
 Abstract
Current reverse engineering technology is typically

based on program analysis methods such as parsing and
data flow analysis. As such, it is limited in what it can
accomplish. Knowledge of the application domain
containing a program can help overcome this limit and
aid the comprehension process. This paper discusses the
relationship of application domain analysis and reverse
engineering. Two case studies are presented. The first
describes how domain knowledge, expressed as an
object-oriented framwork, can aid the reverse
engineering process for a well-understood domain. The
second studies how reverse engineering can be used to
build a domain model. Issues raised by the confluence
of domain analysis and reverse engineering are
discussed, and implications on future work in the area
are suggested.

Keywords: Domain analysis, reverse engineering,
report writing

1 Introduction

1.1 The problem
Reverse engineering takes a program and constructs a

high level representation useful for documentation,
maintenance, or reuse. To accomplish this, most current
reverse engineering techniques begin by analyzing a
program’s structure. The structure is determined by
lexical, syntactic, and semantic rules for legal program
constructs. Because we know how to do these kinds of
analyses quite well, it is natural to try and apply them to
understanding a program. But knowledge of program
structures alone is insufficient to achieve understanding,
just as knowing the rules of grammar for English are not
sufficient to understand essays or articles or stories.
Imagine trying to understand a program in which all
identifiers have been systematically replaced by random
names and in which all indentation and comments have
been removed [4]. The task would be difficult if not
impossible.

The problem is that programs have a purpose; their job
is to compute something. And for the computation to be
of value, the program must model or approximate some
aspect of the real world. To the extent that the model is
accurate, the program will succeed in accomplishing its
purpose. To the extent that the model is comprehended by
the reverse engineer, the process of understanding the
program will be eased.

In order to understand a program, therefore, it makes
sense to try and understand its context: that part of the
world it is modeling. Given that the source code by itself
is not sufficient to understand the program, the question
arises whether there is an alternate approach better suited
to the needs of reverse engineering. This paper argues that
application domain modeling provides such an approach.

1.2 What is domain analysis?
A domain is a problem area. Typically, many

application programs exist to solve the problems in a
single domain. Arango and Prieto-Diaz [3] give the
following prerequisites for the presence of a domain: the
existence of comprehensive relationships among objects
in the domain, a community interested in solutions to the
problems in the domain, a recognition that software
solutions are appropriate to the problems in the domain,
and a store of knowledge or collected wisdom to address
the problems in the domain.

Domain analysis. According to Neighbors [9],
domain analysis “is an attempt to identify the objects,
operators, and relationships between what domain experts
perceive to be important about the domain.” As such, it
bears a close resemblance to traditional systems analysis,
but at the level of a collection of problems rather than a
single one. Domain engineering/modeling/analysis is an
emerging research area in software engineering. It is
primarily concerned with understanding domains in order
to support initial software development and reuse, but its
artifacts and approaches will prove useful in support of
reverse engineering as well.

Domain representation. In order for domain
analysis to be useful for software development, reuse, or
reverse engineering, the results of the analysis must be
captured and expressed, preferably, in a systematic

Domain Analysis and Reverse Engineering

Jean-Marc DeBaud, Bijith Moopen, and Spencer Rugaber
Georgia Institute of Technology

Atlanta, GA 30332-0280
{debaud,bmoopen,spencer}@cc.gatech.edu

fashion. Among the aspects that might be included in such
a representation are domain objects and their definitions,
including both real world objects like “tax rate tables” and
concepts like “long term capital gains”; solution
strategies/plans/architectures like “partial order of
computation”; and a description of the boundary and other
limits to the domain like “federal, personal income tax
return.” An unresolved issue, of importance both to
software developers and reverse engineers, is the exact
form of the representation and the extent of its formality.

Relationship to reverse engineering. What role
might a domain description play in reverse engineering a
program? In general, a domain description can give the
reverse engineer a set of expected constructs to look for in
the code. These might be computer representations of real
world objects or algorithms or overall architectural
schemes.

