one), Report-
Writing, we construct a model (step two, section 2.2) and
we introduce its executable form (step three, section 2.3).

But first, we say a word about domain modeling and re-
verse engineering.

2.1. Domain Modeling and Reverse Engineer-
ing

A domain is a problem area. Typically, many appli-
cations programs exist to solve the problem in a single
domain. Arango and Prieto-Diaz [1] give the following
prerequisites for the presence of a domain: the existence
of comprehensive relationships among objects in the do-
main, a community interested in solutions to the prob-
lems in the domain, a recognition that software solutions
are appropriate to the problems in the domain, and a
store of knowledge or collected wisdom to address the
problems in the domain.

According to Neighbors [15], domain analysis “is an
attempt to identify the objects, operators, and relation-
ships between what experts perceive to be important
about the domain.” As such, it bears a close resemblance
to traditional systems analysis, but at the level of a col-
lection of problems rather than a single one. Domain
engineering/modeling/analysis is an emerging research
area in software engineering. It is primarily concerned
with understanding domains to support initial software
development and reuse, but its artifacts and approaches
prove useful in support of reverse engineering as well.

In order for domain analysis to be useful for software
development, reuse, or reverse engineering, the results of
the analysis must be captured and expressed, preferably,
in a systematic fashion, hence the need for a representa-
tion method [2]. Among the aspects that might be in-
cluded in such a representation are domain objects and
their definitions, including both real world objects and
concepts; solution strategies/plans/architectures; and a
description of the boundary and other limits to the do-
main. An unresolved issue, of importance both to soft-
ware developers and reverse engineers, is the exact form
of the representation and the extent of its formality.

What role might a domain description play in re-
verse engineering a program? In general, a domain de-
scription can give the reverse engineer a set of expected
constructs to look for in the code. These might be com-
puter representations of real world objects or algorithms
or overall architectural schemes. Because a domain is
broader than any single problem in it, there may be ex-
pectations engendered by the domain representation that
are not found in a specific program. Because a program
is not always accurate or up-to-date, there may be things
missing or incorrectly expressed in the program, despite

contraindications in the domain representation. And,
because a program is often used for more than one pur-
pose, it may include components that do not appear at all
in the domain representation.

Nevertheless, a domain representation can establish
expectations to be confirmed in a program. Furthermore,
the objects in the domain representation are related to
each other and organized in prototypical ways that may
likewise be recognized in the program. Hence, a domain
representation can act as a schema for controlling the
reverse engineering process and a template for organiz-
ing its results.

2.2. Report-Writing Domain Model

Figure 1 shows a structural (surface) view of the
main components of a report. Four logically independent
components, ReportTitlePage, ReportHeader, Report-
Footer, ReportTrailerPage, are used for general presenta-
tion purpose but they are of little importance in the con-
struction of a report. Although there are three main
types of reports: Text, Record and Matrix, we concentrate
here only on the report of type Record for the sake of
simplicity. Another component, Report_Init, supplies
initialization information such as the page length.

In general terms, a Record report is constructed from
the sequential output of Pascal-like records or SQL-like
rows taken from a master file. The selection of the rec-
ords can be constrained according to many criteria. A
report can also be partitioned and summaries can be ac-
cumulated over these partitions or over the entire report.
Further, text chunks can be added and parametrized to
add diverse information to enhance report readability.
Examples of such additions are report headers and foot-
ers. A group is a conceptual segmentation of a report
where the unit of computation concerns one main input
file over which a pivot is defined. Conceptually, a pivot
is an artifact that partitions a sequence of records origi-
nating from an input file according to values in a set of
fields. Each group has a pivot structure.

