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I.  Introduction

A.  Definition of Program Comprehension

Program comprehension is the process of acquiring knowledge about a computer program.
Increased knowledge enables such activities as bug correction, enhancement, reuse, and docu-
mentation. While efforts are underway to automate the understanding process, such significant
amounts of knowledge and analytical power are required that today program comprehension is
largely a manual task.

B.  Motivation

Program comprehension is an emerging interest area within the software engineering field. Soft-
ware engineering itself is concerned with improving the productivity of the software development
process and the quality of the systems it produces. However, as currently practiced, the majority
of the software development effort is spent on maintaining existing systems rather than develop-
ing new ones. Estimates of the proportion of resources and time devoted to maintenance range
from 50% to 75% [1][2].

The greatest part of the software maintenance process, in turn, is devoted to understanding the
system being maintained. Fjeldstad and Hamlen report that 47% and 62% of time spent on actual
enhancement and correction tasks, respectively, are devoted to comprehension activities. These
involve reading the documentation, scanning the source code, and understanding the changes to
be made [3].

The implications are that if we want to improve software development, we should look at mainte-
nance, and if we want to improve maintenance, we should facilitate the process of comprehending
existing programs.

C.  Terminology and Relationship to Other Activities

Other terms are sometimes used to describe activities related to program comprehension. Chikof-
sky and Cross have given standard definitions for them [4]. For example, “reverse engineering is
the process of analyzing a subject system to identify the system’s components and their interrela-
tionships and create representations of the system in another form or at a higher level of abstrac-
tion.”
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A variation of reverse engineering is design recovery. In design recovery, advantage is taken not
only of the source code, but also of other information such as domain knowledge, documentation,
in-line commentary, and mnemonic variable names. Its goals are similar to those of reverse engi-
neering, while concentrating particularly on the discovery of design decisions and their rationale.

A closely related term is reengineering. Whereas reverse engineering moves from program code
to a higher level of abstraction, reengineering uses the increased understanding to reimplement
the code in a new form. The terms renovation and reclamation are also used to describe this activ-
ity. The need for reengineering may arise due to 1) changes in the operational environment, such
as moving from a centralized computational setting to one where use is decentralized, 2) degrada-
tion to system structure due to long-term maintenance, or 3) so many alterations and enhance-
ments to a system that the existing architecture is no longer appropriate.

The term reengineering is also popular in another context: business process reengineering. In this
case, the target of the reengineering is an organization instead of a software system, but the goal is
still reformulation. Smith and McKeen [5] give the following definition: “At a basic level, re-engi-
neering means radically redesigning the way an organization performs its business to achieve dra-
matic improvements in performance.” Of course, to the extent that a company’s way of doing
business is expressed by its software systems, software reengineering and business process
reengineering are intimately linked.

Yet another related term is restructuring. It is sometimes desirable to reformulate a program with-
out first abstracting it to a higher level. For example, older software, typically written in versions
of Cobol or Fortran that did not contain modern control structures, makes heavy use of GOTO
statements. Readability can sometimes be improved by replacing uses of GOTO with their mod-
ern equivalents, such as structured conditional and looping constructs [6]. This process of refor-
mulating the program without raising the level of abstraction is called restructuring, and
commercial tools are available for many languages to automate the process.

II.  Why is Program Comprehension Difficult?

Program comprehension is difficult. It is difficult because it must bridge different conceptual
areas. Of particular importance are bridges over the following five gaps.

• The gap between a problem from some application domain and a solution to it in some pro-
gramming language.

• The gap between the concrete world of physical machines and computer programs and the
abstract world of high level design descriptions.

• The gap between the desired coherent and highly structured description of a system as origi-
nally envisioned by its designers and the actual system whose structure may have disintegrated
over time.

• The gap between the hierarchical world of programs and the associational nature of human
cognition.

• The gap between the bottom-up analysis of the source code and the top-down synthesis of the
description of the application.
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A.  Application Domain and Program

Programs are solutions to problem situations from some application domain. There may or may
not be hints in the program about the particular problem. Hints can take the form of mnemonic
variable names and in-line comments. The hints are inherently informal and tend to be out-of-date
with respect to the program. Because of this, totally automatic program comprehension tools are
restricted to working with the formal program text. It is the job of the person trying to understand
the program (also called the reverse engineer or program reader) to reconstruct the mappings
from the application domain to the program. This of course requires knowledge, not only of pro-
gramming, but also of the application domain. It is no surprise, therefore, to find that most auto-
matic tools are restricted to analyzing the program text and do not address the application domain.

B.  Physical Machines and Abstract Descriptions

Computer programs are incredibly detailed. In essence they control the values of million of bits of
memory inside of a computer. One of the jobs of the reverse engineer is to decide, from all this
detail, which are the important concepts. This process is called abstraction; the reverse engineer
must create an abstract representation of the program from the mass of concrete details. The
abstraction process is not linear. That is, a given section of a program may be a part of several
abstractions. The abstractions are said to be interleaved [7], and, because of this, the designer’s
plan is delocalized in the section [8]. Typically there is no documentation in the source code of the
interleaving.

C.  Coherent Models and Incoherent Artifacts

When a program is originally constructed, there is a coherent structuring of details. The process
that creates the structuring is called design. A large variety of design methods and representation
techniques have been developed to aid this process [9]. Although programming languages have
some features intended to facilitate abstraction and structuring, the higher-level design representa-
tions may have been lost or allowed to become out-of-date by the time program comprehension is
required. More importantly, through maintenance activities such as porting, bug fixing, and
enhancement, the original structure of the program may have deteriorated [10]. That is, it is the
job of the person trying to understand the program to detect the purpose and high level structure
of a program when the original purpose of the program may have changed and where, in fact, the
program may now serve to accomplish several purposes.

D.  Hierarchical Programs and Associative Cognition

Computer programs are highly formal. They obey strict rules that limit the expression of ideas and
that control how the ideas effect the computer when they run. The two types of rules, syntax and
semantics, are organized hierarchically with broad concepts like program and function defined in
terms of narrower ones like declaration and expression. In the formal world, the meaning of a
syntactically correct program determines the output that is produced when a specific input is pre-
sented. Human cognition, to the extent that it is understood at all, seems to work associatively.
Raw data are perceived, patterns are detected, and abstractions (also called chunks [11]) are con-
structed relating them. The process of human understanding is controlled by expectations derived
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from the application domain of the program and the large body of programming knowledge held
by the reverse engineer: knowledge of the programming language, typical programming practices,
algorithms, and data structures. A program is understood to the extent that the reverse engineer
can build up correct high level chunks from the low level details evident in the program.

