
Enriching Revision History with Interactions

Chris Parnin
∗

, Carsten Görg
†

, Spencer Rugaber
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{vector,goerg,spencer}@cc.gatech.edu

ABSTRACT
Revision history provides a rich source of information to improve
the understanding of changes made to programs, but it yields only
limited insight into how these changes occurred. We explore an ad-
ditional source of information – program viewing and editing his-
tory – where all historical artifacts associated with the program are
included. In particular, we suggest augmenting revision histories
with the interaction history of programmers. Using this additional
information source enables the development of several interesting
applications including an influence-recommendation system and a
task-mining system. We present some results from a case study
in which interaction histories from professional programmers were
obtained and analyzed.

Categories and Subject Descriptors:H.4[Information Systems
Applications]:Information storage and retrieval.

General Terms: Measurement.

Keywords: Interaction history, revision history, data mining.

1. INTRODUCTION
During the process of developing software, programmers leave

behind traces of their intentions, tasks, and missteps. Researchers
have examined how to extract these traces for the purposes of ac-
quiring additional insight into a program’s history and the develop-
ers involved in the process. Artifacts created as byproducts during
the development process offer a trove of insightful information –
one popular artifact is the source code revision history.

Researchers have proposed how to use revision history in appli-
cations such as program evolution or defect detection. For example,

∗ c© ACM, 2006. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version will appear in the Proceedings
of the 2006 International Workshop on Mining Software Reposito-
ries
†The author was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

Görg and Weißgerber [2] discovered incomplete refactorings that
did not preserve semantics by analyzing revision histories. Alterna-
tively, other researchers have examined how to use revision history
to gain perspective into programming activities and developers. Sli-
werski et al. [9] examined revision histories to find changes to a
previous bug fix and analyzed which day of the week contributed
to the most such incidents – Friday. Mierleet al. [5] attempted to
find correlations between a student’s grade and properties extracted
from the student’s revision history.

Revision history can be defined as a collection of revisions to
a file committed by an author through a transaction or change re-
quest. Within each transaction, several pieces of metadata can be
captured: date and time, change description, and change identifier
or bug fix identifier. Furthermore, information about which meth-
ods have been changed between revisions can be derived.

Revision history transcribes various snapshots of source code;
however, it has limited ability in explaining how the transition be-
tween revisions occurred. Information such as what methods were
frequently referenced by programmers to perform a change or the
order of edits is missing. Information detailing how a revision
changed can be obtained through analyzing the interaction history.
Interaction historyrecords a user’s interactions, captured by an ap-
plication such as a viewer or editor, to understand more about the
user and the program. All interactions are recorded into a stream of
interaction events.

In attempting to understand a program’s history, all possible arti-
facts should be used. Interaction history provides detailed informa-
tion about a programmer’s activities; however, the stream-like na-
ture of interaction history makes segmenting into meaningful ses-
sions problematic. A reasonable approach is to use revision his-
tory as the baseline for segmenting interaction history. With this
segmentation, an interaction history session can augment the as-
sociated revisions. In the other direction, revision history provides
more fine-grain details about the changes made to a program, while
interaction history is primarily concerned with the locations of code
involved with certain interactions. In the following table, the prop-
erties of revision and interaction history are contrasted.

properties revision history interaction history
metadata frequency per transaction per event
metadata type time, log, ID time, target, event type

In this paper, we propose that the interaction history of a pro-
grammer interacting with an interactive development environment
(IDE) can be used in conjunction with revision history to enrich
current approaches. We detail how to obtain the interaction his-
tory from an IDE and explain what properties to examine. Fi-
nally, we illustrate the use of interaction history in an influence-



recommendation system and a task-mining system using interac-
tion history obtained from a case study of professional program-
mers.

2. INTERACTION HISTORY

2.1 Background
An interaction historyis a record of a user’s interactions with

an application for the purpose of providing insight into the data
as well as execution of future interactions. Alternative terms for
interaction history includenavigation history, user history, compu-
tational wear, edit wear, source code wear. The first discussion of
interaction history emerged from work onedit wear/read wear[3].
Wearis the concept of digital objects embedding the history of its
interactions, much like the dog-eared pages in a book indicate fa-
vorite passages. As an example, a text document records how often
a line was edited. The frequency of editing a line is then conveyed
in a line-based visualization that is embedded in the scrollbar of the
document.