To gain a better sense of the domain model, one
must describe the dynamic behavior of the domain-
specific software architecture (DSSA) components. We
use a path expression notation [4] to do this. Path ex-
pressions present a clear and unambiguous description of
the composability of components. It allows a top level
description of patterns of interactions. In this notation, a
semicolon indicates a sequence of processes and a word
(token) surrounded by brackets is a component. A stated,
bracketed component denotes one that can be omitted. A

sequence of names separated by commas and surrounded
by a pair of brackets denotes a choice where any, but only
one, of the component can be chosen. Using this nota-
tion, the following prescribes how the main DSSA com-
ponents are to interact:

General Report-Writing:

Path Report DSSAPE ={(Configure);
 (ReportTitlePage)*;(ReportHeader)*;
 (Text_Report, Report_Type, Matrix_Report);
 (ReportFooter)*; (ReportTrailerPage)*}* end

Instantiated for a record report:

Path Report DSSAPE ={(Configure);
 (ReportTitlePage)*;(ReportHeader)*;
 (Process_Group1(Process_PivotStructure) ;...;
 Process_Groupn(Process_PivotStructure))
 (ReportFooter)*; (ReportTrailerPage)*}* end

The pivot structure is at the heart of a report writing.
Figure 2 presents the control flow overview of the algo-
rithm represented by the structure. The concept of pivot
was first introduced in the Report-Writing DSSA struc-
tural view. A Report-Writing pivot (later referred to as
the main pivot) is used by the control structure that
opens, read and sequentially processes records from a
master file. In the course of that operation, peripheral
processing can be done to handle headers, footers and
summaries. These peripheral processes happen deter-
ministically during the report writing operation. Pivots
serve as partition definition. A new partition is gener-
ated each time a new value appears in any of the fields of

the set. There can be multiple sets of fields, each defin-
ing multiple levels of partition. This results in multiple,
embedded sub-pivot structures. Embedded pivot struc-
tures are linked together simply by creating the sub-pivot
new value test in the body of the parent pivot. Sub-pivot
structures are simplified version of the main pivot struc-
ture: no reading of the master file occurs. Partitioning is
done using a set of fields.

Some comments are necessary to clarify the func-
tionality of the pivot structure (Figure 2). We briefly go
through the structure’s main steps. At the beginning, a
master file is opened. The structure attempts to read a
first record and an EOF test is performed.

If the EOF test is negative, the control flow proceeds
to another test that determines whether or not a new
pivot value has appeared. If it is not the case then the
control flow moves to the pivot body. There, the row is
processed, summaries are accumulated both at the group
and pivot levels. If there are child pivots they are recur-
sivelly reached in the parent-child direction. But, if a
new pivot value has appeared, there are two cases. If it is
the very first time that a new pivot value appeared, that is
when the report program first starts; a group and pivot
header must be printed for the first pivot. For the second
and later pivot values, only the pivot header must appear.
If it is not the first time, then the old pivot footer and
summaries should be processed, the pivot-dependent
summaries should be reset to 0 and a new pivot header
printed.

ReportHeader
Component

ReportTitlePage
Component

Figure 1: Structural View and Components of the Report Domain specific software architecture.

Report_Wrinting
DSSA

<Report_Type>
Component

ReportFooter
Component

ReportTrailerPage
Component

<Report_Init>
Component

Is-a

Has-a

Legend:

Text_Report

Record_Report

Matrix_Report

Group 1
Type: Regular

Group n
Type: Regular

Group 1
Type: Matrix

Group 2
Type: Matrix

:

Pivot Structure

Pivot Structure

If the EOF test is positive, then the structure asks if
any work must be done. That is if the master file is
empty or not. If no operation is performed, then the
group header and footer are printed and the structure is
exited. If some operation is performed then the pivot
footer and summaries are printed. This is followed by
processing the group summaries and footer.

In the pivot structure described above, the order of
some operation can be interchanged. In boxes A and B,
the decision to process the pivot footer before the pivot
summaries is an arbitrary one. Their sequential order
could be reversed depending on the particular situation.
The same can be said about the group footer and sum-
maries. We should also mention that not all the different
elements of a pivot structure are necessary for its exis-
tence. For instance, report authors can decide not to have
any summaries, pivot header or footers. It is entirely up
to the specifics of the program requirements to decide
which of these roles are used.

2.3. An Executable Domain Model

To engineer our executable domain model, we use
the technique of object-oriented frameworks. An object-
oriented framework is a carefully crafted set of abstract

classes that collaborate to carry out responsibilities and
together embody a reusable design for an entire class of
applications or subsystems [6]. An abstract class is an
incompletely specified class that is designed to be a tem-
plate for one or many subclasses. As such, a class is a
reusable design of a component [12]. The Report-
Writing domain-specific software architecture serves as a
guide to understand and document the framework func-
tionality.