E.  Bottom-up Program Analysis and Top-down Model Synthesis

When an experienced reverse engineer looks at a program, he or she detects patterns that indicate
the intent of some section of code. Low level patterns are part of higher level constructs intended
to accomplish larger purposes. In this case, the process of analyzing a program proceeds bottom-
up [12]. At the same time, the programmer has some idea of the overall purpose of the program
and how it might be accomplished. As the program is perused, the overall concept is refined into a
more complete description by adding lower level details [13]. This synthesis process proceeds
top-down. The difficulty is that both of these activities need to proceed at the same time, in a syn-
chronized fashion [14].

III.  Program Comprehension by People

Most program comprehension is currently done by humans. In order to understand the process, it
is important to look at the human factors involved in comprehension. This study is called software
psychology. As a result of these efforts, a variety of models of the human program comprehension
process have been proposed. Ultimately, tools will be developed to support them. For further
information on the matter, the reader is referred to surveys by von Meyrhauser and Vans [15],
Robson et al. [16], and Paul et al. [17], and to Quilici’s recent empirical study [18].

A.  Software Psychology

The study of software psychology was pioneered by Shneiderman. It attempts to discover and
describe human limitations in interacting with computers. Shneiderman [19] defines software psy-
chology as the “study of human performance in using computer and information systems.” It uses
the techniques of experimental psychology to analyze aspects of human performance in computer
tasks. It also applies the concepts of cognitive psychology to the cognitive and perceptual pro-
cesses involved in computer interaction. In the case of maintenance, the understanding of human
skills and capacity to work with software is necessary in order to facilitate the maintainer’s exam-
ination and understanding of source code. Strengths and limitations of human abilities serve as
underlying factors in determining the functionality of software maintenance tools.

Software psychologists focus on such human factors as: ease of use, simplicity in learning,
improved reliability, reduced error frequency, and enhanced user satisfaction. Particular areas of
programming activity about which experiments have been performed are program comprehen-
sion, composition, debugging, and modification. Of most relevance to software maintenance are
experiments on program comprehension. Program comprehension is studied via experiments
requiring the memorization and reconstruction of programs. A memorization/reconstruction task
consists of studying a program and then reconstructing it from memory. It has been found that
experience of the subjects plays a vital role in this task. An experiment by Shneiderman [20]
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showed that as experience increased, the ability to reconstruct the proper program increased rap-
idly. Often experienced programmers wrote functionally equivalent, but syntactically different
versions. His explanation is that as subjects gain experience in programming they improve their
capacity to recognize meaningful program structures thus enabling them to recode the syntax into
a higher-level internal semantic structure.

After the subject completes the reconstruction task, the experimenter analyzed the reconstructed
code in terms of information chunks, which give insight to the kinds of internal information struc-
tures contained in the code. It is in terms of these internal structures that the code is interpreted, or
understood, by the subjects. Shneiderman identifies these structures in his model.

1.   Shneiderman’s Model of Program Comprehension

The majority of the program maintenance tasks are founded on program comprehension. Shnei-
derman views the comprehension of programs as consisting of three levels: low-level comprehen-
sion of the function of each line of code, mid-level comprehension of the nature of the algorithms
and data, and high-level comprehension of overall program function. It is possible to understand
each line of code and not to understand the overall program function. It is also possible to under-
stand the overall function of the program yet not understand the individual lines of code, nor the
algorithms and data. Mid-level comprehension involves knowledge of the control structures, mod-
ule design, and data structures, which can be understood without knowledge at the other two lev-
els. Thorough comprehension involves all three levels of understanding.

Experienced programmers possess a network of multi-leveled concepts in their long-term memo-
ries. Some of these concepts, which are extracted from experience and are independent of pro-
gramming language or environment, comprise the programmer’s semantic knowledge. Semantic
knowledge consists of concepts such as what an assignment statement does, how a stack is imple-
mented and used, strategies for sorting a set of elements, and many others.

Another kind of information stored in programmer’s long-term memory is syntactic knowledge.
This knowledge consists of details of different programming languages and systems such as the
proper positioning of semicolons, the legal syntax for assignment and conditional statements,
available data types, and other features of the language or environment.

Shneiderman views comprehension as a process of converting the code of a given program to
some internal semantic form. This conversion is achieved with the help of the programmer’s
semantic and syntactic knowledge. At the highest level, programmers form an idea of the pro-
gram’s purpose. They then recognize lower-level structures such as algorithms for sorting and
searching, familiar streams of statements, or others. Finally, they reach an understanding of what
the program does as well as how it does it. This understanding is represented in some internal
form. The internal representation of the program is independent of the syntactic form from which
it was extracted and is capable of being expressed in other languages or contexts.

2.   Examples of Software Psychology Experiments

Commenting. The influence of comments on program understanding is not resolved. Studies of
short programs [21] show that comments in code interfere with the process of understanding,
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require more filtering when reading the code, and, if not up-to-date, can be misleading and cause
errors in the semantic representation of the code. Comments in the code make programs longer
and disrupt the flow of code. Experiments with longer, more realistic, programs are not reported
by Shneiderman. It may well be the case that the importance of comments increases with the
length of the program.

Some experiments cited by Shneiderman [22] [23] show that functionally descriptive comments
do facilitate faster conversion of code to internal semantic structure, while non-descriptive com-
ments hinder it. Functionally descriptive comments are high-level comments that describe actions
or effects not obvious when viewing the code. Low-level non-descriptive comments that restate
the function of the code hinder program understanding by unnecessarily interrupting the subject’s
thought process.

Variable Names. The use of mnemonic variable names contributes to program comprehension
[24]. The mnemonics, however, have to be such that they add semantic information relevant to the
code. It is most likely that mnemonics have different meanings to different programmers. Allow-
ing for systematic substitution of variable names according to individual programmer’s specifica-
tions could improve comprehension. Having meaningful mnemonics reduces the programmer’s
short term memory load, making comprehension easier.

Indentation. Most programmers use indentation, but experimentally, the advantages of indenta-
tion have not been substantiated. Experiments by Weissman show that indented and commented
programs are more difficult to read [23]. Love [25] shows that indentation does not improve
understanding for short FORTRAN programs, and Shneiderman and McKay [26] show that
indented long programs are more difficult to read because deep indentation can cause lines to split
in order to accommodate margins.

B.  Models of Comprehension

Based upon software psychology studies, a variety of models have been proposed for the process
of program comprehension. Two are described here to illustrate the issues involved in modeling
this complex behavior. They were developed by Ruven Brooks and Elliot Soloway. At the highest
level, the basic structure for both cognitive models consists of four components:

• The target system to be comprehended. This consists of all the information sources available to
the understander, such as source code and supporting documentation.

• The knowledge base that encodes the understander’s experience and background knowledge
used in the comprehension task. This knowledge base is either internal (in the understander’s
mind) or external, for example in the reference manual for a programming language.