Researchers have developed recommendation systems which an-
alyze navigation history in order to recommend that locations of
interest. InFAN [1], navigational history is analyzed to display a list
of methods that are frequently accessed next after visiting the cur-
rent method. InNavTracks [8], navigation loops are recovered from
recent navigation paths and the files related to the current method
are displayed. BothFAN andMYLAR [1, 4] have used a degree of in-
terest model based on edit and navigation frequency to indicate the
‘hot spots’ in source code. Finally, Schneideret al. [7] have used
interaction history to support awareness of activities among a team.

Previous research with interaction history has focused on under-
standing navigation patterns and deriving simple frequency statis-
tics. We propose a set of abstractions over interactions that allow
more interesting analyses to be performed.

2.2 Abstracting Interactions
Programmers interact with source code through an IDE and revi-

sion control system. Abstractions of these interactions allow us to
reason about the semantic implication of different interactions with
source code entities (in this paper we assume methods).
The categories of interactions with an IDE are the following:

navigation: A command used to go to a specific location in a file
such as a to method.

click: A mouse selection of a method.

edit: A change in a line of code.

inspect: An examination revealing the metadata associated with a
method such as a comment or type information. This is typi-
cally accomplished by hovering the mouse over the method.

query: A search for the locations of a method.

shelve: A text editing operation on code, such as a copy or paste.

Interaction history is represented as a stream of interaction events,
where each event is a tuple of method, interaction type, and time-
stamp. An example is as follows:

[(A,click,1),(A,edit,2),(A,copy,3),(B, paste,4),(C,nav,5)]

When using a revision control system, programmers also interact
with source code. A list of interactions would include:

revision: A set of changes made to a file.

tag: A set of metadata such as comments, bug numbers, and change
packages associated with a revision.

2.3 A Visual Studio Plug-in
We built a Visual Studio plug-in calledInteractionHistoryDB

that records the interaction history of programmers usingVisual
Studio. The plug-in registers interactions exposed through theVi-
sual Studio add-in interface and logged the active method targeted
by the interaction.

We identified six interaction types, however, we only recorded
click, navigation, shelve, andedit interactions in our experiments.
Click events were recorded using a mouse-message hook. Navi-
gation events included commands such asgoto definition, change
active tab, select a class or file, navigate from afind-in-filesresult.
Edit actions were recorded by listening to events raised when a line
of code was changed. The edit event is not raised until after the
user changes focus from the line being edited.

2.4 Case Study
Ten employees from a defense contractor volunteered to partic-

ipate in a trial use. The projects the employees worked on were
written in C++ and C# and varied in size from 50k to 200k lines of
code. Some projects were over ten years old while others were in
new development.

3. METADATA ANALYSIS
In analyzing program history, the questions asked about the his-

tory are generally motivated by two different perspectives:

program-oriented: Analysis focuses on retrieving code that satis-
fies a given query.

developer-oriented: Analysis focuses on understanding proper-
ties associated with a developer.

Detecting bad smells in codeis an example of program-oriented
analysis, whiledetermining what day of the week do the most nav-
igations occuris an example of developer-oriented analysis.

Regardless of perspective, the approach in analyzing the meta-
data of interaction history is much like revision history; however,
different types of interactions are examined, and the granularity of
the events are more fine. In general, revision history is a record of
whathappened, while interaction history is a record ofhowchanges
happen.

Localized frequencyis the analysis of how events occur over a
period of time. This analysis can be used in forming models of
programmer interest and understanding the structure of program-
ming activities. Later in this section, we provide examples of how
interactions from interaction history can be used to enrich analysis.

3.1 Localized Frequency
The period of time or frequency that a programmer interacts with

a method can be used to indicate interest. When users navigate
source code, they often “thumb” through the code to locate the next
method of interest. This can produce some interactions which are
not desirable for analysis.

With localized frequency, a model of interest used in queries for
analysis or filtering interaction data can be derived to mitigate this
problem. We define this model asintensity.

Intensity. The intensity of an interaction with a method isthe num-
ber of prior consecutive interactions with the same method
during the period of interest.

For the event stream “AAABBC”, the respective intensity of each
interaction event would be 0,1,2,0,1,0.



Although a programmer may interact with many methods in the
course of a session, only few exhibit high intensity. One possible
interpretation of intensity is that method groups with high intensity
are the targeted methods of interest to a programmer. In thevalleys
between two peaks of high intensity are smaller peaks of medium
and low intensity activity. These lower intensity activities can re-
sult from the need to correct compile errors, update references, and
search for the next item of interest.

Intensity takes a simplified, discrete view of localized frequency;
in reality, a programmer may need to briefly transition away from
a method and then return. This requires a continuous evaluation of
localized frequency that we callmomentum.