Documenting a framework is a difficult endeavor. It
is important to convey both structural and dynamic char-
acteristics of the system. In this research, we have used
the work of Campbell [5] to present these characteristics.
To document a framework, Campbell uses a list of the
main abstract class’s interface with parameter specifica-
tion together with a presentation of how these abstract
classes function with one another. In this paper, we pre-
sent only the Report-Writing DSSA and the Pivot control
flow structure already introduced to provide the reader
with an understanding of the framework functionality.

Using the executable domain.

With the object-oriented framework technology, pro-
gramming the executable domain model is reduced to
instantiating a necessary number of parameters. That is,
the framework can work only if a minimal set of parame-
ters has been specified so that a complete, although per-
haps rather skeletal, report can be generated. Once this is

Y N

A

Y

NY

B

N

- Group Header
- Group Footer

Flow of Control

Figure 2: Report-Writting Pivot Structure

Legend:
Read master

File for record

 - Group Header
 - Pivot Header

Open Master
File

Test
EOF

New
Pivot?

First
Time Ever?

 - Pivot Footer
 - Pivot Summaries
 - Pivot Sum. Reset
 - Pivot Header

 - Process Row
 - Accumulate Sum.
 Pivot & Group
 - Next Pivot Branch

Any Work
Done

End

 - Pivot Footer
 - Pivot Summaries
 - Group Sum.
 - Group Footer

N

Y

Pivot Body:

done, other parameters can be used to specify more
complex reports. It is important to understand the origin
of such parameters. They are come into existence during
the construction of the framework. For each framework
component, there are necessary parameters, and for each
report there are necessary components. Together, a set of
component requires a number of parameters, some neces-
sary, some optional. The Report-Writing minimal pa-
rameter set for record reports is reported in Table 1.

3. REVERSE ENGINEERING AND DOMAIN

MODEL INSTANTIATION

This is the fourth step in our methodology, and it
embodies the active process of reverse engineering. We
illustrate this step by concurrently instantiating the
framework while recovering the target program specifi-
cations. For the purpose of this experiment, we have
chosen PGUA13, a report program of type record taken
from the IMCSRS suite, that contains 648 lines of CO-
BOL. We use the Report-Writing architecture in general
and the pivot structure in particular to drive the search
for key features in the report.

The first key feature to recover in the minimal set of
parameters is the file whose records are processed and its

structure. There could be more than one such file but if
this is the case, the first processed file (or one conceptu-
ally independent of others as shown using program slic-
ing techniques) should be our target. A simple search for
a file reading statement followed logically by some in-
struction looping back to the file reading statement suf-
fices. We obtain from PGUA13 the chunk of code indi-
cated in Figure 3.

This loop structure indicates that IG09AGU is the
main file whose records are processed. We search
P13AGU to find in the DATA DIVISION section the
record structure WS-D-REC as indicated in line 427. We
return:

 0097 01 WS-D-REC.
 0098 03 WS-D-UIC PIC X(6).
 0099 03 FILLER PIC X.
 0100 03 WS-D-SEQ PIC XXX.
 0101 03 WS-D-NOMEN PIC X(8).
 0102 03 FILLER PIC XX.
 0103 03 WS-D-MODEL PIC X(10).
 0104 03 WS-D-ECC-LIN PIC X(8).
 0105 03 WS-D-AUTH PIC XXX.
 0106 03 WS-D-OH PIC XXX.
 0107 03 WS-D-POSS PIC X(5).
 0108 03 WS-D-AVAL PIC X(5).
 0109 03 WS-D-O-SUP PIC X(5).
 0110 03 WS-D-O-MAINT PIC X(5).
 0111 03 WS-D-S-SUP PIC X(5).
 0112 03 WS-D-S-MAINT PIC X(5).
 0113 03 FILLER PIC XXXX.
 0114 03 WS-D-UTIL PIC X.
 0115 03 WS-D-CARD-CODE PIC X.
 0116 03 WS-D-NOMEN-P PIC X(10).
 0117 03 WS-D-OR-P PIC X(2).
 0118 03 WS-D-ORG-NAME-P PIC X(20).
 0119 03 WS-D-ALO-P PIC X.
 0120 03 WS-D-STATION-P PIC X(5).
 0121 03 FILLER PIC X(12).
 0122 03 WS-SORT-KEY PIC X(21).