Because a domain is broader than any single problem in
it, there may be expectations engendered by the domain
representation that are not found in a specific program.
Because a program is not always accurate or up-to-date,
there may be things missing or incorrectly expressed in the
program, despite contraindications in the domain
representation. And, because a program is often used for
more than one purpose, it may include components that do
not appear at all in the domain representation.

Nevertheless, a domain representation can establish
expectations to be confirmed in a program. Furthermore,
the objects in the domain representation are related to each
other and organized in prototypical ways that may
likewise be recognized in the program. Hence, a domain
representation can act as a schema for controlling the
reverse engineering process and a template for organizing
its results.

1.3 Approach taken
In order to better understand the relationship between

domain analysis and reverse engineering, we have
undertaken two case studies. The first explores how
reverse engineering can be aided by the existence of a
domain model. We have used a domain model, expressed
as an object-oriented framework, to guide the reverse
engineering of an application program. Section 2 presents
our observations on this process. The second case study
investigates how a domain model can be developed by
reverse engineering a program. In this case, the evolving
domain model is expressed using an Entity Relationship
diagram and a data dictionary. This case study is presented
in Section 3. The final section of the paper discusses the
issues that are raised by integrating domain analysis and
reverse engineering.

1.4 Research context
The domain that we have chosen to use is Reporting

Writing. This is a stable, well understood domain that has
been successfully modeled by database management
system vendors in the form of report writing tools. By
report writing we mean that a program’s responsibility is
to generate an output report whose contents represent and/
or summarize the data from one or more input files.

The software system that we analyzed in these case
studies is the Installation Materiel Condition Status
Reporting System (IMCSRS) [1].

This standard U. S. Army management information
system consists of approximately 10,000 lines of COBOL
code, broken into 15 programs. IMCSRS is responsible for
using input transactions to update a master file and then
producing a variety of reports describing the status of
Army materiel.

2 Case study I: using a domain model to
guide the reverse engineering effort

In this case study, we use a domain model as a
reference to guide the reverse engineering effort. We
assume that the program functionality under scrutiny falls
mostly within the chosen domain. By matching program
fragments with domain concepts, we expect to gain a
quicker and better understanding of the program. We
observe how the domain model creates expectations and a
purpose hierarchy, in turn guiding the reverse engineering.
Throughout the case study, we express the result of the
reverse engineering effort using the domain model
notation. In this section, we first present our domain model
technology: object-oriented frameworks. We then show
domain model fragments from the Report Writing domain
and proceed by describing an exercise that uses the
domain model to guide reverse engineering. We conclude
with some observations on the case study approach and
results.

2.1 Object-oriented frameworks
.The construction of a domain model entails

performing a domain analysis. We have used Arango’s
Common Process of domain analysis [2] to construct the
Report Writing domain model. Generically, a domain
analysis has four major steps: selecting a domain,
bounding the domain, eliciting and articulating the domain
concepts and operations, and expressing the domain in a
representation. The domain representation technology is
the crucial step for later use of the domain model.

In the case of this research, we have chosen to use
object-oriented frameworks as the domain model
representation mechanism. It is a novel use of the
technology. An object oriented framework is a carefully
crafted set of abstract classes that collaborate to carry out
responsibilities in order to embody a reusable design for
an entire class of applications or subsystems [6]. An
abstract class is an incompletely specified class that is
designed to be a template for a subclass. Each abstract
class is a reusable design of a component [8]. We found
the object model hierarchy very useful in representing the
generalization specialization relationships of the domain
concepts. The Report Writing framework provides a clear
and normative structure to guide the reverse engineering
effort through feature expectations. We also found that
frameworks are very easily extended when new domain
features are integrated in the model; so long as no
dramatic conceptual changes are made to the domain.

