
 Abstract

Evolving an existing software system is fundamentally
different from developing one from scratch. Consequently,
tools to support evolution must go beyond traditional
development tools. This paper describes the Esprit de
Corps Suite (EDCS) of software evolution tools. EDCS
supports the Mission Oriented Architectural Legacy
Evolution (MORALE) software reengineering process. The
paper briefly describes MORALE before presenting the
individual tools and how they interoperate to support
legacy system evolution.

Keywords: software tools, software evolution,
reengineering

1. The problem

Software evolution is the process of adapting an exist-
ing software system to conform to an enhanced set of
requirements. Software reengineering is software evolu-
tion performed in a systematic way. In particular, Chikof-
sky and Cross define reengineering to be “the examination
and alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new
form” [6]. Altering existing systems comprises the major-
ity of all software development time and expense, and evo-
lution comprises the majority of system alteration
(maintenance) activities [4].

The major difference between initial development and
evolution is, of course, having to take into account the
existing version of the system being evolved. Among the
important concerns are making sure that the new require-
ments are consistent with those of the existing version, try-
ing to maintain control of the architecture of the system,
understanding the code of the current version, and sug-
gesting how the enhancement might be made while main-
taining the conceptual integrity of the design. MORALE is
a software development method specifically designed to
address these issues.

2. MORALE

The goal of the MORALE project [1] is to facilitate the
evolution of legacy software systems. Facilitation takes the
form of improved quality by requirements validation,
reduced risk via architectural evaluation and assessment,
and increased productivity from maintenance and access
to design rationale and from high-level reuse of architec-
tural components.

MORALE is an acronym standing for Mission Oriented
Architectural Legacy Evolution. MORALE assumes that
evolution is a process that takes as inputs an existing sys-
tem, a set of high-level (mission-oriented) change require-
ments, and, possibly, other traditional development
documents such as requirements describing the existing
version of the system, a description of the current architec-
ture, test cases, and program documentation. Evolution
produces as output a new version of the system, preferably
including updates for the related documents. This high-
level view of software evolution is depicted in the data-
flow diagram in Figure 1.

New
Requirements

Existing
Code

Existing
Documentation

Evolve
Software

New
Software

Updated
Requirements

Revised
Documents

Figure 1: Software evolution process

A Tool Suite for Evolving Legacy Software

Spencer Rugaber
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280
spencer@cc.gatech.edu

To support the evolution process, MORALE provides a
set of methods as illustrated in Figure 2. ScenIC is respon-

sible for eliciting updated requirements; SAAM evaluates
an architecture to determine the impact of the new require-
ments; Synchronized Refinement analyzes the existing
software to extract architectural information; MESA sug-
gests redesign strategies for functional enhancements;
Architectural Reconciliation combines architectural views
provided by the other methods, reconciling any inconsis-
tencies; and MORPH is specifically aimed at extracting
user-interface components in the situation where evolution
of a system’s user interface includes migration to a new
graphical toolkit.

The MORALE methods share three kinds of informa-
tion. The most central of these are architectural descrip-
tions—consisting of components that comprise the system
and connectors that indicate their interactions. The second
kind of information shared by the methods is a set of sce-
narios describing behavioral episodes. These may take the
form of usage scenarios for ScenIC, high-level, internal
architectural scenarios for SAAM, or typical test cases for
Synchronized Refinement. The third form of information
shared by the tools describes system goals. This informa-
tion is generated by ScenIC and used to suggest redesign
strategies in MESA.

We now provide brief descriptions of the individual
MORALE methods.

2.1 ScenIC

The MORALE evolution process begins with ScenIC, a
requirements-elicitation technique. ScenIC is an acronym
standing for Scenario-based Inquiry Cycle [17]. ScenIC
supports the evolution of legacy software emphasizing the
engineering of requirements for new systems or new ver-
sions of existing systems. ScenIC builds on a generic
model of requirements and design activities known as the
Inquiry Cycle [18]. The Inquiry Cycle is a process model
and an associated prescriptive framework for acquiring,
analyzing and refining requirements descriptions and
design specifications for systems. ScenIC, as the acronym
suggests, is a specialization of the Inquiry Cycle (IC) that
emphasizes the invention of scenarios and the refinement
of requirements and early designs based on an analysis of
these scenarios. In addition to driving the requirements
elicitation process, ScenIC produces as output a descrip-
tion of system goals, a set of usage scenarios, and an initial
architectural description for use by the other MORALE
methods.