Parameter ADT Explanation
<Report_Type> Denotes the type of report.
<Report_Groups> Contains a sequence of Groups.
<Groups> An ordered sequence of ADTs with two slots: <File_Description> and

<Main_Pivot> (plus others, unimportant in this context.)
<File_Description> Contains a name and an ordered sequence of <File_field> ADTs. Each

File_field ADT is composed of a string of characters denoting the name of the
field, a type and a length.

<Main_Pivot> ADT with six slots, of which only Pivot is required in the minimal set. All
other slots are optional.
Pivot, ;an ordered sequence of fields defining the pivot constraints
Printable ;an ordered sequence of Format_Fields to gather information

about the location and format of each File_Field to be printed
at that pivot level.

Header ;an ordered sequence of text objects
Footer ;an ordered sequence of text objects
Summaries ;an ordered sequence of summaries
Sub_Pivot ;a sub pivot ADT that is similar to this one.

<Report_Initialization> A sequence made of a number of initialization parameters used to set default
values regarding to operation of the framework. Included in these are the units
used; in most COBOL programs, the unit gradient is the character, the page
height, the width, the left, right, top and bottom margin.

Table 1: The Report Writing minimal parameter set (Report type: record)

Using the above information, one can now start to
instantiate the executable domain model:

<Report_Type> is Record.
<Report_Groups> is [GroupOne] and it contains only
the skeleton of the above loop structure specifications.
It is automatically created for any new record report,
yet it does not contain any specific information now.
<File_Description> for GroupOne can be fully speci-
fied now because we have found the file structure:
[{WS-

D-UIC,char,6},{VOID1,char,1},{WS-D-SEQ,char,3},{WS-

D-NOMEN,char,8},...,{WS-SORT-KEY,char,21}]
<Main_Pivot> is empty at this stage.

<Report_Initialization> contains default values that
will be altered only if the reversed specifications man-
date it.

At that stage, we endeavor to locate the main pivot,
using the pivot structure shown in Figure 2. A pivot
value will be characterized by one or more data file fields
comprised in the condition of a test statement. Each one
of these will be compared to a value holder that repre-
sents the field invariant. For the main pivot, this test will
always be located logically below the file read. Sub-pivot
conditions, if any, will come logically, one after the
other, after the main pivot. Searching through the source
code using these guidelines, we find the main pivot at
line 434. The field is WS-D-STATION-P and the value
holder WS-STATION-HOLD. We notice that a trick was