2.2 Domain model Fragments
The transition from domain concepts to object-oriented

frameworks decomposes a domain in terms of
components, mechanisms, synchronizations and a
mapping to the object model. At first, we found this
transition to be non-trivial. We decided to design a domain
specific language (DSL) to capture the domain concepts
and help in the transition. Later, we found the DSL to be
very useful in recording the changes to the domain model
as it evolved. We have structured the DSL as a non-
procedural, declarative specification languages. A number
of rules and heuristics to map the language to class
hierarchy shells have been found [6]. They proved very
helpful in designing and manipulating the Report Writing
framework. In Figure 1, we present the overall class
organization of the Report Writing framework. In this
model, reports are either text-based--a set of text strings or
calculated fields--or record-based--a set of rows fetched by
queries. Record-based reports are structured around
groups that describe and organize the rows fetched. There
are two types of record reports. A Section report is a
sequence of groups; a Matrix report is a two dimensional
array whose cell values are a function of the axis values.

In Figure 2, we refine the concept of group. In record-
based reports, groups define sections and/or subsections of
reports. A section corresponds to the definition and
handling specification of one batch of data. It is also
possible to nest one group inside another for one level.
This forms the parent-child relationship where one value
(the parent) serves as selection criterion for a set of others
(the children).

To illustrate what is involved in order to model and
describe a component in the framework, we choose a
simple component to understand. Yet, it is complex
enough to represent in details the domain concept
representation via object-oriented frameworks. In Figure
3, we present the Summary component. Summaries are
operations performed on fields fetched and printed in a
report. For example after every sale of the day is printed,
one may want to get a total sales indicator. So while the
report is printed, a sum must be kept of all the sales. It is
also possible to imagine that a head office would print all
sales, store by store, printing a total after each store and a
grand total at the end of the report. Here we have
introduced another concept, the one of sums reset to zero
at different times. In fact, the model articulates most
numeric summary functions around periodic and running
functions. Periodic denotes summaries reset at the group
level, and running denotes those set to zero only once,
when the report starts.

Figure 1 Summary Abstract Class Hierarchy

2.3 The case study
For the sake of brevity, we describe only the part of the

reverse engineering process related to the summary
component. At our disposal are two documents: the Report
Writing framework, i.e., the domain model, and a program
whose functionality was thought to conform to the Report
Writing model. Thorough familiarity with the domain
model and the framework, including its protocol
interfaces, was a precondition to starting the reverse
engineering.

Figure 1 Report Framework components and relationships

System
Parameter

GroupCells
1

GroupY

Is-a

Has-a

Legend:

ParameterInformation
Report

1n1

1

n
n

n 11

1

111

1

1

REPORT

Text_Report Record_Report

Text
Component

Section_Report Matrix_Report

GroupXGroup
Component

The first important observation made was that the
program analysis process was naturally structured by the
expectations engendered by the framework. It became
evident that the reverse engineer had built an internal
model, not unlike a purpose hierarchy of concepts, how
they related to each other and what their purposes were.
But it also became apparent that each purpose token (a
code fragment implementing an expectation), such as
summaries, was itself decomposed in a purpose sequence
made of patterns. Further, each pattern had a level of
confidence attached to it that reflected a measure of the
likelihood of having identified a purpose token in the
source code. Focusing on a particular feature in source
code quickly meant scanning the code for patterns that
would suggest the existence of that feature. In Table 1
below we present the purpose token for summaries.

This process worked both ways. If we were before hand
looking for summaries, we would specifically look for the
patterns listed in Table 1. Reciprocally, stumbling on such
patterns while attempting to identify another component
would automatically elicit the summary component
hypothesis. We found these expectations, derived from the
domain model, to be normative in guiding the reverse
engineering process.

The second important observation was that the domain
model cannot predefine all the possible summary
functions that potentially exist. Yet, the process inherent in
constructing all the custom summary functions we found
is the one in the domain model. Hence, the framework
design for that component and its associated model was
deemed robust. We found that many reports define their

own summaries using a wide range of calculation,
sometimes distributed among a number of layers of
subcomputations. But the mechanism to make summaries
remains the same. It is a stable concept.