2.2 SAAM

The Software Architectural Analysis Method, or
SAAM [3][10][12], was originally developed at the Soft-
ware Engineering Institute (SEI) to enable software devel-
opers to compare different proposed architectures based
on how they would be impacted by current and future
requirements of a system. The SAAM method revolves
around group discussions by the various stakeholders in
the system, including designers, customers, and users.
SAAM comprises the following steps.
• Construction of a description of the architecture of the

existing version.
• Development of scenarios that illustrate the kinds of

activities the evolved system must support and the kinds
of quality concerns that the participants find important.

• For each scenario not supported by the existing version,
collection of the changes to the architecture that are
necessary for it to support the scenario and estimation
of the cost of performing the change.

• Summarization and prioritization of the gathered infor-
mation.
The results of a SAAM analysis can serve as input to

both MESA and Synchronized Refinement. Moreover, as
the system evolves, SAAM analysis can provide a jump-
start to the ScenIC elicitation of new requirements

2.3 Synchronized Refinement

Synchronized Refinement (SR) is a method for reverse
engineering software for the purpose of documentation,
reengineering, or reuse [7][19]. SR takes as input the
source code of a software system and a description of the
application domain that the system supports. The output
consists of three parts: an elaborated and instantiated

Figure 2: MORALE methods

Requirements
Elicitation
(ScenIC)

Adaptive
Redesign
(MESA)

Legacy Code
Analysis

(Synchronized
Refinement,
MORPH)

Architectural
Evaluation

(SAAM, Reconciliation)

Architectural information

Scenarios

Goals

domain description, an abstracted program description,
and a series of annotations detailing how the code realizes
the application. The SR process consists of two parallel
activities: analysis of the program and synthesis of the
application description. Analysis proceeds by detecting
design decisions and replacing the related code by an
abbreviated version. In this way, the program description
continues to become smaller and more abstract. Synthesis
begins with the domain description which is elaborated as
more is learned from the source code. Synchronized
Refinement has been specialized for MORALE by con-
centrating on design decisions at the architectural level. To
support architectural extraction, examination of the source
code is driven by dynamic analysis using program execu-
tions of usage scenarios. In this way, use of particular fea-
tures can be mapped to internal architectural components.
The resulting architectural information can be used by
SAAM and MESA to initiate their activities.

2.4 MESA

MESA is a method for the adaptive redesign of evolv-
ing software systems [16]. It is an acronym that stands for
Model-based Evolution in Software Agents. The MESA
method has two parts: (1) modeling a system’s informa-
tion-processing architecture and domain knowledge and
(2) using the model for architectural and knowledge rede-
sign. A software system is viewed as teleological artifact,
i.e., as an artifact that has particular functions and specific
behaviors that arise from the structure of the artifact and
result in the accomplishment of its functions.

A system is modeled in MESA using the Task-Method-
Knowledge (TMK) notation, which specifies both the
functional architecture of the system in terms of its task-
method structure, and its domain knowledge. The TMK
model of a software artifact is organized as a hierarchy of
functional and compositional abstractions and explicitly
relates the behaviors of the artifact to the domain knowl-
edge. The TMK model of a software artifact explicitly rep-
resents what can be potentially modified, which ranges
from the tasks, methods, domain knowledge, and flow of
data and control. The TMK notation for functional model-
ing provides a set of functional, behavioral and composi-
tional abstractions of software artifacts. These abstractions
can help guide the process of restructuring the legacy sys-
tems.

MESA takes as input a set of system goals (from Sce-
nIC) and an initial functional architecture (from SAAM or
SR). It produces a redesigned architecture suitable for use
by the other MORALE methods or by the actual designers
responsible for producing the new version of the system.

