
Dowsing: A Tool Framework for Domain-Oriented Browsing of Software Artifacts

Richard Clayton, Spencer Rugaber, and Linda Wills
Georgia Institute of Technology

 Abstract

Program understanding relates a computer program
to the goals and requirements it is designed to accomplish.
Application-domain analysis is a source of information
that can aid program understanding by guiding the
source-code analysis and providing structure to its results.
We use the term “dowsing” to describe the process of
exploring software and the related documentation from an
application-domain point of view. We have designed a tool
framework to support dowsing and have populated it with
a variety of commercial and research tools.

Keywords: reverse engineering, domain analysis,
program understanding, software tools

1. Introduction: Dowsing

Software maintenance and enhancement activities are
the largest part of total lifecycle costs. Moreover, under-
standing source code and change requirements dominate
maintenance and enhancement effort. Consequently, meth-
ods and techniques for creating and browsing software
artifacts that improve their understandability can signifi-
cantly aid the overall software development process. It is
the thesis of our work that effective access to software arti-
facts is enabled when that access is organized around the
structure of the problem that the software is solving: its
application domain.

The term browsing is often used when a software
engineer visually examines existing code and documenta-
tion artifacts. Browsing can be supported by software tools
such as text editors, screen paginators, or text searching
tools. Even in the case of advanced source code browsers,
however, the browsed material is organized around its syn-
tactic structure; that is, how the programming language
statements are nested and parsed. This tends to obscure
details of how the program actually solves an application-
domain problem.

We have introduced the term dowsing for the process
of exploring software artifacts based on the structure of the
software’s application domain [3][4]. We are investigating
how to use application-domain information to generate,
organize, and present artifacts to software maintainers.

A domain [10] is a problem area which can be charac-
terized by its vocabulary, common assumptions, architec-
tural solution approaches, and literature. Domain analysis
“is an attempt to identify the objects, operators, and rela-
tionships between what domain experts perceive to be
important about the domain [9].”

To facilitate dowsing, various forms of automated
support are needed, including the following:

• queries posed in terms of the domain vocabulary and
concepts;

• queries about relationships between concepts or actors
in the domain;

• identification of the use of typical programming solu-
tions used in the domain, such architectural styles, pat-
terns, and cliches;

• data type analysis linked with concept assignment [2] to
connect programmer-defined types with domain con-
cepts.

We have developed a domain-oriented tool framework
for dowsing software artifacts. Artifacts include informal
textual documents, structured documents, graphical depic-
tions, and source code. Tools include those for analyzing
and organizing textual documents and generating domain
models, for analyzing source code to locate domain con-
cepts, for constructing various visualizations of applica-
tion domains and source code, and for automatically
generating domain-based hypertexts.

2. A tool framework

Software artifacts are normally organized using the
directory structure of a computer’s file system and the syn-
tactic structure mandated by a system’s programming lan-
guage. Of course, non-source-code documentation can
provide domain-centric pointers to source-code constructs.
Unfortunately, such pointers typically suffer from several
difficulties: being out-of-date with respect to the source
code, indicating specific code without specifying the
nature of the connection between the documentation and
the code, and not supporting delocalized (non-contiguous)
mappings between documents and code [13]. Our
approach is to provide semi-automated support for deriv-
ing domain and code models from the actual software arti-
facts and for exploring the software that is organized
around the domain model.

To explore the efficacy of dowsing, we have designed
a tool framework, called a Dowser, and have populated it
with a variety of commercial and research tools. The soft-
ware maintainer uses the Dowser primarily as an explora-
tion environment which provides access to source code,
textual documents, and tool-specific structured reports and
diagrams. Besides providing access to existing artifacts,
the Dowser is also capable of controlling a variety of anal-
ysis tools to generate further artifacts in the form of
reports and graphical depictions.

As illustrated in Figure 1, there are several compo-
nents in the Dowser tool framework.

• source-code-based tools for analyzing programs;
• domain-based tools for constructing application domain

models from textual and diagrammatic documents;
• repository tools for maintaining the conceptual and log-

ical models constructed by the domain-modeling and
program-analysis tools;

• hypermedia tools for constructing linkages between the
domain and program models and generating presenta-
tions, both graphical and textual, of them;

• a user interface with which the software maintainer
explores the software artifacts.

3. Using the Dowser

3.1 Domain modeling
The core of our approach to program exploration is an

application-domain model of the software. We have pro-
vided tools to help derive the domain model from software
design artifacts and documents written about an applica-
tion problem. An important activity in comprehending the
problem is being able to view the domain model and to
explore the relationships among the domain concepts. We

create an application-domain model in two steps. First,
various descriptions of the domain are analyzed using
word-frequency analysis and noun-verb analysis to extract
possible object classes and associations, as suggested by
Abbot [1]. Second, the extracted information is organized
into a coherent application-domain model by applying the
Object Modeling Technique (OMT) [12].

3.2 Program analysis
We used SUN Microsystems’ Source Browser Facil-

ity to build a procedural-level model of the code We stored
the Source Browser data in a relational database and per-
formed our analyses using SQL queries. SQL allowed us
to quickly and easily formulate code analyses with a mini-
mum of programming.