A derived observation we also found significant was
the ease with which we could add new concrete summary
classes to the framework if the generality of the summary
made it worth doing so. This was enabled by the design of
the summary component abstract class--a single interface
to worry about--and its specification enforcement
mechanism.

The next important observation is that this method does
not deal very well with code not related to the domain. The
more unrelated code there is in a program, the more the
reverse engineering effort is distracted. The worse case
appears when unrelated code manifests itself in patterns
that can be matched in purpose tokens.

Recording the reverse engineering effort was singularly
simplified with a domain model. After some attempts to
use the DSL, it became clear that a more effective method
was to instantiate the object-oriented framework. One
would select the relevant component, such as summaries,
and instantiate it. All that must be recorded are the actual
parameters used with the interface of the component.
Hence, the recording of the reverse engineering effort
becomes the creation of the same program in a new
technology, not withstanding code unrelated to the
domain.

Figure 2 Refined view of a Group component

Group
Component

Parameter
Query

Component
Text

Component

Field
Component

Summary
Component

Parameter

1 1 1

1

1 1

1

n

n n

n n

2.4 Conclusions from the case study
Object-oriented frameworks provide a clear and

normative structure to guide the reverse engineering effort
through feature expectations and purpose patterns. To
achieve this, domain analysis is crucial in understanding
the domain. Frameworks are also easily extended with
new domain features (i.e., concrete classes), so long as no
dramatic conceptual changes are made to the domain.
Frameworks, like every model representation technology,
are prone to difficulties when used to model fluid domains.
Domain analysis must produce a model that is robust to
changes in the domain; a non trivial task. Frameworks are
based on the object model, making their overall
understandability to users somewhat easier than other
representations. Frameworks are themselves
implementations. In that respect, they can help the
discovery of purpose patterns by providing source code
constructs that can be matched with the code to reverse
engineer, given that the dissimilarities of the two
languages are not too drastic.

Having first developed the Report Writing framework
for forward engineering purposes, we were impressed by
the capabilities of the technique to record the process of
reverse engineering via the framework partial
instantiation. It was an unexpected benefit. We were also
impressed by the power of domain models to build
expectations and their related prescription abilities.

We must also caution the reader that the Report Writing
domain is a well understood one, though it is nontrivial.
This effort was successful both because the domain is
fairly stable and because it is not extremely complex.
Developing a robust domain model for flight controls,
cockpit design or operating systems would be a better
validation of the technology.

3 Case study II: growing a domain model by
reverse engineering

In this case study, we reverse engineered a program
named P14AGU from the domain of report writing and
studied the domain model that resulted. This program
prints a report called AGU017. It is part of a group of
COBOL programs used in IMCSRS--a material status
reporting system used by the U. S. Army. The program
consists of 636 lines of code of which 243 are
PROCEDURE DIVISION statements. This, in COBOL, is
the actual executable code. The rest of the statements in
the program are data declarations and definitions found in
the WORKING STORAGE and FILE sections.

3.1 Process
Synchronized Refinement [10] was used to reverse

engineer the program. This technique analyzes the
program text from the bottom up, looking for stereotypical
cues that signal the implementation of design decisions. At
the same time, it synthesizes an application description
from the top down, using expectations derived from the
various domains relevant to the program. For example, the
report writing domain suggests that somewhere in the
program should exist code for counting lines, columns,
and pages and for printing header and footer information
on each page. When suggestive variable names are
encountered in the code, an effort is made to confirm the
expected use and to annotate the derived description. As
expectations are met or refuted, the description of the
system grows. As domain artifacts are identified, they are
abstracted from the code, causing it to shrink in size. In
this way, a complete application description grows
synchronously with a refined and abstracted program
description.