2.5 Architecture Reconciliation

Architectural Reconciliation [2] deals with the problem
of integrating different architectural perspectives. An
architectural perspective is a potentially incomplete repre-
sentation of an architecture generated either by an auto-
mated tool or a human analyst. Reconciled architectural
perspectives provide a more complete representation of a
real system. Reconciliation uncovers inconsistencies
pointing to areas needing further analysis or explanation.

Architectural reconciliation consists of a cycle of activities
that synthesize perspectives into a relevant set of views
that together form a complete architectural representation.
A view is a representation of an architecture used to
describe a particular aspect of a system’s structure or
behavior and which provides coverage of the entire sys-
tem. Reconciliation consists of the following four steps:
• Generation: Obtain the perspectives to be synthesized.

These perspectives may come from existing documen-
tation, source code analysis, domain analysis, or inter-
views with human experts.

• Classification: Group perspectives into their respective
views. This helps an analyst to focus initially on recon-
ciliation of perspectives that are intended to describe the
same aspects of a system.

• Union: Analyze all perspectives that represent a specific
view and develop a single view from them that incorpo-
rates structural information from all of them.

• Fusion: Analyze multiple views to check for common-
ality, consistency and to create compositions of differ-
ent views.
The other MORALE methods are all capable of gener-

ating architectural perspectives. It is the responsibility of
Architectural Reconciliation to check these for consis-
tency and to encourage convergence of names and abstrac-
tions.

2.6 MORPH

MORPH is a process for reengineering the user inter-
faces of text-based legacy systems to graphical user inter-
faces (GUIs) [13][14][15]. MORPH begins by extracting
the user interface from the computational legacy code,
using program understanding techniques to build an
abstraction, or model, of the existing interface. The legacy
system model is then transformed into a model structured
to support a GUI. Input from the human analyst is added at
this stage to define presentation details and to enhance the
model. Once the model has been restructured, forward-
engineering can be used to generate a new graphical inter-
face for the system.

User interfaces are both essential and superficial. That
is, systems always have them, but often the UI can be
thought of independently from the rest of the systems’
functionality. On one level, therefore, by being particularly
concerned with the UI, MORPH can reduce effort by the
other MORALE methods. Furthermore, and on a deeper
level, MORPH is concerned with isolating and extracting
program components for which a well-defined application
programming interface (API) exists. The techniques it
uses can be applied to other well-defined and separable
architectural layers, such as the code used to implement
interprocess communication in a multiple-process pro-
gram. Hence MORPH is one instance of a general method
for supporting the evolution of reusable components.

3. The Esprit de Corp Suite of evolution tools

The Esprit de Corp Suite of software evolution tools
has been developed to support the MORALE methods.

Several of the tools (ScenIC View, ISVis, MORPH, SIR-
RINE, SAAMPad, and REMORA) provide direct support
for an individual method. Others (VisEd and ACME
Server) are intended to support the interoperation of all of
the tools. The overall architecture of EDCS is given in Fig-
ure 3.

Information to be communicated among the compo-
nents is expressed in the ACME architectural description
language (ADL) [9]. The communication takes place in
real time supported by the ACME Server infrastructure
software. We will first present the individual tools and then
describe VisEd and ACME Server.

3.1 ScenICView

ScenIC View is an interactive scenario editor for use by
software engineers evolving large-scale legacy software
systems. ScenIC View supports the ScenIC requirements
determination method.

ScenIC View is a way for software engineers to build
ScenIC scenarios and manipulate them in a user-friendly
and intuitive environment. ScenIC View allows software
engineers to add scenarios, remove scenarios, and annotate
scenarios.

Underlying ScenIC View is a data model and repository
capable of managing information about scenarios, goals,
and high-level architectural concepts. Included in the data
model are an extensive set of relationships interconnecting
these entities. For example, scenarios are composed of epi-
sodes, each of which has a point. The point of an episode
illustrates the accomplishing or thwarting of a specific sys-
tem goal. Episodes are expressed in terms of actors and the
activities that they are capable of performing. Actors and
activities, in turn, provide initial input to the creation of a
system architecture.