0026 0020-READ-INPUT
0427 READ IG09AGU INTO WS-D-REC
0428 AT END
0429 GO TO 0290-FINAL-PROCESSING.
0430 ADD 1 TO WS-CDI.
0431 IF WS-STATION-HOLD EQUAL TO 'ZZZZZ'
0432 GO TO 0040-MOVE-FIELDS.
0433 0030-CK-STATION.
0434 IF WS-D-STATION-P EQUAL TO WS-STATION-HOLD
0435 GO TO 0050-CK-ECCLIN.
0436 PERFORM 0190-MAJ-RTN THRU 0210-MAJ-EXIT.
0437 0040-MOVE-FIELDS.
0438 MOVE WS-D-STATION-P TO WS-STATION-HOLD WS-HD-STATION.
0439 PERFORM 0240-WRITE-HD THRU 0260-EXIT.
0440 MOVE WS-D-UIC TO WS-UIC-HOLD.
0441 MOVE WS-D-ECC-LIN TO WS-ECC WS-P-ECC-LIN.
0442 MOVE WS-D-NOMEN-P TO WS-P-NOMEN.
0443 MOVE WS-D-OR-P TO WS-P-DA-OR-AVG WS-ORP.
0444 MOVE 1 TO WS-PG-CNT.
0445 0050-CK-ECCLIN.
0446 IF WS-D-ECC-LIN EQUAL TO WS-ECC
0447 GO TO 0070-CK-UIC.
0448 PERFORM 0190-MAJ-RTN THRU 0210-MAJ-EXIT.
0449 MOVE WS-D-ECC-LIN TO WS-ECC WS-P-ECC-LIN.
0450 MOVE WS-D-NOMEN-P TO WS-P-NOMEN.
0451 MOVE WS-D-OR-P TO WS-P-DA-OR-AVG WS-ORP.
0452 MOVE WS-D-UIC TO WS-UIC-HOLD.
0453 0070-CK-UIC.
0454 IF WS-D-UIC EQUAL TO WS-UIC-HOLD
0455 GO TO 0080-ADD-TOTALS.
0456 PERFORM 0090-MIN-RTN THRU 0110-MIN-EXIT.
0457 MOVE WS-D-UIC TO WS-UIC-HOLD.
0458 0080-ADD-TOTALS.
0459 MOVE WS-D-POSS TO WS-TOTAL-HOLD.
0460 MOVE WS-D-AVAL TO WS-D-AVAL-HOLD.
0461 MOVE WS-D-O-SUP TO WS-D-O-SUP-HOLD.
0462 MOVE WS-D-O-MAINT TO WS-D-O-MAINT-HOLD.
0463 MOVE WS-D-S-SUP TO WS-D-S-SUP-HOLD.
0464 MOVE WS-D-S-MAINT TO WS-D-S-MAINT-HOLD.
0465 ADD WS-TOTAL-HOLD TO WS-D-TOTAL (1) WS-A-TOTAL (1).
0466 ADD WS-D-AVAL-HOLD TO WS-D-TOTAL (2) WS-A-TOTAL (2).
0467 ADD WS-D-O-SUP-HOLD TO WS-D-TOTAL (3) WS-A-TOTAL (3).
0468 ADD WS-D-O-MAINT-HOLD TO WS-D-TOTAL (4) WS-A-TOTAL (4).
0469 ADD WS-D-S-SUP-HOLD TO WS-D-TOTAL (5) WS-A-TOTAL (5).
0470 ADD WS-D-S-MAINT-HOLD TO WS-D-TOTAL (6) WS-A-TOTAL (6).
0471 GO TO 0020-READ-INPUT.

Figure 3: PGUA13 Main pivot structure

used in lines 431-432 to test for the first value holder.
This coding practice renders the code fragile, what would
happen if WS-D-STATION-P took the value ‘ZZZZZ’ during
run time? Its type does not preclude it.

Now we can begin to write the specification of the
main pivot. Note that we have no information yet on the
other parameter slots.

<Main_Pivot> is {[WS-STATION-HOLD], , , , , }

Using the same reasoning used for the main pivot,
we find the first sub-pivot WS-D-ECC-LIN with value holder
WS-ECC at line 446. Likewise, we find the second sub-
pivot WS-D-UIC with value holder WS-UIC-HOLD at line
454. We can now parametrize the framework with:

<Main_Pivot> is {[WS-STATION-HOLD], , , , , SubPivot_1}

<SubPivot_1> is {[WS-D-ECC-LIN], , , , , SubPivot_2}

<SubPivot_2> is {[WS-D-UIC], , , , , }

The minimal set of parameter is now structurally
complete. Together, they represent the partitioning al-
gorithm used in the report. This is the most important
step. Once the partitioning scheme is understood, the
rest is only a matter of ‘dressing up’ each partition with
summaries, headers, footer and data fields according to
the original source-code. Overall, P13AGU has three
levels of partition. Each is mainly concerned with col-
lecting summary numbers.

To complete the process, all the source-code must be
accounted for by a parameter in the framework. For in-
stance, in the second sub-pivot, lines 459 to 470 must be
checked one by one. This leads to the creation of an ar-
ray of six summaries, accumulated every time the control
passes through this part of the program. To complete the
summary specifications, formatting and location infor-
mation must be also be recovered and specified in the
framework. Format recovery is done by searching
through the slice defined by the summary names and
locating the definition in the WORKING STORAGE
SECTION. Location recovery is done in a similar fash-
ion.

4. RE-ENGINEERING P13AGU

This is the fifth step of our re-engineering method.
In this step, the software artifact is evolved according to
new specifications. To get a broader understanding of
the types of changes that our method can handle, we ask
ourselves the following question: What type of changes
would one want to make to a report program? For each,

we ponder how successful we would be handling the arti-
fact evolution.