• The mental model that encodes the current state of understanding of the target program. It is
constantly being updated in the course of comprehension.

• An assimilation process that interacts with the other three components to update the current
state of understanding.

The differences in the two models of human comprehension are in the terminology describing the
contents of the knowledge base and in the approach that each adopts for the assimilation process.
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While the models contain mechanisms that utilize both top-down and bottom-up approaches to
the comprehension process, Brooks’ model emphasizes the top-down approach, while Soloway’s
model is more bottom-up.

1.   Brooks’ Model

Ruven Brooks’ model deals with the comprehension of completed programs [27][28]. It has its
basis in areas outside of computer science, such as thermodynamics problem solving, physics
problem solving, and chess. The model was initially created to explain four major sources of vari-
ation observed in the act of program comprehension.

• The functionality of the program being understood. How do programs that perform different
computations vary in comprehensibility?

• The differences in the program text. Why do programs that are written in different languages
differ in comprehensibility, even though the same calculation is performed in each?

• The motivation the understander has to comprehend the program. Why does the comprehen-
sion process vary depending on whether the motivation is to debug the program or enhance it?

• Individual differences between understanders’ abilities to comprehend a program’s purpose.
Why does one understander find a program easier to comprehend than does another?

To account for these four areas of variation, Brooks created a model based on three main ideas.

• The programming process is the construction of mappings from a task domain, through one or
more intermediate domains, to the programming domain.

• The comprehension process of that program is the reconstruction of all or part of those map-
pings.

• The reconstruction process is expectation-driven by the creation, confirmation and refinement
of hypotheses. These hypotheses describe the various domains, and the relationships between
them.

The comprehension process is one of (re-)creating the set of mappings that were used to develop
the program. The mappings are first expressed as hypotheses. An example of a high level hypoth-
esis is: “This program produces invoices.” This hypothesis maps the task domain, invoicing, to the
programming domain, the program itself.

At the very start of the understanding process, the understander forms a primary hypothesis,
which is a global, abstract description of what the understander thinks the program does. It is
formed as soon as the understander obtains any information at all about the purpose of the pro-
gram. For example, hearing the program name usually provides enough information to form the
primary hypothesis. The primary hypothesis then produces a cascade of subsidiary hypotheses.
This cascading is done depth-first, with the decision of which hypothesis to pursue based on the
understander’s motivation for comprehending the program.

The cascading continues until it produces a hypothesis that is specific enough that the under-
stander can verify it against the program code and/or supporting documentation. Specifically, the
understander begins the verification of a hypothesis when the hypothesis deals with operations
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that can be associated with visible details found in the program code. The term beacons describes
those details that show the presence of a particular structure or operation. As an example, a typical
beacon for the hypothesis ‘sort’ is a pair of loops, inside of which there is a section of code where
the values of two elements are compared and conditionally interchanged.

Beacons are important because they are the first link between the top-down hypotheses and the
actual program text. Their existence has been verified by experiments done by Wiedenbeck [29].
The method used in these experiments was memorization and recall, under the assumption that a
high recall of some part of a program, after brief study, indicates that the recalled part is important
in understanding the program. The tested hypothesis was that experts could locate these parts
more efficiently than novices. This effect was confirmed, as well as the effect of experts recalling
beacons lines more successfully than non-beacon lines (77% beacon versus 47% non-beacon).
This result was opposite for the novices, they recalled non-beacon lines better (13% beacon ver-
sus 30% non-beacon). This effect is explained by two factors. First, syntactic markers, such as
“begin” and “end” were placed one per line, and were considered non-beacons. Second, since the
novices recalled lines at the beginning of the program more effectively than later lines and many
of the beacon lines were fairly deeply embedded within the program, the net result was an
increase, percentage-wise, of non-beacon lines to beacon lines.

As stated earlier, Brooks’ theory attempts to explain four sources of variation in the act of com-
prehension.

• The functionality of the program. The intrinsic complexity of the task domain (e.g. nuclear
physics versus invoicing) causes the higher level hypotheses to be more complex and can result
in the use of a greater number of intermediate domains between the task domain and the pro-
gramming domain. Also, documentation explaining these intermediate domains is rarer than
documentation covering the original program task.

• The program text. The code and supporting documentation affect the ease that beacons are
located and the ease of binding the actual source code to hypotheses. Also, features of the lan-
guage effect the confirmation of beacons. For example, the hypothesis that “The variable ‘PI’
contains 3.1415” is easy to confirm in the C language if PI is defined using a const statement. It
is not so easy in a language without constant declarations, because even when 3.1415 is put
into ‘PI’ at the beginning of the program, one must confirm that ‘PI’ is never changed.

• The understander’s task. The motivation behind the understander affects the strategy used in
creating and following subsidiary hypotheses. For example, debugging an output format error
causes entire subsidiary hypotheses, such as those dealing with input or computation, to remain
unexplored because of the lack of relevance to the task at hand.

• The understander’s individual abilities. The knowledge the understander has about domains
affects the process on all levels. Specifically, task domain knowledge affects the quality of the
primary and higher-level hypotheses. Programming domain knowledge affects the lower level
bindings and beacon location process.

2.   Soloway’s Model

Elliot Soloway’s model also deals with the comprehension of completed programs, but divides the
knowledge base and the assimilation process differently [30][31]. In Soloway’s terminology, to
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understand a program is to recover the intention behind the code. Goals denote intentions, and
plans denote techniques for realizing intentions. Plans work as rewrite rules that convert goals
into subgoals and finally into program code. Program comprehension is defined as the process of
recognizing plans in code, combining these plans by reversing the rewrite rules to form subgoals,
and combining the subgoals into higher level goals.

The knowledge base used in this model contains many parts including the following.

• Programming language semantics. This deals with the understander’s knowledge of the lan-
guage in which the target program is written.

• Goal knowledge. This is the encoding of the understander’s set of meanings for computational
goals. The goals are encoded independently of the algorithms and the languages that imple-
ment them.

• Plan knowledge. This is the encoding of solutions to problems that the understander has solved
or understood in the past. These solutions are low level components and include those univer-
sally known to programmers. Plan knowledge also includes plans the understander has
acquired of domain-specific knowledge.

• Efficiency knowledge. This is how understanders detect inefficiencies and the influence that
efficiency issues have on programming code and plans.

• Problem domain knowledge. This is the understander’s knowledge of the world from the appli-
cation domain to the computational domain and those domains in between.

• Discourse rules. This is the knowledge of certain programming conventions, which allow the
understander to attach greater meaning to aspects of the source code and/or documentation
than is ordinarily possible. An example of a discourse rule is “If a variable name forms a word,
the meaning of that word is somehow related to the purpose of that variable”.