3.2 ISVis

ISVis [11] is an architectural visualization and extrac-
tion tool for analyzing legacy software in order to acquire
behavioral understanding, recover original design ratio-
nale, locate change sites, and validate design and imple-
mentation decisions.

ISVis consists of two primary views using which a soft-
ware maintainer can analyze a software system. The main
view allows the analyst to define components from combi-
nations of files, classes and functions. This helps build
higher-level abstractions to represent major elements of a
software architecture. The scenario view allows the group-
ing of interactions into scenarios to provide higher-level
behavioral abstractions of dynamic program execution.

ISVis has a wide range of features including:
• Analysis of program event traces numbering over

1,000,000 events.
• Informational Mural visualization techniques to portray

global overviews of scenarios.
• Abstraction of actors and interactions through contain-

ment hierarchies and analyst-defined components and
scenarios, respectively.

• Selective filtering of individual or multiple occurrences
of a particular interaction.

• Use of patterns for locating the same or similar scenar-
ios from interaction lists.

• Saving and restoring of analysis sessions.

3.3 MORPH

The MORPH toolset supports a process for reengineer-
ing the user interfaces of character-oriented interactive
legacy systems to WIMP-style (Windows, Icons, Menus,
and Pointers) graphical user interfaces. MORPH identifies
basic user interaction tasks and associated attributes from
legacy code by applying static program understanding
techniques, including control and data flow analysis, and
pattern matching. The resulting model can then be used to
transform the abstractions in the model to a specific graph-
ical widget toolkit.

MORPH supports three activities:
1. Detection—Analyzing source code to identify the

Figure 3: EDCS Architecture

ScenIC View

SIRRINE
ISVis

MORPH

Architecture Repository
and Infrastructure

VisEd

REMORA

ACME Server

SAAM Pad

Architectural information

Scenarios

Goals

user interface components in the legacy system.
2. Representation—Building a model of the existing

user interface from the detection step.
3. Transformation—Manipulating, augmenting, and

restructuring the resulting model to allow forward
engineering to a graphical environment.

Input from the human analyst is supported in order to
refine the model and make judgment decisions in the rep-
resentation and transformation stages. Additionally, the
transformation stage allows specific graphical implemen-
tations to be chosen and integrated into the legacy code.

3.4 SAAMPad

The purpose of SAAMPad is to provide automated cap-
ture support for SAAM. SAAM uses scenario evaluations
to extract non-functional properties from a system.
SAAMPad allows the creation of architectural descrip-
tions required by SAAM, which can be evaluated. These
evaluations are then captured. An evaluation generally
consists of several scenarios, which can lead to changes in
the architectural description. During the evaluations, audio
and whiteboard notations are recorded to provide informa-
tion during the evaluation and as an historical record.

SAAM is a useful way of extracting non-functional
system properties. However, it relies on its users to record
a lot of information. This has consequences for the way
SAAM sessions are performed and limits both the amount
and level of detail of the information that can be extracted.
Users also need to create session summaries after scenar-
ios have been captured. Together with the architectural
diagrams, the summaries can be used to provide informa-
tion about a scenario at a later point in time. However, this
is often a hard task to do, because it is not known what
information from the session will be needed at a later point
in time. SAAMPad provides a way to automatically cap-
ture SAAM sessions. This relieves the users of taking
notes and allows the scenarios to be more detailed. The
capture tool also generates session summaries, which can
point to potential problem areas. Components show a time
line that indicates when they were created, focussed upon
and altered. This information can be used to search for a
particular part in the scenario that is of interest.

The system supports the use of “boxes and arrows” dia-
grams commonly used for architectural descriptions. The
diagrams are drawn freehand by the user on an electronic
whiteboard (or less desirably, a computer display) and
then recognized by the system as components and connec-
tors, after which an auto-layout feature is used to make
cosmetic improvements.

The following features are currently available:
• Support for creating architectural descriptions. Dia-

grams can be drawn freehand and are then recognized
by the capture tool.

• Automatic use of color. Color is used as a visualization
technique both during and after the performing of a sce-
nario.