Additional specification. This kind of evolution
enhances a report with additional functionality without
altering what already exists. Typical examples of such
changes are the addition of a summary, header, footers
and sub-pivots (additional partition); though sub-pivots
can only be added to the last pivot/sub-pivot in the parti-
tioning sequence. Additional specifications are handled
simply by additional framework parametrization. For
instance, another sub-pivot could be added to P13AGU to
logically partition it further so as to gather more refined
summaries. For instance, we would have to modify
<SubPivot_2> to {[WS-D-UIC], , , , , SubPivot_3} and create
<SubPivot_3> to be {[WS-D-O-SUP], , , , ,}.

Transparent specification. This special type of
change denotes the redefinition of variables without
modifying the report definition. In maintenance, a situa-
tion often arises where data files are evolved. New data
fields appear or, most often, some field type or length is
changed to accommodate unforeseen input cases. Here,
our methodology would also functions well. For a given
file, the <File_Description> parameter would be modi-
fied. For instance, the field WS-D-NOMEN in line 101
could be extended to 20 characters. <File_Description>
would become: [{WS-D-UIC,char,6}, {VOID1,char,1}, {WS-

D-SEQ,char,3}, {WS-D-NOMEN,char,20},...,{WS-SORT-

KEY,char,21}]. Dependent variables could then be sliced
and modified automatically.

Destructive specification. This is the hardest kind
of change. It concerns mainly a change in the main
pivot/sub-pivot partitioning structure or in the scope of
summary definition. Yet, we have experienced strong
success in performing changes of that type. Again, sim-
ple changes in the order or in the nature of the pivot
structure, done via the framework parametrization, al-
lowed us to dramatically restructure and evolve pro-
grams. For instance, we can inverse the order of the sub-
pivots in P13AGU. <SubPivot_2> would become
<SubPivot_1> and inversely. This dramatically changes
the logical partitioning of AG09AGU. Other summary
calculations that subscribe to some new artifact evolution
specifications can be accumulated.

We note that a combination of these types of changes
can occur. Our experience suggests that transparent,
additional and destructive specification changes should
be done in that order.

5. CONCLUSIONS

In this paper we presented a reuse-based re-
engineering method. We demonstrated that, as in a
straight forward engineering situation, the use of a do-
main model in reverse engineering provides high lever-
age. We maximize this leverage by developing an execu-
table domain model that not only guides the reverse en-
gineering process, but also helps record that process
while it is ultimately executable. The latter allows for
direct artifact re-engineering.

Domain analysis is time consuming, but it provides
high level abstractions that are very powerful. When
these are articulated around a domain-specific software
architecture, leverage is maximized. This is an advan-
tage because it enables the restriction of the framework
parametrization to a limited number of values. The ma-
turity of the Report-Writing domain is crucial to our ap-
proach. Constructing an executable domain over an un-
stable realm is very difficult and we think ultimately
fruitless. To further our understanding of representation
issues, we are now exploring the possibility of joining
related domains (i.e., domains sharing some abstractions)
together in a larger reuse infrastructure. This will pro-
vide us with a better insight as for the validity of our ap-
proach. Domain representation and tool questions as
well as related implications are treated in [7].

Current domain analysis methods do not provide a
precise and complete framework to ensure total coverage
of analyzed domain. In such, there can be no guarantee
that the resulting model is complete. We have tried to
alleviate this problem by using the technique of frame-
works and, in particular, of abstract classes. We use an
abstract class’s abstract operations both to fix the princi-
ple functionality of the class and to serve as a template
for potential specialization cases that were not envisioned
during domain analysis. This way, the domain model
can be easily extended. Yet, when fundamentally new
abstractions arise, they often lead to ‘semantic earth-
quakes’ and force a major redefinition of the framework
structure. In mature domains, the latter case is less likely
to happen.

One limitation of our method stems from the lack of
the ability to automatically evolve programs in their na-
tive source-code language. The executable domain
parametrization does not help in accomplishing this task.
On the other hand, the comprehension gained of the pro-
gram during step 4 provides a solid ground to evolve the
artifact by hand. Another limitation stems from the na-
ture of the framework development. This method is
founded on the belief that the framework performs as
specified. This is only a conjecture as it is very difficult,
and probably not economically viable, to formally prove
its correctness. Yet, it is conceivable to imagine that one

could use a commercially available product in place of
the framework. It would suffice to understand such a tool
well enough to substitute framework parameters for this
tool programming or manipulation language.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the original
support of the Army Research Laboratory through con-
tract DAKF 11-91-D-0004-0019.