The supporting experiments that have been performed concern behavior and events that last for
short periods of time[32]. For example, events such as reading a line of code, formulating a ques-
tion, or stating a hypothesis are all events that have been looked at in detail. It is clear that one of
the advantages of this approach is that experimental evidence to support the theory is relatively
easy to obtain. The empirical studies have a shown the existence of discourse rules and plans, and
even the concept of a de-localized plan, a single plan that has been physically implemented in sep-
arate sections of source code to explain varying levels of complexity in comprehension [33][34].

The major implications of this model concern the building, use, and manipulation of the knowl-
edge base. The element of domain knowledge is similar to Brooks’ domains. The elements of goal
and subgoals similarly correspond to the task and intermediate domains discussed earlier. The for-
mally defined plans correspond to the mappings between the low level domains that Brooks men-
tions. But the mappings between high level domains are not addressed by plans. This is a direct
consequence of the formal, rigid structure of plans: they have gained expressive power at the low
level by sacrificing the power needed to express high level domain relationships.
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IV.  Foundations of Automated Program Comprehension

Computers are much more rigorous and formal than humans. To understand how a computer pro-
gram could comprehend other programs, the underlying formal basics of program analysis must
be appreciated. This section presents a compendium of ideas related to program analysis. It serves
both as a vehicle to present the ideas and as an indication of the variety of approaches undertaken
so far. It proceeds from straightforward textual analysis through increasingly more complex static
approaches to the dynamic analysis of executing programs.

A.  Textual Analysis

Programs are, at their most basic, sequences of characters, and one crude measure of the compre-
hensibility of a program is just the number of characters that it contains. A more useful measure,
however, is to group characters into lines and use the number of lines of code as an indication of
the size of a program. In fact, the single factor that best predicts the amount of effort required to
comprehend a program is the number of lines it contains. Other factors, such as the control flow
complexity and the pattern of variable usage are secondary. Programs range in size from one-lin-
ers in APL to systems contains millions of lines of code, such as ones to control telephone
switches.

B.  Lexical Analysis

Just as with natural languages, sequences of characters in program text fall into certain lexical cat-
egories. Instead of nouns and verbs and adjectives, however, the lexical units comprising pro-
grams consist of identifiers, operators, keywords, strings, numbers, and punctuation marks.
Lexical analysis is the process of decomposing the sequence of characters in a program’s input
file into its constituent lexical units. Once lexical analysis has been performed, various useful rep-
resentations of program information are enabled. Perhaps the most common is the cross reference
listing. In this report, program identifiers are listed along with the numbers of the lines on which
they occur. A program maintainer can then easily locate and examine code segments affected by
some modification to the program text. Many compilers produce cross reference listings as a reg-
ular part of the compilation process.

One of the most popular software complexity metrics is also enabled by lexical analysis. This
metric was devised by Halstead [35] and uses the total number of identifiers, total number of oper-
ators, number of unique identifiers and number of unique operators in order to compute various
measures including difficulty in comprehension and effort to program.

Lexical analysis is, naturally enough, performed by the lexical analyzer (or lexer) part of a pro-
gramming language’s compiler. Typically, it uses rules describing lexical program structure that
are expressed in a mathematical notation called regular expressions. In fact, it is commonplace
today to build lexical analyzers automatically using tools called lexical analyzer generators such
as lex or flex [36]. These tools take as input a set of regular expressions and produce either a set of
tables modeling a finite state acceptor for the language to be interpreted or actual code that does
the analysis directly.
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The result of lexical analysis is a stream of tokens (or lexemes) and a set of tables, such as a com-
piler’s symbol table, that describe properties of the lexemes. The lexical analyzer produces
enough information to easily answer questions like “what is the average length of variable
names?”

C.  Syntactic Analysis

The next most complex form of automated program analysis is syntactic in nature. Just as we
parse natural language text into phrases and sentences, so do compilers and other tools determine
the expressions, statements, and modules of a program.

Syntactic analysis is performed by a parser. Here, too, the requisite language properties are
expressed in a mathematical formalism, in this case called a context free grammar. Usually, these
grammars are described in a stylized notation called Backus Naur Form (BNF) [37] in which the
various program parts are defined by rules in terms of their constituents. It is also the case with
syntactic analysis that parsers can be automatically constructed from a description of the gram-
matical properties of a programming language.

Two types of representation are used to hold the results of syntactic analysis. The more primitive
of the two is called a parse tree. It is similar to the parsing diagrams used to show how a natural
language sentence is broken up into its constituents. However, parse trees contain details unre-
lated to actual program meaning, such as the punctuation, whose sole purpose is to direct the pars-
ing process. Removal of these extraneous details leads to a structure called an abstract syntax tree
(AST) that is the basis of most sophisticated program analysis tools. The AST contains just those
details that relate to the actual meaning of a program.

Because an AST is a tree, it can be traversed or walked. That is, nodes of the tree can be visited in
a pre-set sequence, such as depth-first order, and the information contained in the node delivered
to the analyzer. This approach serves as the basis of many tools in which the analyst requests
desired knowledge as a high level query expressed in terms of the node types. A standard tree
walker then interprets the query and delivers the requested information.

D.  Control Flow Analysis

Once a program’s syntactic structure is determined, it is possible to perform control flow analysis
(CFA) on it [38]. There are two forms. Intraprocedural analysis provides a determination of the
order in which statements can be executed within a subprogram. Interprocedural analysis deter-
mines the calling relationship among the program units.

Intraprocedural analysis proceeds by constructing a control flow graph (CFG) that is similar to a
flow chart. To construct a CFG, first the basic blocks of the subprogram must be determined. A
basic block is a maximal collection of consecutive statements such that control can flow in only at
the top and leave only at the bottom via either a conditional or an unconditional branch. That is, if
the first statement in the block executes, then all of the statements execute. A basic block corre-
sponds to a node in the control flow graph. Arcs indicate possible flows of control. Arcs can be
forward, usually indicating a branch, or backward, indicating a loop.
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A CFG can be directly constructed from an AST by walking the tree to determine basic blocks
and then connecting the blocks with control flow arcs. The control flow graph gives an abstract
picture of the ways in which a subprogram could execute without being cluttered by the details of
the statements in each of the basic blocks.

Another popular metric can be computed from the control flow graph. This metric is called cyclo-
matic complexity and was devised by McCabe [39]. It is a measure of the amount of branching in
a program. The assumption is that in two programs that are otherwise similar, the one with the
greater amount of branching is the more complex.