• Support for scenario evaluations. It is possible to man-
age multiple versions of a single system and base a new
scenario on one of them. During an evaluation new

components can be added or existing ones can be
marked as changed. These marks are later used in the
access phase.

• Creation of session summaries. The capture tool can
generate a summary of any scenario. It shows the affect
the scenarios had on the system both in a diagram and
in a summary table.

• Support for detailed scenario information retrieval. The
user can search for a particular SAAM session, per-
formed on an architecture, and SAAMPad shows the
scenarios that were evaluated. Visualization techniques
are used to show how often each component was the
focus of attention during the scenario, and colors are
used to indicate in what phase the component was cre-
ated or annotated on. Thus, these techniques give an
overview of the scenario. Furthermore, for each compo-
nent, a time line is provided showing when in the sce-
nario it was discussed and altered. Comparing time
lines from different component can point the user to
parts in the discussion that are of interest.

3.5 SIRRINE

SIRRINE is a tool that supports the MESA method. In
particular, SIRRINE provides a graphical display of a
TMK model of an evolving system. The display contains
representations for system goals and the methods in the
software available to effect them. In addition, SIRRINE
takes as input a description of desirable new system
behavior. The description is in the form of a supplemental
goal tree. Users of SIRRINE can then “execute” the
model. The tool steps through the TMK model indicating
the subgoals and methods used to accomplish the new
behavior. The analyst can then note the ways in which the
existing system fails to accomplish the new goal. MESA
can then suggest ways in which the TMK model can be
reconfigured (manipulated and augmented) to adapt to the
desired new behavior.

3.6 REMORA

The MORALE tool suite creates many different archi-
tectural perspectives of the legacy system being evolved.
These perspectives exist at varying levels of abstraction
and may model many different aspects of the same system.
REMORA (Reconciler of MORALE Architectures) is a
tool which allows an analyst to combine and manipulate
these representations into a more complete and consistent
representation of the architecture under evolution.

Each MORALE tool creates different types of informa-
tion. The information which is architecturally significant is
stored in an ACME description. An analyst wishing to use
REMORA, interacts with the VisEd application for visual-
ization and user-interface services. The actual computa-
tional and analysis activities make decisions about
combining and manipulating the different perspectives
created by the other MORALE tool suite applications.

REMORA also uses the services provided by other
packages (both commercial and research) to do specific
processing related to key areas. A Dowser [8] allows the
analyst to automatically develop key domain concepts

from various textual artifacts pertaining to the legacy sys-
tem under evolution. A text analyzer provides word
matching services such as determining domain synonyms
and searching for root words within composite word
forms. Finally, a concept analysis package takes a formal
context and creates a concept lattice from it. The concept
lattice is used to identify components and connectors pro-
vided by the various EDCS tools. These services all oper-
ate in a synergistic fashion to allow the analyst to semi-
automatically perform architectural reconciliation activi-
ties while reducing the opportunity for error.

3.7 VisEd

VisEd is a graphical tool for displaying and manipulat-
ing architectural drawings. Drawings are made up of boxes
denoting architectural components and arrows denoting
connectors. Components may themselves have internal
structure, and VisEd allows users to dynamically control
the visible level of detail. Additionally, users can ask to
see the attributes of the individual components and con-
nectors, and a property sheet is displayed providing these
details. VisEd is not just a passive display tool. Users can
manipulate architectural drawings and the underlying
properties. This includes improving layout, adding fea-
tures, and editing properties. VisEd displays can be
dynamically updated by other MORALE tools. For exam-
ple, an analyst using ISVis can propose a high-level com-
ponent made up of existing lower-level features. The
resulting architecture can be exported and displayed by
VisEd in real time.

3.8 ACME Server

All of the EDCS tools are concerned with descriptions
of software architectures. To promote their interoperation,
EDCS has made use of the ACME architectural descrip-
tion language [9]. The intent of ACME is to provide a
common interchange format for architecture design tools.
It consists of a small set of basic language constructs and
an extension mechanism whereby individual tools can add
properties to an architectural description that other tools
can use.