Momentum. The momentum at timetn of an interaction event is:

momentum(tn) = intensity(t0)∗e−rtn

wherer is thediscount ratewhich regulates the speed of ex-
ponential decay,t0 is the time the event commenced, andtn
is n steps aftert0.

Instead of having a value of zero after a transition, momentum
exponentially decays the intensity. An interaction event having an
intensity of 20, with a discount rate of 0.1 would have a momentum
of 7.4 after ten steps and a momentum of 1.0 after 30 steps. There
is a small twist: a method that is decaying can be reinvigorated
when revisiting the method. In this case, the remaining momentum
is accumulated with the newer intensity, andt0 is reset to be the
new time.

Momentum gives a better measure of which methods are active
during a window of time; however, its continuous nature can make
it more difficult to apply in some situations.

3.2 Example Queries

What term is most commonly searched?Analyzing the distrib-
ution of search terms may reveal items difficult to locate,
items not immediately understood by the programmer, or
items relevant to the current task. Filtering out events with-
out query interaction types results in the following example
interaction event stream:

[(“display” ,query,1),(“screen” ,query,56),(“display” ,query,78)]

In this stream, 66% of the queries were for “display” and
33% for “screen”.

What is the ratio of transitions to edits? Understanding the rela-
tionship a programmer’s edits and transitions between meth-
ods in a project inspires several applications: (1) it serves as
a baseline for comparing tools in experimental studies, (2)
the rate of change of the navigation/edit ratio can be used to
determine when a programmer is searching, and (3) it can
assist in classifying tasks applied to the same project.

Consider the following event stream as an example:

[(A,click,1),(A,edit,2),(A,click,3),(A,edit,4),(B,click,5)]

To avoid a heavily edited method from imposing too much
bias on the ratio, navigations within methods (in our exam-
ple (A,click,3)) are first removed, and then from the resulting
stream the consecutive edits within a method (in our example
(A,edit,2)and(A,edit,4)) are considered as one edit. After this
preprocessing, the stream appears as follows:

[(A,click,1),(A,edit,2),(B,click,5)]

The navigation/edit ratio for this stream is 2.0.

What time of day has the highest activity? Activity analysis can
assist in studies of work patterns or in giving practical guide-
lines of when to schedule meetings.

To calculate this measure, the interaction event stream must
first be segmented into different sessions corresponding to
each hour of the day. Then, the length of each session be-
longing to the same hour is accumulated and averaged.

In data from our case study, 2-3pm was the period of highest
activity for almost all programmers.

4. APPLICATIONS
In this section, we present two systems focusing on program-

oriented analysis of interaction history.

4.1 An Influence-Recommendation System
Programmers frequently copy and paste code during the devel-

opment process. The purpose of copying code varies: sometimes
the programmer is avoiding the need to retype a variable name, or
the copied code is being used as a template for a new variation.

MethodA is influenced bymethodB if B contributed to the im-
plementation ofA through the importation of code. The influence
set ofA can be calculated from an interaction history by finding the
origin of pasted code.

In f luence(A) = {B | copy from B and paste to A}

In the following interaction event stream:

[(A,copy,1),(B, paste,3),(C, paste,5),(C,copy,6),(D, paste,8)]

the influence sets are the following:

method A B C D
influence set /0 {A} {A} {C}

strength: The number of lines copied.

complexity: The cyclomatic complexity of code copied.

support: The number of occasions the method was influenced by
the same method.

Finally, with the influence sets available for each method, an
influence-recommendation system can be built. When a program-
mer is interacting with a method, the influence set can be used to
recommend to the programmer items of interest in a contextual list
displayed in an IDE. In preliminary analysis of our case study data,
influence sets found (1) methods complementary to a process such
as starting and stopping a server, (2) code duplication, and (3) meth-
ods serving as sources of examples (e.g. how to invoke a socket
function call).

4.2 A Task-Mining System
Consider these situations:

1. During development of a major product release, the project
manager anticipates the need to add support for a new sys-
tem. The program developers interleave their normal pro-
gramming tasks with integrating support for the new sys-
tem over several months of development. Unfortunately, the
project manager’s gamble does not pay off; the customer de-
cides not to use the new system. As a result, the programmers
need to identify and remove the changes that were made to
support the new system.



2. A program developer needs to perform an update to an es-
tablished project. The source code contains millions of lines,
but the update should only involve a relatively small subset.
The programmer would like to explore the program as effi-
ciently as possible in order to make the changes, but is too
unfamiliar with the relevant parts of the source code to be
sure how best to proceed.