Interprocedural control flow analysis is a determination of which routines can invoke which oth-
ers. This information is often displayed in a call graph, where the main routine is at the top, and a
routine is connected by arcs from above to all the routines that can call it and by downward arcs to
all routines that it calls. In the absence of procedure parameters and pointers, this analysis is trivi-
ally computed from the AST by looking for statements that can call others. Procedure parameters
and pointers allow the possibility that the actual routine called will not be known until run-time.
In these situations, interprocedural analysis is often performed conservatively; that is, all routines
that by static analysis can possibly be the value of the procedure parameter or pointed to by the
procedure pointer are listed as possible targets of the call. This, of course, may lead to the situa-
tion where so many routines are listed that the analysis is effectively worthless.

E.  Data Flow Analysis

Although control flow analysis is useful, there are many questions that it cannot answer, such as,
which statements may be affected by the execution of a given assignment statement? To answer
this kind of question, an understanding of definitions (defs) and references (uses) is required. The
usual way that a variable is defined is if it occurs on the left hand side of an assignment statement.
Note that a given variable may be defined by numerous such statements. A use of the variable is
when its value is referenced by some other statement, for example, when it appears as a parameter
to the call of a function or as an operand in an arithmetic expression.

Data flow analysis (DFA) is concerned with answering questions related to how definitions flow
to uses in a program [38]. Data flow analysis is significantly more complex than control flow anal-
ysis. In particular, whereas CFA merely has to detect the possibility of loops, DFA has to describe
what might happen to the variables inside the loop body. However, significant additional power
derives from the additional effort to perform DFA. For example, code that can never execute, vari-
ables that might not be defined before they are used, or statements that might have to be altered
when a bug is fixed are all examples of tasks enabled by data flow analysis.

In interprocedural data flow analysis the graph of def/use dependencies is extended across proce-
dural boundaries. Problems arise when a procedure is called with arguments two or more of which
correspond to the same memory location. This is called an alias, and aliases can also arise when
pointers are used. One simple representation of interprocedural DFA information is the structure
chart [40]. A structure chart is a call graph in which arcs are annotated with the names of the for-
mal parameters and an indication of whether the arc is supplying values to the called procedure or
returning them.
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F.  Program Dependence Graphs

A further refinement of DFA is the construction of a program dependence graph (PDG). PDGs
were developed by researchers interested in converting programs to run on machines with parallel
architectures. In a PDG control and data flow dependencies are treated together in the same repre-
sentation. This uniform treatment of data and control is convenient in situations which would oth-
erwise require both a DFG and a CFG. In addition to allowing a more uniform treatment, PDGs
also have structural properties that make them useful in program comprehension. For example,
rather than representing control flow through basic blocks as in a CFG, a PDG represents regions
of control dependence. For many applications, regions are conceptually more appropriate than
basic blocks because they are canonical. No two regions depend upon the same control condi-
tions; whereas often many basic blocks in a CFG depend upon the same control conditions. Fur-
ther, regions may be factored since they are defined in terms of dependence. That is, if two regions
R1 and R2 have common control conditions, there must exist another region R3 that depends
upon exactly these common control conditions. R1 and R2 are then said to be control dependent
upon R3.

A popular extension to the PDG is to represent data dependence using static single assignment (or
SSA) form. SSA form establishes that each use of a variable is reached by exactly one definition
of that variable, and that no variable is defined more than once. Determining answers to def/use
questions can often be done significantly more efficiently using SSA form, as each use is reach-
able by a unique definition [41].

G.  Slicing

Another popular derivative of data flow analysis is provided by slicing. Slicing was introduced by
Weiser and has served as the basis of numerous program comprehension tools [42]. The slice of a
program for a particular variable at a particular line of the program is just that part of the program
responsible for giving a value to the variable at that spot. Obviously, if while debugging you deter-
mine that the value of a variable at a particular line is incorrect, it is easier to search for the faulty
code by looking at the appropriate slice than by examining the entire program.

H.  Cliche Recognition

One further elaboration of static program analysis has recently been proposed. It involves search-
ing the program text for instances of common programming patterns. These patterns are called
cliches (or idioms), and several research tools provide cliche libraries against which they automat-
ically perform searches [43]. An example of a cliche is a pattern describing loops for performing a
linear search. Obviously, the value being searched for, the data structure being searched, and pos-
sibly the mechanism for determining the match are all parameters of the cliche, thus complicating
the detection process. Moreover, there are a variety of ways for programming a linear search even
if variations due to parameters are ignored. Thus, cliche recognition is a difficult research prob-
lem, but the abstraction power it provides promises to make it a useful program comprehension
technique.
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I.  Abstract Interpretation

One final approach to static program analysis should be mentioned here. Just as the syntactic
properties of a program can be specified with a grammar expressed in BNF, so too can the seman-
tic properties be provided with a mathematical technique called denotational semantics [44]. In
this approach, the meaning of a program is expressed in terms of various data types called seman-
tic domains. For example, program state, the bindings between variables and values, is denoted by
a table-like domain. The meaning of a syntactic program construct like a statement is then given
by a function that describes what happens to the corresponding domains. For example, the mean-
ing of an assignment statement is a function that maps from the state before the assignment was
executed to the state afterwards.

It is possible to use the denotational semantics to perform static program analysis. In this case,
alternative functions are defined on variations of the original semantic domains. So, for example,
if we wished to know only whether a given variable was changed by a subprogram, we might
interpret the semantic function for the assignment statement to refer only to that variable and
instead of worrying about its possible values, we can use only a single Boolean variable to indi-
cate whether or not it has changed. This process of re-interpretation is called abstract interpreta-
tion [45] and has recently become popular for a variety of analysis tasks particularly in the area of
logic programming languages such as Prolog.

J.  Dynamic Analysis

The analysis techniques described so far have all been static; that is, they are performed on the
source code of a program [46]. It is also possible to gain increased understanding by systemati-
cally executing a program. This process is called dynamic analysis and is most frequently used
when we are trying to understand the performance and correctness properties of a program where
they are called, respectively, profiling and testing. A statement-level profiler determines the num-
ber of times each statement is executed; a procedure-level profiler does the same thing for proce-
dure calls and returns. Some profilers work by instrumenting a program, inserting extra code to do
the counting, and others construct an approximation by periodically interrupting the executing
program to determine what it is currently doing and then constructing a statistical model.

Of course, testing is the most common form of dynamic analysis, and a variety of techniques
exists for making sure that a test suite thoroughly exercises (covers) a program [47]. Statement
coverage assures that every statement is executed. Branch, condition, and path coverage measure
the extent to which all branches, conditions, and paths are executed. Numerous variations exist,
many of which make use of the other techniques described in this section.

K.  Partial Evaluation

One final form of dynamic analysis deserves mention. Let us say that we are trying to understand
a complicated real-time system that implements a complex state machine architecture by referring
to a collection of global variables with a series of nested conditional statements. Systems such as
this are common in the telecommunications industry. Suppose further that we are trying to under-
stand some particular anomalous program behavior that arises only under certain circumstances;
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for example, only when some of the global variables have specific values. The traditional way to
understand this situation is to “play computer”; that is, to mentally simulate execution, determin-
ing the flow of control by evaluating the predicates of the conditional statements in terms of the
known values of the global variables.