The results of Synchronized Refinement are recorded
as a sequence of annotations. Each annotation indicates

Figure 3 Summary Abstract Class Hierarchy

R_SUM
here or one level above
must be implemented compute()

Abs. Class
Summary

Periodic Running First Last

MAXSUM R-MAX

compute()
operation which is abstract
It contains the

summary_function (Field)
is a template operation. is the interface protocol to

summary_function (Field)

Summary component

that a particular domain concept has been implemented
with a specific collection of programming language
constructs. Moreover, the implementation reflects a
specific decision made by the designer of how best to
represent the concept in the code.

3.2 Initial expectations
The reverse engineer knew initially that IMCSRS was a

management information system and that the particular
program was responsible for producing a report. These
facts set up some initial expectations that were further
elaborated on by reading the program’s introductory
commentary.
*REMARKS. THIS PGM SPOOLS OUT AN EQUIP
AVAIL DENSITY RPT FROM
* DATA ON DISK CREATED IN PGM P07AGU
- DATA IS ALREADY
* SORTED ON STA-DIV, ECCLIN AND UIC -
PAGE EJECT FOR STA-DIV,
* PGM COMPUTES % OR AND 3 TOTALS LINES
WHEN ECCLIN CHANGES.

Thus, P14AGU produces an equipment availability
density report from the input data. Also, the data is sorted
on the fields, STA-DIV, ECCLIN and UIC. The program
gives a page eject for any change in the value of the STA-
DIV field. It also computes the percentage OR and three
totals whenever ECCLIN changes.

Some of the initial expectations engendered by this
information includes the existence of code related to the
following concepts: an input file; page management,
including page headers and footers; overall report header
and summary; and group management code, particularly
some means by which totals and averages are computed.
Note that the expectations are more than a list, some
concepts, such as page footer, are clearly subordinate to
others, such as page management. Note also, that concepts
corresponding to entities (objects) were more apparent
than those expressing relationships.

Domain-generated expectations together with
programming experience suggested an organization to the
code that looks like the following.
begin
 print Report Header;
 for each input record

print out a line of the report;
process_grouping;
process_pagination;

 endfor;
 print Report Footer;
end;

Of course, other program architectures are possible,
and as more applications from this domain are analyzed, it
is to be expected that a more general description of the
architecture for report writing programs will evolve.

Patterns Level of Confidence

Variable name suggests a summary.
Generates a strong expectation. But it must be
confirmed later.

Declaration of a numeric variable. Generates some expectation. Could be a summary.
(*) Assignment of a variable to 0 early in the
program.

Generates some expectation. Could be a summary.

Assignment of a variable to 0 in the middle of the
program.

Generates some expectation. Could be a summary.
Reinforced if (*) was observed.

(+) Use of a variable to summarize a field value. Generates a good expectation.
Same as (+) but inside a loop fetching records one
at a time.

Generates a strong expectation.

Use of another identified summary in formula to
operate on a variable.

Generates a very strong expectation.

Statement printing a variable using, even
indirectly, a field.

Generates a strong expectation.

Statement printing a variable using, even
indirectly, a field. And, thevariable already had
generated a good or strong expectation.

Certifies the expectation.

TABLE 1 Summary Purpose Token

The architecture provided enough guidance to begin the
program analysis process. In fact, a textual scan of the
program, looking at paragraph labels and variable names
resulted in tentative recognition of code for printing
headers, recognizing group boundaries, pagination,
computing group totals, and final report processing.

3.3 Example
Our initial expectations were, by and large, confirmed

during the course of program analysis. However, the
model had to be refined as we learned more about the
program. For example, the concept of a summary field was
added to the model as follows.