In addition to the language definition, the authors of
ACME have developed a library of useful functions
(ACMELib) that tools can use to read and write ACME
architectural descriptions.

We have developed a tool called ACME Server to aug-
ment these capabilities. ACME Server provides an inter-
face between multiple running applications and an
underlying ACME representation. The communications
interface is provided via PBIO (portable binary IO
streams) and Dataexchange. Dataexchange supports redi-
rection and forwarding to allow multiple applications to
access a single ACME representation.

That is, ACME Server can be thought of as a run-time
repository for architectural descriptions. Multiple tools
can access the descriptions simultaneously. Moreover, the
tools can be running on different hardware platforms.
ACME Server also has the ability to serve multiple archi-
tectural descriptions simultaneously.

4. Validation and status

The EDCS tools are in various stages of maturity.
Table 1 describes the current status of each of the tools.

Most of the EDCS tools work on a variety of platforms.
However, several of the tools have dependencies on com-
mercial software. Details of the dependencies are provided
on the tools’ web pages1.

We are in the process of evaluating the EDCS tools. For
example, ISVis has been installed at several external sites,
and we have received feedback on its portability and appli-
cability. SAAMPad sessions have been run at an industrial
site and videotaped. Analysis of these sessions is provid-
ing valuable feedback to direct future tool evolution.

5. Future directions

A collection of individual methods does not necessarily
serve as an overall evolution process. Likewise a set of
tools need not work well together to support software
maintainers. What provides cohesion to MORALE is a
common vocabulary of concepts including architectural
representations, scenarios, and goals. These sources of
information are all directly supported by EDCS. More-
over, we have been able to use ACME and its support
libraries to provide an interoperation infrastructure in
which the tools can cooperate. This said, there are still
areas that we would like to enhance.

Scenario Mark-Up Languag. While ACME serves well
to communicate architectural information, but, even
though it is extensible, it is not ideally suited to communi-
cate all forms of information. Consequently, we are devel-
oping SCML (Scenario Mark-Up Language) as a notation
for communicating schematic scenarios. SCML is an
XML variant. It is therefore straightforward to build parser
front-ends so that other tools can access and manipulate
MORALE scenarios.

Tool Status

ScenIC View Prototype

SAAM Pad Prototype

ISVis Public Release

MORPH Prototype

SIRRINE Public Release

REMORA Being Designed

VisEd Public Release

ACME Server Public Release

Table 1: EDCS Tool Status

1. The tools themselves may be obtain on the world wide
web at URL http://www.cc.gatech.edu/
morale/tools.

ACME and UML. Although the use of ACME has
become widespread in the academic research community,
the use of UML [5] is growing even faster. Even though
UML was not designed as an architecture description lan-
guage, its popularity dictates that EDCS should provide
UML import-export capabilities.

Design Rationale. Design rationale has long been thought
of as the silver bullet of effective design reuse. However,
consensus has not been reached on exactly what it is and
how it should be used. Currently, the MORALE method
collects information from the various constituent methods
and makes no effort to impose further structuring on it.
This avoids biasing the collected data toward a specific
definition of rationale at the cost of making the data harder
to index. Further clouding the picture is the need to care-
fully track version information in the evolving system
under study. MORALE needs to address these issues to
provide more comprehensive support for design evolution.

6. Acknowledgments

The work described in this paper was performed by the
members of the MORALE project: Gregory Abowd,
Ashok Goel, Mike McCracken, Bill Murdock, Colin Potts,
Heather Richter, Spencer Rugaber, and Bob Waters of the
College of Computing at Georgia Tech, Linda Wills of the
School of Electrical and Computer Engineering at Georgia
Tech, and Melody Moore of the Computer Information
Systems Department of the College of Business Adminis-
tration at Georgia State University. In addition, Dean Jerd-
ing, a former student at Georgia Tech developed the initial
version of ISVis, Pascal Schuchhard, a visiting student
from the Netherlands, constructed the initial prototype of
SAAMPad, and Mary Lefferson a former student at Geor-
gia State contributed to the development of MORPH.