Of course, this process breaks down when the program gets large. An approach called partial
evaluation has been devised to address problems like this [48]. A partial evaluator is a software
tool that takes as input a program and values for certain of the program’s input parameters. It pro-
duces as output a smaller program equivalent to the original on those parameters. That is, the par-
tial evaluator executes as much of the program as it can, where possible replacing program
statements with the values computed by them. It is like a paint-by-numbers toy, where the manu-
facturer has partially evaluated the painting by supplying an outline while still leaving it to the
consumer to produce the final picture.

In the case of a telecommunications system, input parameters are really indications of the state of
the switch hardware, what lines are in use, etc. These correspond in a natural way to the global
variables defining the system state. Partial evaluation is currently a research topic, but it promises
to provide help in understanding such programs.

V.  Program Comprehension Tools

There are many tools that have been developed to aid program comprehension. Some of them are
available commercially, while others are still research prototypes.

A.  Commercial Tools

1.   Compilers

Compilers, of course, are the most commonly used program understanding tools. There are sev-
eral senses in which a compiler can be thought to understand a program. First, the compiler must
understand the program well enough to translate it into the language of the underlying machine.
Then there are optimizations. Optimizing compilers must make sure that the transformations they
apply to a program carefully preserve all of the program’s semantics. Compilers also must under-
stand errors. Some compilers even attempt to guess what the programmer really meant by an erro-
neous construct and to supply a corresponding correction. And, of course, compilers also supply
all sorts of auxiliary information such as cross reference tables, warnings about portability prob-
lems, and possible anomalies such as uninitialized variables. And, finally, compilers provide vari-
ous additional services such as augmenting the executable version of a program with information
to support profiling and debugging.

2.   Restructurers and Beautifiers

There is a class of commercial tools specifically designed to improve the comprehensibility of
programs. This class includes beautifiers and restructurers [49]. Their input is typically an older
program, either one written in an early version of a language that did not include modern control



DRAFT - 2

Program Comprehension May 4, 1995 16

structures or one that has undergone sufficient maintenance that its original structure and purpose
are no longer obvious.

Restructurers modernize a program’s control flow patterns, replacing “spaghetti” code featuring
numerous GOTO statements with conditional statements and loops. While this level of analysis is
fairly superficial, it can help improve comprehensibility by localizing related code segments and
suggesting higher level abstractions.

Beautifiers are similar to restructurers but have knowledge of program layout issues such as
indentation, bracketing conventions for compound statements, and use of whitespace in expres-
sions. Beautifiers are particularly useful for standardizing the appearance of a large program that
has undergone maintenance by different programmers using various styles.

3.   Translators, Vectorizers, and Parallelizers

Other kinds of commercial tools exist to convert a program to a different form. While not specifi-
cally aimed at improving comprehensibility, by allowing an algorithm to be expressed in an alter-
native form, the tools may enable simplifications that do have that effect.

The first example is the language-to-language translator (for example, f2c, [50]). If the two lan-
guages are at the same level of abstraction, then it is likely that the transformed code is less rather
than more comprehensible than the original. This happens because of the superficial level of
understanding that the typical commercial translator has of the source program. If the target lan-
guage is at a higher level or particularly well adapted to an application area, then a successful
translation can lead to a significantly smaller or more modular program [51]. For example, an
SQL version of a Cobol program can take advantage of features built into database utilities to
remove voluminous Cobol file manipulation code.

Of a similar nature are vectorizers and parallelizers [52]. These tools are capable of taking advan-
tage of regularities in an algorithm to produce code for vector hardware boxes and parallel
machines, thereby producing answers more efficiently. For example, many loops can be replaced
by a single statement acting simultaneously on several elements of an array. The resulting pro-
gram is consequently reduced in size from the original and presumably easier to understand.

4.   CASE Tools

Computer Aided Software Engineering (CASE) is a segment of the computer software market
originally promoted as helping with the initial construction of large software systems by teams of
developers [53]. CASE tools typically provide a variety of graphical editors for expressing high
level designs, consistency checkers for detecting problems, and, in some cases, code generators
for actually producing programs. Recently, however, CASE vendors have realized that the same
types of diagrams previously manually drawn by developers can prove useful in understanding
existing code. And, in many cases, the diagrams can be automatically constructed from the code.

Probably the most common diagram is the structure chart [40]. It indicates which subprograms
can invoke which others and the names and types of the arguments passed among them. Other
types of available diagrams include the dataflow diagram1 indicating the major software modules
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and data repositories and how data and control information flow among them [54], and the entity-
relationship diagram [55] used to describe the major external sources and sinks for data and the
modules that use them. Expect CASE tools to become more sophisticated in the future as more
types of diagrams and further analyses are added.

5.   Program Analysis and Transformation Tools

There is a class of tools that has recently entered the marketplace that differs significantly from
the ones mentioned above. Tools in this class are based on the idea of a wide-spectrum language
for specifying program analyses and transformations [56]. A wide-spectrum language contains
features of other classes of languages, typically imperative, functional, object-oriented, and logic
languages. The added power provide by the language enables terse expression of queries about
program features. One example of this class of language is Refine [57], which has been success-
fully used on a variety of ambitious program understanding projects.

Refine is the basis for a collection of commercial tools called the Software Refinery [58]. The
Software Refinery consists of six components that together provide a comprehensive toolkit. One
piece consists of a set of language-specific browsers and analyzers that have a deep understanding
of a particular language. The browsers/analyzers are also capable of producing a variety of reports
including those mentioned above, such as cross reference listing and structure chart. For example,
the Refine/C tool provides source code, structure chart, and dataflow diagram browsers, as well as
a variety of reports describing the use of names in C programs.

The second and third pieces of the Software Refinery are used for building language-specific tools
like Refine/C. The second is a parser generator, and the third is a user interface builder. These
tools express their results in Refine, and the Refine compiler is the fourth tool. Refine includes
pattern matching features that support the querying of the abstract syntax trees built by the lan-
guage-specific parsers. The AST, the symbol table, and the results of any other analyses are stored
in an object-oriented repository to which Refine language statements can easily access. This
repository is the fifth component of the Software Refinery’s architecture. The sixth is a set of
built-in language-independent analyzers for constructing common representations, such as struc-
ture charts.

The Software Refinery has been described in some detail both because it is one of the most
advanced tools commercially available and because its complexity is indicative of the amount of
effort required to perform even the modest analyses it does.