The three sorted fields mentioned in the REMARKS
were taken to imply the existence of three levels of
grouping based on sorted input records. The REMARKS
also mentioned three total lines that were printed when
ECCLIN, which is a field in the input record, changes its
value. This suggested that the grouping is hierarchical,
with the uppermost level based on ECCLIN. Thus what
could be expected for the grouping implementation was:
for each input record
 print a report line
 case grouping-1

print group-1, group-2 and group-
3 totals
 case grouping-2

print group-2 and group-3 totals
 case grouping-3

print group-3 totals
 update the groupings appropriately

Grouping-1 was expected to be based on ECCLIN as
three total lines were said to be associated with it.
Groupings 2 and 3 were supposed to be based on STA-
DIV and UIC although the exact relationship was not
initially clear. These expectations were corroborated by
the existence of three totaling paragraphs:
0080-1-TOTAL-UP, 0090-2-TOTALS, 0100-3-
TOTALS.

The WORKING STORAGE section entries
corresponding to these totaling paragraphs were
recognized and added to the domain model as summary
objects.

Totaling code from the program consisted of a
sequence of four IF statements, each of which checked for
a field value change, updated a total, and stored the new
field value for later comparison. An example of one of
these is the following.
IF POS-1 NOT = WS-POS-1
 PERFORM 0080-1-TOTAL-UP THRU 0085-
EXIT
 PERFORM 0090-2-TOTALS

Figure 4 Domain Represented by an Entity Relationship Diagram

Legend:
Is-a
Has-a

Computed_field Field_value

Group Field_type

Report

n1

nn

n

1

1

Summary_object

1

1

value
Has_field

group
Print

Line

n

1

n
Page

group
Reset

 PERFORM 0100-3-TOTALS
 MOVE P-OR TO WS-OR-STD
 MOVE P-ECCLIN TO WS-ECCLIN.

The IF statements implements the case statements in
the expectations. Also, the field that was expected in this
piece of code, ECCLIN, is found here. But the presence of
four IF statements instead of three was unexpected. Also,
the ECCLIN field IF statement seemed to do only one
level of totaling. This eventually lead us to understand that
the initial REMARKS were incorrect and that four levels
were present in the sorted input data instead of the
indicated three.

3.4 Representation
The reverse engineer had an initial conception of what

the Report Writing domain meant. As the study proceeded,
this model was refined. Important missing concepts were
incorporated. Relationships were refined based on the
knowledge gained from the process. The final version took
the form of an Entity Relationship (ER) diagram and an
associated data dictionary. A portion of the ER diagram is
shown in figure 4.

3.5 Observations
Although we were able to successfully construct an

initial domain model starting from P14AGU, the process
was not as straightforward as we thought. In particular, we
noted the following phenomena in the course of our
efforts.
• In addition to the domain of report writing, it was

essential for the reverse engineer to also understand the
domain of programming. In particular, knowledge of
how abstract constructs can be represented in a particu-
lar programming language was required.

• A domain model can help detect bugs. In the case
study, the domain model pointed out a discrepancy
between the REMARKS and the actually code. This
implies that automated tools must be able to deal with
improperly implemented domains.

• Sometimes the program structure suggested by the
domain model has been distorted in its course to imple-
mentation. This phenomenon can take the form of dis-
placed code. In the case of P14AGU, code for
constraint checking was expected it to be in the group-
ing code, whereas it was found with the PAGE-END
paragraph. The lead to a confused model until the phe-
nomenon was recognized and understood.

• The level of the programming language in which the
program is written can play an important role. If it is
too low, the reverse engineer must “decompile” before
matching expectations to code. Obviously tools can
help with this. For example, in P14AGU, IF statements
were used in situations where a CASE statement would
have been clearer, if the language supported it.

• Programs will typically implement concepts from more
than one domain. In our case study, in addition to the
report writing and programming domains, there is an
equipment domain, without knowledge of which, true
understanding of the program is impossible. In addi-
tion, many programs make use of mathematical knowl-

edge that must be understood by the reverse
engineering. Often, too, knowledge of a specific
machine is required.