3.3 Architectural bridging
Code models and domain models must be interlinked

to enable effective domain-based program understanding.
Direct linkages are difficult to make because of the con-
ceptual distance between the code and domain models.
Consequently, we use software architecture as a stepping
stone between the two. To connect the domain model with
source code, we need an intermediate architectural model.
We performed three primary architectural analyses to con-
struct one.

Invocation analysis. Invocation analysis explores rela-
tionships between functional components and evaluates
module coherence. It can also represent intercomponent
communication if the modules denote architectural com-
ponents. From a domain-model perspective, the inter-
object communication suggests associations among
objects.

Type analysis. Type analysis connects programmer-
defined types with domain concepts. Analysis of source
code data types can be used to develop an object-oriented
representation of the code, even if the source language
does not natively support object-oriented constructs. Part-
of associations (aggregations) may be derived from analy-
sis of the hierarchical structure of the types.

Coupling analysis. Coupling analysis enables coarse-
grain relationships between functional domain concepts to
be understood. The amount of communication between
modules can be used as a measure of the strength of the
association between them, which in turn provides a mea-
sure of the coupling between two modules or objects.

3.4 Dynamically generated hypermedia
The terminology established by specification and

design documents is often carried over into later portions

Domain
Documents

Domain Analysis

Code

Code Analysis

Repository

Hypermedia

MySQL OO Repository

OCR/Scanning

Solaris C/C++

Webifier

Dot/Graphlet

Image mapper

Keyword Search Thumbnail generator

Lexical AnalysisRefine

NL Parser

Lexical Analysis Freetext Formatter

Figure 1: Dowser Tool Framework

of a software development project; these early-occurring
documents set the domain of discourse for the project.
Conversely, words appearing in the program text may have
come about due to their appearance in preliminary project
documents, and understanding the context in which these
words occur may help explain their appearance in the pro-
gram text. To provide the associated linkage tools that con-
nect the domain and code models, we have built a
hypermedia tool that dynamically generates web pages
linking the evolving domain model, code analyses, and
existing documentation. The tool supports keyword
searches and provides annotated image maps relating com-
mon terminology across these models and documents.

The user can submit a keyword-search request by
entering the appropriate keywords into an HTML form.
The keyword query is parsed by a CGI script associated
with the form and applied to a cross-document concor-
dance. The result is a set of pages containing the words
matching the keyword query. These pages are then pre-
sented in a response page of “thumbnail” representations
of the retrieved pages. Each keyword on the thumbnail
pages is color coded to provide a visual depiction of the
pages’ overall match density. Clicking on a thumbnail
page retrieves the associated full-sized pages with match-
ing terms highlighted. By using the browser’s forward and
backward buttons, as well as by spawning new pages, the
maintainer can create a detailed set of connections
between the terminology appearing in program text and in
preliminary project documents.

3.5 Presentation of high-level graphical models
In cases where tabular arrangements of Dowser-gen-

erated data are appropriate, relational databases queries
produce acceptable output. More complicated data presen-
tations, such as the call graphs produced by invocation
analysis, require further processing by external programs.
For example, the call-graph generator uses an awk script
to read the results of the call-graph analysis and write a
description of the call graph in the language used by the
dot graph-drawing program [8].

4. Comparison with other work

Recognizing and exploiting structure in domain,
architecture, and code is the central problem in supporting
program understanding. Our work draws on and benefits
from a set of approaches differing at the level of abstrac-
tion at which they address the problem.

LaSSIE [5] explicitly embodies domain, architecture,
and code knowledge about a system. LaSSIE gets domain
knowledge through reverse domain-engineering, while our
work gets its domain knowledge through domain analysis.
LaSSIE supports maintenance and enhancements of a sin-

gle, existing system, while our work develops a framework
which can be instantiated to create several different but
related systems. LaSSIE is interested in promoting reuse at
module and subprogram level, while our work is interested
in promoting reuse at the architectural level.

DESIRE [2] makes use of a rich domain model and
neural-network learning to establish connections between
the domain model and the code. Our work supports the
reverse engineer in acquiring and refining the domain
model as well as its connection to the code being explored.

Harris, Rubenstein, and Yeh [6] extract architectural-
level features from source code using pattern-matching
techniques. Architectural extraction and our work are
mutually supportive. An architectural description of the
software provides an important midpoint between the
domain description and the code, and domain knowledge
can direct and sharpen pattern matching.

DECODE [11] uses cooperative, bottom-up code
analysis to create object-oriented descriptions of code. The
reverse engineer cooperates with DECODE to create and
organize objects. To a certain extent domain concepts are
embodied in the code analysis, but when these reach their
limits, the reverse engineer is thrown back on whatever
domain resources are available outside of DECODE.

I-DOC’s research on interactive software explanation
[7] influenced our work on dowsing and linkage tools. We
share the goals of supporting interactive querying to
explore results of code analyses and of using hypermedia
to support browsing annotated software artifacts. I-DOC
supports task-oriented software understanding, our work
supports the complementary process of domain-oriented
exploration.