B.  Research Tools

This section gives a quick look at a variety of tools currently under development by the research
community. Its purpose is to show the breadth of approaches undertaken without making any
claims to completeness.

1. Not to be confused with dataflow analysis described earlier.
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1.   Gen++

Gen++ is a C++ analyzer generator [59]. That is, its input is a description of a specific program
query or analysis that is desired of one or more C++ programs. Its output is an analyzer that when
given a C++ program, performs the given query on the program. The language in which queries
are given contains a variety of high-level constructs both for specifying tree walks and for format-
ting output. The tool’s strength comes from its in-depth knowledge of C++, a notoriously difficult
language to build tools for, and from its comprehensive AST representation that contains the data
extracted during analysis.

2.   CIA and CIA++

CIA stands for the C Information Abstractor [60]; CIA++ is the more recent C++ variant [61].
Both tools work by placing the results of a standard analysis into a relational database. Then que-
ries on the database can give answers to many of questions concerning a program. Both tools
begin with a program data model containing entities and relationships describing the structure of
typical programs. Examples of typical entities are modules, global variables, and files; typical
relationships include function calls, file inclusions, and variable declarations. The data model and
the analysis is fixed for each tool, but the presence of a query language permits the tools to answer
complex queries unanticipated by the original tool designers.

3.   GRASPR

GRASPR [62] is an example of a cliche recognition system. Its analyzer builds a dataflow graph
annotated with control flow information and other constraints. This abstract representation of pro-
grams and cliches allows GRASPR to efficiently deal with variations that less sophisticated tech-
niques cannot handle. The power of Grasper comes from its library of cliches and its ability to
detect instances of them in programs using an efficient graph parsing algorithm. Cliches can either
describe common programming knowledge such as how to sort a list or knowledge of an applica-
tion domain such as particular ways to schedule events in simulation programs.

4.   DESIRE

One of the most ambitious systems yet developed is the DESIRE tool from the Microelectronics
and Computer Consortium [63]. DESIRE’s goal is design recovery, and it uses informal knowl-
edge such as variable names and comments as well as more traditional formal analysis to build a
hierarchy of concepts that together describe a program. A further uniqueness of DESIRE is the
fact that the concepts are domain concepts rather than program concepts thus stressing knowledge
related to why a program is as it is rather than what it is or how it does what it does. DESIRE also
has an experimental feature that uses neural network technology to help in the recognition pro-
cess.

5.   Tango

Sometimes, the most difficult part of understanding a program is appreciating the nuances of its
core algorithms. There is an active research area called software visualization [64] that attempts to
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aid this process by providing graphic tools to display abstract representations of the fundamental
operations and underlying data structures of a program during its execution. For example, an array
being sorted can be viewed in order to provide a dynamic depiction of its contents as they become
more ordered. The Tango tool [65] provides an analyst with a relatively easy mechanism for pro-
ducing such animations. The analyst can annotate a program at key points to specify operations
that drive the creation and modification of geometric shapes on a display screen. In the sorting
example, the array elements are represented as blocks whose heights corresponds to their values,
and which move from position to position as the program exchanges values. Of course, this sort of
animation is useful not only in understanding the execution of an existing program but also in
teaching algorithmic concepts to beginning programmers.

VI.  Examples of Applications of Program Comprehension

Program comprehension is useful for a variety of purposes. Many of these purposes relate to
acquiring sufficient knowledge of a system to enable migrating or adapting or enhancing the sys-
tem. Each of these tasks adds its own challenges to the already difficult task of understanding a
system. This section provides glimpses of a variety of such applications of program comprehen-
sion.

A.  Database Migration

Many older commercial software systems were originally developed in Cobol, and, when they
used any database technology at all, it was probably aimed at a mainframe computing environ-
ment. Many others used Cobol “flat files” to hold the data and contained abundant code to provide
services currently provided as part of a commercial database management system. Today, rela-
tional database technology dominates, and there is a strong movement toward distributed compu-
tation on networked workstations. To migrate these older programs requires determining the
structure of their data, deciding on an appropriate new organization, ascertaining the operations
performed on the data, and determining how best to obtain those services in the new environ-
ment[66]. Approaches to solving the database re-engineering problem can be found in Batini,
Ceri, and Navathe’s book [67].

B.  User Interface Migration

A similar, albeit less well understood, problem concerns adapting a software system that uses one
form of user interface technology to another. This might be as simple as moving from one graphi-
cal user interface (GUI) widget set to another or as ambitious as adding a graphical interface to a
batch program. Unlike database migration where a small set of well-defined data schemas exist,
the user interface migration problem must deal with issues such as the large variety of commercial
toolkits and the subtlties of matching “look and feel.” In order to re-engineer an application to use
a new user interface, the old interface must be determined and extracted, a replacement designed,
and the code updated to support the new approach. Little work has been done in this area. The
reader is referred to [68], [69], and [70].
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C.  Objectification

The recent interest in object oriented languages has led to the desire to migrate existing legacy
systems into object-oriented languages such as C++. This requires the detection of candidate
objects in the existing code and the affiliated operations. A “good” object requires a small set of
related data items and a limited number of operations accessing them. Once candidates are identi-
fied, the code must be remodularized and translated into the target language. Work in this area is
reported in [71], [72] and [73].

D.  Specification Extraction

Another recent trend has been in the direction of increased use of formal methods in software
development. A formal specification reduces ambiguity and enables proof techniques that can
ascertain such properties as correctness, security, and safety. A formal specification involves a
statement in some mathematical notation, such as predicate logic, of the conditions under which a
subprogram can correctly operate (its preconditions) and another statement describing its effect
on program state (its postconditions). For straight-line code and conditionals, automatically con-
structing the pre- and postconditions is straightforward; loops, however, cause problems. Under-
standing a loop requires constructing a predicate that describes its typical operation. Automated
techniques for this task do not currently exist. Basili and Mills [74] describe the manual use of
specification extraction to help understand a program. [75] describes attempts to automate this
process. The CICS project [76] in England used a related technique to support the complete re-
engineering of a large transaction processing system.

E.  Business Rule Extraction

Large software systems can be thought of as capital assets. Often, they are the only written
description of how an enterprise conducts business. As the accuracy of the user- and system man-
uals degrade over time, the system itself becomes more and more the arbiter of existing business
conduct. It then becomes necessary to read the code or run the program to get answers to funda-
mental questions. This activity has come to be called business rule extraction, and CASE tool
vendors are beginning to support the process.

VII.  Challenges

Although there has been much progress in the area of program understanding, there still remains
much to be done. This section describes outstanding challenges to researchers in this field of
study.