The tasks facing our two users are different; however, in both
cases, we have a user who is interacting with a large set of highly-
structured data and attempting to solve a specific task. Further, their
tasks require connecting various parts of the data (e.g.different files
or methods) that are relevant in solving their task. Discovering or
recalling these connections is costly; the connections may not be
readily apparent from the structure, or only a few relevant pieces of
information are needed among a large selection of data.

In the first scenario, identification of different tasks performed
with the source code can ease the search for methods related to
implementing the new system. To identify the distinct tasks per-
formed by the programmers, clustering of the interaction sessions
can be performed. Further, labels from revision history supplement
identification of different sessions.

In the second scenario, providing recommendations for related
interactions enables the programmer to focus on understanding just
the relevant methods. Recommendations can be queried based on
the last few interactions of the programmer with the IDE.

To mine these tasks from interaction history, the data must first
be segmented into different sessions and then represented in a vec-
tor space model (VSM). The straightforward approach is to use re-
vision history to group interaction events related to the same groups
of transactions in the same session. Each session is then repre-
sented as a vector by counting the occurrences of amethodand its
interaction type.

Distance metrics measure the similarity of two sessions. Two
common metrics are the euclidean distance and the cosine distance.
The euclidean distance uses theL2 norm or dot product of two vec-
tors. The cosine distance measures the angle between the vectors
normalized by their magnitude. In both metrics, a higher value in-
dicates a higher similarity.

In the following example, three sessions are encoded as vectors
and stored in a matrix. In the first session, “payroll” was edited five
times, “print” was navigated to three times, “report” was navigated
to two times. In the first session, the methods “employee”, “sales”,
“dbquery” were not interacted with.





payroll.edit : 5 employee.nav: 3 dbquery.edit : 6
print.nav: 3 payroll.edit : 5 employee.nav: 3

report.nav: 2 sales.edit : 1 sales.nav: 2





After the sessions are represented in the VSM, several refine-
ments can be made. Methods that are frequently or rarely interacted
with can be weighted using measures such as tf-idf [6].

To identify distinct tasks, a standard clustering algorithm such
as k-means can be performed. Reconstruction of the vector space
with transformations such as independent component analysis may
be necessary in order to more easily discriminate different tasks.

Using implicit query, the IDE can generate recommendations
based on the closest session or centroid. If the programmer vis-
ited “employee” and edited “payroll” then an implicit query could
be constructed as follows:

(

employee.nav: 1
payroll.edit : 1

)

producing the following table of relevant interactions:

v1 v2 v3
dot-product 5 8 3
cosine 0.57 0.96 0.31

In this case,v2 is returned as the most relevant interaction vector.
An IDE, can now suggest editingsalesthrough a degree-of-interest
visualization or in a task pane.

5. CONCLUSION
In this position paper, we show that by incorporating interac-

tion history with traditional approaches used with revision history,
further insight can be gained. In program-oriented analysis, in-
teraction history enriches analysis by introducing data previously
unattainable and provides more options for making decisions in fil-
tering data. In developer-oriented analysis, more data is available
for understanding how the programmer performed tasks.

We conclude that interaction history: (1) can be easily obtained,
(2) contains a rich source of interesting data, (3) offers powerful
applications in recommendation systems, and (4) complements re-
vision history as a source of insights into programmer behavior.

6. REFERENCES
[1] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson.

Towards understanding programs through wear-based
filtering. In SoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, pages 183–192, New
York, NY, USA, 2005. ACM Press.

[2] C. Görg and P. Weißgerber. Error detection by refactoring
reconstruction. InMSR’05: Proceedings of the International
Workshop on Mining Software Repositories, New York, NY,
USA, 2005. ACM Press.

[3] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless.
Edit wear and read wear. InCHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 3–9, New York, NY, USA, 1992. ACM Press.

[4] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. InAOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, pages 159–168, New York, NY, USA, 2005.
ACM Press.

[5] K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining
student cvs repositories for performance indicators. InMSR
’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1–5, New York, NY,
USA, 2005. ACM Press.

[6] G. Salton and C. Buckley. Term weighting approaches in
automatic text retrieval. Technical report, Cornell University,
Ithaca, NY, USA, 1987.

[7] K. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining
a software developer’s local interaction history. InMSR ’04:
Proceedings of the 2004 international workshop on Mining
software repositories, pages 106–110, 2004.

[8] J. Singer, R. Elves, and M.-A. D. Storey. Navtracks:
Supporting navigation in software maintenance. InICSM
2005: Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 325–334. IEEE
Computer Society, 2005.

[9] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? InMSR ’05: Proceedings of the 2005
international workshop on Mining software repositories, New
York, NY, USA, 2005. ACM Press.