• An automated mechanism for abstracting code is
essential. Some code exists only to provide an optimi-
zation. It is not essential to the underlying program
functionality. Being able to replace it with a clearer
(albeit less efficient) abstraction promotes further
understanding

• Programmers write code in stylized ways, sometimes
called cliches or idioms. Understanding a program may
involve unraveling an idiom to discover what the code
is actually accomplishing. Wills has made some
progress in recognizing these patterns [11].
In conclusion, we were able to construct a formal

domain model from the code. However, clearly one
instance of a program from the domain is not sufficient
validation. Moreover, the value of doing so is severely
modulated by the presence of multiple domains.

4 Discussion

4.1 Issues raised by the case studies
The case studies described above have raised a variety

of issues. They can be broken into the categories of
representation, methods, and tools.

 Representation
• The fundamental question concerning representation is

what is the best form for a domain description to take
in order to support reverse engineering, or whether, in
fact, a single, “best” representation can be devised
[5].In our case studies, we used object oriented frame-
works and Entity Relationship diagrams, but a plethora
of alternatives exist. Although domain theorists do not
yet agree on how to represent domain information, a
consistent representation is a prerequisite to broadly
applicable tools.

• Related to this question is the issue of how much for-
mality a domain representation should entail. Many of
the domain models in the literature use sophisticated
mathematical techniques. Not only does this present a
barrier to some potential users, but it raises the ques-
tion of how best to deal with informal information. Of
course, some degree of formality is a prerequisite for
tool support.

• Another issue concerns the relation of the domain rep-
resentation to the program description that emerges as
a result of the reverse engineering process. If a domain
has a natural structure or if programs solving domain
problems tend to have a favored architecture, then the
program description should somehow mirror this. But
what if the program includes several domains, each
with their own preferred structures?

• Several technical questions also exist concerning
domain representations. How much detail should they
include? How should they deal with optional informa-
tion? How should they express abstractions such as
might arise with a parameterized domain?

Methodology
• Perhaps the overriding question of this research is

whether domain analysis can help in the reverse engi-
neering process at all. Our case studies indicate that
this is so, but more work needs to be done.

• Corollary to this is the question of how best to make
use of the domain knowledge obtained. For example,
even if we imagine existing, complete, well-organized
descriptions for each of the domains related to an
application program, it is not clear how best to com-
bine them to understand a program. Which one should
we start with? How do we coordinate a search for mul-
tiple expected constructs derived from several
domains?

• A subsidiary methodological issue concerns knowl-
edge of the domain learned while examining a pro-
gram. We would like domain descriptions to grow and
become more complete over time, but domain descrip-
tions need to be definitive, and the reverse engineer
need not be a knowledge engineer nor have sufficient
expertise to judge the accuracy, relevance, and place-
ment of the new information in the domain description.

Tools
• They not only include a lot of information, but the

information is highly interrelated. The question then
arises of how best to access this information? Are pro-
gram browser-like tools sufficient? CASE tools? Or is
a new approach required?

• Tools that access domain information may have to do a
lot of specialized inferencing, for example, to confirm
that a given program contains a valid implementation
of some domain concept. What are the implications of
this? A variety of inferencing tools exist that can be
categorized as trading off power for efficiency. Where
on this curve is the right place for domain-based
reverse engineering tools?

• An intriguing question pertains to tool generation.
Mature domains enable application generation technol-
ogy, such as report writers. How about the inverse?
Can we build application analyzer generators? In fact,
at least one such tool exists, GENOA, a language-inde-
pendent analyzer generator [7].

• Finally, what should be done with all the existing
reverse engineering tools that do not take advantage of
domain knowledge? Can they be adapted or inte-
grated? Need they be?

4.2 Implications
The variety of approaches to domain analysis discussed

above suggest themes that bear upon the use of domain
analysis for reverse engineering.
• First, domain analysis, as it exists today, is primarily

intended to support reuse. As such, concerns for infor-
mation modularization and retrieval are paramount.