A.  Scaling Up

Many program understanding tools are restricted in various ways. The restrictions relate to the
sheer size of the programs with which they are capable of dealing, their ability to deal with multi-
ple concurrent processes, or the relatively low-level representations they provide. For example,
one commercial tool organizes the results of its analyses into a database indexed by the names of
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the various functions, procedures, and global data in the systems being analyzed. The tool is inca-
pable of dealing with a legacy system organized into several processes because external names
may be duplicated in two or more distinct processes. That is, the database does not support
instances of the same name used in two independent processes.

As the size of the system under study grows larger, issues such as architecture begin to dominate
questions concerning the details of programming. Existing tools are much better able to deal with
the latter than the former. In fact, the whole area of software architecture has only recently come
under examination by the research community [77].

Another implication of large systems is that more than one person will necessarily be involved in
their analysis. Questions arise as to how knowledge will be shared by the analysts and how redun-
dant work can be reduced or avoided. To date, there is no work reported on the application of col-
laboration technology to the problems of program understanding.

A final problem relates to the sheer volume of data generated by the analysis of large systems.
While dataflow diagrams and structure charts are valuable when navigating a system containing a
hundred or so procedures, they are of little help when looking at systems one or two orders of
magnitude larger. Preliminary work on this problem is reported in [78].

B.  Process Issues

Although it is well known that effective process management can significantly aid the production
of software, the study of this area has primarily concerned the development of systems from their
initial conception to first delivery and not with their analysis and reengineering. For example, the
development managers for an existing system may be confronted with the decision of whether to
continue maintenance on the system, to reengineer it, or to scrap it and rebuild from scratch.
There is little available data or guidelines to help management with this decision. Some process
models have been proposed, but little validation has been done [79]. The Software Technology
Support Center at Hill Air Force Base is compiling project histories [80]. And the Software Engi-
neering Institute is producing a Best Practices Guidebook. One interesting experience report that
contains an actual cost analysis can be found in [81], and Boehm includes a chapter in his book
Software Engineering Economics on software maintenance projects [82]. Finally, Rugaber and
Doddapaneni discuss transition strategies for the particular case of reengineering mainframe man-
agement information systems to a distributed workstation environment [83].

C.  Use of Domain Knowledge

As discussed above, most progress in automated program understanding has leveraged compiler
technology. The implication of this is that we can often answer what and how questions but not
why questions, the answers to which are essential to taking full advantage of legacy systems. Why
questions relate program constructs to the problem the program is supposed to solve. These appli-
cation problems are typically couched in terms of an application domain such as the analysis of
seismological data to locate underground reservoirs of oil or the computation of the accelerated
depreciation allowance for income tax return preparation.
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In order to fully understand these programs, the application domain must be understood and, pref-
erably, modeled. A domain is a problem area, and application domain analysis is currently a very
active area of research. Typically, many application programs exist to solve the problems in a sin-
gle domain. Arango and Prieto-Diaz [84] give the following prerequisites for the presence of a
domain: the existence of comprehensive relationships among objects in the domain, a community
interested in solutions to the problems in the domain, a recognition that software solutions are
appropriate to the problems in the domain, and a store of knowledge or collected wisdom to
address the problems in the domain. Once recognized, a domain can be characterized by its
vocabulary, common assumptions, architectural approach, and literature.

What role might a domain description play in reverse engineering a program? In general, a
domain description can give the reverse engineer a set of expected constructs to look for in the
code. These might be computer representations of real world objects like tax rate tables or deduc-
tions. Or they may be algorithms, such as the LIFO method of appraising inventories. Or they
might be overall architectural schemes, such as a client-server architecture for implementing a
transaction processing system.

Because a domain is broader than any single problem in it, there may be expectations engendered
by the domain representation that are not found in a specific program (the inventory algorithm
may not appear in a program to compute personal income taxes but might in a business tax pro-
gram). Because a program is not always accurate or up-to-date, there may be things missing or
incorrectly expressed in the program, despite contraindications in the domain representation. And,
because a program is often used for more than one purpose, it may include components that do
not appear at all in the domain representation, such as a checkbook balancing feature in an income
tax package.

Nevertheless, a domain representation can establish expectations to be confirmed in a program.
Furthermore, the objects in the domain representation are related to each other and organized in
prototypical ways that may likewise be recognized in the program. Hence, a domain representa-
tion can act as a schema for controlling the reverse engineering process and a template for orga-
nizing its results. Incorporating such domain information into the program understanding process
is essential to answering the all-important why questions.

Domain analysis has not yet been applied to the problem of program comprehension. One excep-
tion to this is the DESIRE system described previously. Another recent research project in this
area is described by DeBaud, Moopen, and Rugaber [85].

D.  Validation

The study of program comprehension is an emerging discipline. As such, no readily accepted
infrastructure exists to validate proposed advances. For example, there exist no agreed upon
benchmarks for comparing analysis tools. Moreover, there does not even exist a mechanism for
integrating tools. If, for example, there were a standard language for describing commonly occur-
ring programming patterns, then a repository could be built upon which researchers could rely. Of
course, the final arbiter of the value of this research are software development practitioners, and
here too there is no agreed upon standard of evaluation, such as the Turing Test [87] proposed as a
measure of the success of natural language understanding programs. The program understanding
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research community and the commercial vendors need to address these problems before their
work will be widely accepted.

VIII.  Resources

Aside from the references provided by this article, the reader is referred to the following sources
of information on the topics of program understanding and reverse engineering.

• Conferences and workshops: the International Conference on Software Maintenance, the
Workshop on Program Comprehension, the Working Conference on Reverse Engineering, the
Symposium on Partial Evaluation and Program Manipulation, and the Reverse Engineering
Forum.

• Journals: the Journal of Software Maintenance and the Reverse Engineering Newsletter of the
Committee on Reverse Engineering of the IEEE Computer Society. Additionally, mainstream
journals in the software area such as IEEE Transactions on Software Engineering, IEEE Soft-
ware, the Communications of the ACM, the Journal of Automated Software Engineering, and
Software-Practice and Experience occasionally publish articles on program analysis and
understanding.

• Books: a few books have been published in this area: Arnold’s Software Reengineering [88],
and Tutorial on Software Restructuring [49], Software Reuse and Reverse Engineering, edited
by P. A. V. Hall [89], Zuylen’s The REDO Compendium of Reverse-Engineering for Software
Maintenance [90], and the Empirical Studies of Programmers series published by Ablex. The
“Re-engineering Tool Report” from Hill Air Force base [80] and the Software Engineering
Institute’s planned Best Bractices Guidebook both collect experiences from actual reengineer-
ing projects.

• Theses: recent theses have been published in the area by Allemang [91], Callis [92], Griswold
[93], Hartman [94], Letovsky [95], Ning [96], and Wills [43].

Finally, a World Wide Web page that contains pointers to work in the area can be found at URL
http://www.cc.gatech.edu/reverse/.
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