REFERENCES:

[1] Arango, Guillermo and Prieto-Diaz, Ruben. Domain
Analysis Concepts and Research Directions, in Do-
main Analysis and Software Systems Modeling, ed.
Ruben Prieto-Diaz and Guillermo Arango ,IEEE
Computer Society Press, 1991.

[2] Arango, Guillermo. Domain Analysis Methods. In
Software Reusability. (Eds.) W. Schaeffer, R. Prieto-
Diaz, and M. Matsumoto. Ellis Horwood, New York,
1993, pp. 17-49.

[3] Automated Data Systems Manual, Installation Mate-
rial Condition Status Reporting System (IMCSRS),
Functional User’s Manual, Commander FORSCOM,
AFLG-RO, Ft. McPherson, Georgia, April 1, 1984.

[4] Campbell R. H. The Specification of Process Sy-
chronization by Path-Expressions. In Lecture Notes in
Computer Science, pages 89-102, 1974.

[5] Campbell R. H. and Islam, N. A Technique for
Documenting the Framework of an Object-Oriented
System. Technical report UIUCDCS, University of
Illinois at Urbana-Champain.

[6] DeBaud, Jean-Marc. From Domain Analysis to Ob-
ject-Oriented Frameworks, A Reuse Oriented Soft-
ware Engineering Methodology. Thesis Proposal,
CIMR TR# 94-04, Georgia Institute of Technology,
January 1994.

[7] DeBaud, Jean-Marc, Moopen, Bijith, and Rugaber,
Spencer. Domain Analysis and Reverse Engineering,
Proceedings of the Conference on Software Mainte-
nance, pp. 326-335, Victoria, British Columbia,
September 1994.

[8] Devambu, Prem. “GENOA/GENII - A customizable,
language - and front-end - independent code ana-
lyzer”, Fourteenth International Conference on Soft-
ware Engineering, Melbourne, Australia, 1992.

[9] Devambu, Prem and Frakes, Bill, Extracting Formal
Domain Models from Existing Code for Generative
Reuse. Unpublished Technical Report.

[10] Frakes, W.B., C.J. Fox, B.A. Nejmeh. Software En-
gineering in the UNIX/C Environment, Prentice-Hall,
1991.

[11] Hildreth, Holly. Reverse Engineering Requirements
for Process-Control Software, Proceedings of the
Conference on Software Maintenance, pp. 316-325,
Victoria, British Columbia, September 1994.

[12] Johnson, Ralph E. and Foote, Brian. Designing Reus-
able Classes. Journal of Object-Oriented Program-
ming, June/July 1988, Volume 1, Number 2, pp 22-
35.

[13] Katz, S., Richter, C.A., The, K. PARIS: A system for
reusing partially interpreted schemas. In 9th Interna-
tional Conference on Software Engineering
(Monterey, Calif. Mar. 1987). IEEE Computer Soci-
ety Press, Los Alamitos, Calif., pp. 377-385.

[14] Lubars, M. Domain analysis and domain engineering
in IDeA. In Domain Analysis and Software System
Modeling. IEEE Computer Society Press, Los
Alamitos, Calif. 1991. pp 163-178.

[15] Neighbors, James. “Software Contruction from Com-
ponents”, PhD thesis, TR-160, ICS Department, Uni-
versity of California at Irvine, 1980.

[16] Neighbors, James. DRACO: A Method for Engineer-
ing Reusable Software Systems. 1989 ACM, Inc.
Addison-Wesley Publishing Co., Reading MA.

[17] Peterson, S., Kang, K., Cohen, S., and Hess, J. Fea-
ture-Oriented Domain Analysis (FODA). Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Pittsburgh, PA 15213,
Nov. 1990

[18] Reasoning Systems, Inc., Palo Alto, CA. REFINE
User’s Guide, 1990. For REFINE (TM) version 3.0

[19] Simos, M. The growing of an Organon: A hybrid
knowledge-based technology and methodology for
software reuse. In Domain Analysis and Software
System Modeling. IEEE Computer Society Press, Los
Alamitos, Calif. 1991. pp 204-221.