• There is a role for both formal models and informal
information; the former supporting precise mappings
to solutions, and the latter aiding in problem expres-
sion, as well as design rationale capture.

• Domain analysis, as currently practiced, is concerned
both with problem analysis and solution design. This
merging of concerns flies in the face of traditional soft-
ware engineering advice to avoid prematurely con-
founding problem analysis with consideration of
solutions.

• There is a strong concern in domain analysis with
structural issues. Delineation of basic objects, opera-
tions, and associations is disciplined by the use of clas-
sification and aggregation abstractions.

• Finally, because domains are inherently more general
than the problems they subsume and because domain
models are intended to foster specialized solutions,
inferencing and program generation technology are
strongly indicated.

4.3 Conclusions
The argument for the use of domain analysis in

software development is compelling: we need to improve
productivity, and to do this, we should reuse as much
existing software and its associated documentation as
possible. We obtain maximum leverage in reuse by using
the highest possible level of abstraction--domain
knowledge.

The argument for relating domain analysis to reverse
engineering is equally convincing: reverse engineering
involves understanding a program and expressing that
understanding via a high level representation;
understanding concerns both what a program does (the
problem it solves) and how it does it (the programming
language constructs that express the solution); and the
more knowledge we have about the problem, the easier it
will be to interpret manifestations of problem concepts in
the source code. Based on this logic, We fully expect that
any major breakthrough in the automated program
understanding and reverse engineering area to take
significant advantage of domain information.

 Acknowledgement
The authors gratefully acknowledge the support of the

Army Research Laboratory through contract DAKF 11-
91-D-004-0019.

 References
1. Automated Data Systems Manual, Installation Materiel

Condition Status Reporting System (IMCSRS), Functional User’s
Manual, Commander FORSCOM, AFLG-RO, Ft. McPherson,
Georgia, April 1, 1984.

2. Guillermo Arango, Domain Analysis Methods, in Software
Reusability, ed. W. Schaeffer, R. Prieto-Diaz, and M. Matsumoto,
pp. 17-49, Ellis Horwood, New York, 1993.

3. Guillermo Arango and Ruben Prieto-Diaz, Domain
Analysis Concepts and Research Directions, in Domain Analysis
and Software Systems Modeling, ed. Ruben Prieto-Diaz and
Guillermo Arango, IEEE Computer Society Press, 1991.

4. Ted J. Biggerstaff, Design Recovery for Maintenance and
Reuse, IEEE Computer, vol. 22, no. 7, July 1989.

5. Richard Clayton and Spencer Rugaber, The Representation
Problem in Reverse Engineering, Proceedings of the First

Working Conference on Reverse Engineering, Baltimore,
Maryland, May 21-23, 1993.

6. J.-M. DeBaud, From Domain Analysis to Object-Oriented
Frameworks, A Reuse Oriented Software Engineering
Methodology, Thesis Proposal, Georgia Institute of Technology,
January 1994.

7. Premkumar T. Devanbu, GENOA - A Customizable,
Language- and Front-End Independent Code Analyzer,
Proceedings of the Fourteenth International Conference on
Software Engineering, pp. 307-319, Melbourne, Australia, May
1992.

8. R. E. Johnson and B. Foote, Designing Reusable Classes,
Journal of Object-Oriented Programming, vol. 1, no. 2, pp. 22-
35, June/July 1988.

9. James M. Neighbors, Software Construction from
Components, Ph.D. thesis, TR-160, ICS Department, University
of California at Irvine, 1980.

10. Stephen B. Ornburn and Spencer Rugaber, Reverse
Engineering: Resolving Conflicts between Expected and Actual
Software Designs, Proceedings of the Conference on Software
Maintenance, pp. 32-40, Orlando, Florida, November 1992.

11. Linda Mary Wills, Automated Program Recognition by
Graph Parsing, 1358 (Ph.D. Thesis), MIT Artificial Intelligence
Laboratory, July 1992.