Effort sponsored by the Defense Advanced Research
Projects Agency, and the United States Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-96-2-0229. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
annotation thereon.

References

[1] Gregory Abowd, Ashok Goel, Dean F. Jerding, Michael
McCracken, Melody Moore, J. William Murdock, Colin
Potts, Spencer Rugaber and Linda Wills. “MORALE—Mis-
sion Oriented Architectural Legacy Evolution.” Proceedings
International Conference on Software Maintenance’97,
Bari, Italy, September 29-October 3, 1997, pp. 150-159.

[2] G. Abowd, S. Rugaber, and R. Waters. “Using the Architec-
tural Synthesis Process to Analyze the ISVis System–A
Case Study.” Technical Report GIT-CC-98-22, College of
Computing, Georgia Institute of Technology, August 1998.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice. Addison-Wesley, 1998.

[4] Barry W. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[5] Grady Booch, James Rumbaugh, and Ivar Jacobson. The
Unified Modeling Language User Guide. Addison Wesley,
1999.

[6] Elliot J. Chikofsky and James H. Cross II. “Reverse Engi-
neering and Design Recovery: A Taxonomy.” IEEE Soft-
ware, 1(7):13-17. January 1990.

[7] Richard Clayton, Spencer Rugaber, Lyman Taylor, and Linda
Wills. “A Case Study of Domain-based Program Under-
standing.” 5th International Workshop on Program Compre-
hension, Dearborn, Michigan, May 28-30, 1997, pp. 102-
110.

[8] Richard Clayton, Spencer Rugaber, and Linda Wills. “Dows-
ing: A Tools Framework for Domain-Oriented Browsing of
Software Artifacts.” Automated Software Engineering 1998,
Honolulu, Hawaii.

[9] D. Garlan, R. T. Monroe, and D. Wile. “ACME: An Architec-
ture Description Interchange Language.” Proceedings of
CASCON 97, November 1997, pp. 169-183.

[10] R. Kazman, G. Abowd, L. Bass, and P. Clements. “Scenario-
Based Analysis of Software Architecture.” IEEE Software,
13(6):47-56, 1996.

[11] D. Jerding and S. Rugaber. “Using Visualization for Archi-
tectural Localization and Extraction.” Proceedings of the
Fourth Working Conference on Reverse Engineering,
Amsterdam, the Netherlands, October 6-8, 1997, pp. 56-
65.

[12] P. Kazman, L. Bass, G. Abowd, and S. M. Webb. “SAAM: A
Method for Analyzing the Properties of Software Architec-
tures.” Proceedings of the International Conference on
Software Engineering (ICSE 16), pp. 81-90, 1994.

[13] Melody Moore. “Rule-Based Detection for Reengineering
User Interfaces.” Proceedings of the Third Working Con-
ference on Reverse Engineering, Monterey, California,
November 8-10, 1996, pp. 42-49.

[14] Melody Moore and Spencer Rugaber. “Domain Analysis for
Transformational Reuse.” Proceedings of the Fourth Work-
ing Conference on Reverse Engineering. October 6-8,
1997.

[15] Melody Moore and Spencer Rugaber. “Using Knowledge
Representation to Understand Interactive Systems.” Pro-
ceedings of the Fifth International Workshop on Program
Comprehension, Amsterdam, the Netherlands, May 28-30,
1997, pp. 156-163.

[16] J. Murdock and A. Goel. “A Functional Modeling Architec-
ture for Reflective Agents.” Proceedings of the AAAI-98
Workshop on Functional Modeling and Teleological Rea-
soning, Madison, Wisconsin, July, 1998.

[17] ColinPotts. “UsingSchematicScenarios toUnderstandUser
Needs.” Proceedings of the Symposium on Designing Inter-
active Systems (DIS’95), Ann Arbor, Michigan, August,
1995

[18] Colin Potts, Kenji Takahashi, and Annie I. Anton. “Inquiry-
Based Requirements Analysis.” IEEE Software, 11(2):21-
32, March 1994.

[19] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeB-
lanc, Jr.”Recognizing Design Decisions in Programs.”
IEEE Software, 7(1):46-54, January 1990.