5. Future work

Using domain knowledge to support automated pro-
gram understanding. One of our goals is to explore how
domain knowledge can be used to further the goal of pro-
gram understanding. One way of accomplishing this is to
have the domain model expressed in a form easily accessi-
ble to the tools that undertake the source code analyses.
The domain model should guide the exploration process
by generating a set of expectations, and, when the code
analyses detect constructs satisfying the expectations, the
object-oriented domain model can be “instantiated” with
the results.

Dynamic view generation. We need to extend our docu-
ment generation tools to handle document diagrams, auto-
matically generating HTML image maps from diagrams.

Architectural analysis and visualization. An architec-
tural abstraction of the program can bridge the gap

between the domain model and the results of code analy-
sis. This raises several issues, including the relation
between the application-domain model and the architec-
ture, how architectural styles can be connected to program
descriptions, and what annotation mechanisms should be
used to make these relationships explicit and allow them to
evolve as the domain model is refined.

Knowledge sources. We need to extend our ability to cap-
ture, structure and access external knowledge. One possi-
bility is to extend the scope of lexical analysis. Another is
to encode programming knowledge as a set of program
plans and use cliche recognition to find them in the code.

6. Conclusions

Our research hypothesis is that domain-based brows-
ing, dowsing, is a more effective way to access software
artifacts for the purpose of gaining understanding than is
traditional, source-code-based browsing. To test this
hypothesis we have designed a tool framework, the
Dowser, and populated it with a variety of commercial and
research tools.

We then used the Dowser to look at two applications.
The first study examines the Mosaic web browser. Mosaic
is a mature, publicly available browser whose 100,000
lines of source code are written in the C language, and for
which some documentation is available. We have built a
domain model for web browsing and used it to organize
various artifacts related to Mosaic. The second case study
examines the domain of software loader-verifiers (SL/Vs)
which download binary executables into mobile, embed-
ded systems such as those in tanks or airplanes. We exam-
ined an SL/V program written in 10,000 lines of Ada.

We have informally found that the dowsing frame-
work is a comprehensive and integrated way to deal with
the disparate forms of loosely related software artifacts.
Nevertheless, our underlying hypothesis that domain-ori-
ented browsing is a more effective approach to program
understanding than traditional browsing needs to be vali-
dated through actual use in performing maintenance tasks,
which we can now use the Dowser to test.

Acknowledgments

This effort was sponsored in part by the Army
Research Laboratory under contract DAKF11-91-D-0004-
0055 and by the National Science Foundation under grant
CCR-9708913. It was also sponsored by the Defense
Advanced Research Projects Agency, and the United

States Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96-2-
0229. We would also like to thank the U. S. Army Tank
and Automotive Command for supplying the SL/V soft-
ware to us, and Lyman Taylor for helping with the code
analysis.

References

[1] Russell J. Abbott. “Program Design by Informal English
Descriptions.” Communications of the ACM, 12(11): 882-
894, November 1983.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. “Program
Understanding and the Concept Assignment Problem.”
Communications of the ACM, 37(5):72-83, May 1994.

[3] Richard Clayton, Spencer Rugaber, Lyman Taylor, Linda
Wills, A Case Study of Domain-based Program Under-
standing, 5th International Workshop on Program Compre-
hension, Dearborn, Michigan, May 28-30, 1997.

[4] J-M. DeBaud, B. Moopen, and S. Rugaber. “Domain Analy-
sis and Reverse Engineering.” Proceedings of the 1994
International Conference on Software Maintenance. Victo-
ria, British Columbia, Canada, September 19-23, 1994, 326-
335.

[5] P. Devanbu, R. Brachman, P. Selfridge, and B. Ballard.
“LaSSIE: A Knowledge-Based Software Information Sys-
tem,” Communications of the ACM, 34(5):35-49, May 1991.

[6] David R. Harris, Howard B. Reubenstein, and Alexander S.
Yeh. “Recognizers for Extracting Architectural Features
from Source Code.” Second Working Conference on Reverse
Engineering, pp. 252-261, July 1995.

[7] W. Lewis Johnson and Ali Erdem. “Interactive Explanation
of Software Systems.” Automated Software Engineering,
Volume 2, 1996.

[8] E. Koutsofios and S. C. North. “Drawing Graphs with dot.”
AT&T.

[9] James M. Neighbors. “Draco: A Method for Engineering
Reusable Software Components.” Software Reusability /
Concepts and Models, volume 1, Ted J. Biggerstaff and
Alan J. Perlis, editors, Addison Wesley, 1989.

[10] Rubén Prieto-Díaz and Guillermo Arango. Domain Analysis
and Software Systems Modeling. IEEE Computer Society
Press, Los Alamitos, California, 1991.

[11] Alex Quilici and David N. Chin. “DECODE: A Cooperative
Environment for Reverse-Engineering Legacy Software.”
Second Working Conference on Reverse Engineering, pp.
156-165, IEEE Computer Society Press, July 1995.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen. Object-Oriented Modeling and Design. Pren-
tice-Hall, 1991.

[13] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R.
Lampert. “Designing Documentation to Compensate for
Delocalized Plans.” Communications of the ACM, 31(11):
1259-1267, November 1988.

