
Working Conference on Reverse Engineering� Baltimore� MD� pp� �������� May �����

Flexible Control for Program Recognition

Linda M� Wills

College of Computing

Georgia Institute of Technology

Atlanta� Georgia ����������

Abstract

Recognizing commonly used data structures and al�

gorithms is a key activity in reverse engineering� Sys�

tems developed to automate this recognition process

have been isolated� stand�alone systems� usually tar�

geting a speci�c task� We are interested in applying

recognition to multiple tasks requiring reverse engi�

neering� such as inspecting� maintaining� and reusing

software� This requires a �exible� adaptable recogni�

tion architecture� since the tasks vary in the amount

and accuracy of knowledge available about the pro�

gram� the requirements on recognition power� and the

resources available� We have developed a recognition

system based on graph parsing� It has a �exible� adapt�

able control structure that can accept advice from ex�

ternal agents� Its �exibility arises from using a chart

parsing algorithm� We are studying this graph pars�

ing approach to determine what types of advice can

enhance its capabilities� performance� and scalability�

� Introduction

An experienced programmer can often reconstruct
much of the hierarchy of a program�s design by recog�
nizing commonly used data structures and algorithms
and knowing how they typically implement higher�
level abstractions� We call these commonly used com�
putational structures clich�es ����� Examples of clich�es
are algorithmic computations� such as list enumera�
tion� binary search� and event�driven simulation� and
common data structures� such as priority queue and
hash table� The recognition process� which we refer
to as program recognition� provides a short�cut to un�
derstanding a program�s design� It bypasses complex
reasoning about how behaviors and properties arise
from certain combinations of language primitives�

Our practical motivation for studying program
recognition stems from an interest in building au�
tomated systems that assist software engineers with

tasks requiring reverse engineering� such as inspect�
ing� maintaining� and reusing software� An automated
recognition system that is to be applicable to a wide
range of tasks must have a 	exible� adaptable control
structure� There may be sources of knowledge about
the program in addition to the source code which can
be used to guide recognition� such as its speci
ca�
tion� documentation� comments� execution traces� a
model of the problem domain� and typical properties
of the program�s inputs and outputs� The availability�
completeness� and accuracy of this knowledge varies
greatly across these tasks� For example� in debugging
or veri
cation applications� a speci
cation of the pro�
gram is often available fromwhich strong guidance can
be generated� while this information is often lacking
in maintaining old code�

Di�erent tasks also require di�erent degrees of
recognition power� For example� if the recognition
system is going to be applied to veri
cation� it can
use a strategy that 
nds any complete recognition
of the program� consisting only of exact matches of
the clich�es� On the other hand� if it were applied to
documentation generation� it should generate multiple
views of the program� reporting all possible instances
of clich�es� For debugging� partial �near�miss recogni�
tions of clich�es should be produced�

In addition� tasks vary in the resources they can
allocate to recognition� For example� a real�time re�
sponse may be required if a person is using it interac�
tively as an assistant in maintaining code� In this sit�
uation� it may be more desirable to quickly recognize
clich�es that are more �obvious� rather than spend�
ing more time to uncover clich�es that are obscured
�e�g�� by an optimization which must be undone for
them to be revealed� It should be possible to priori�
tize the search for certain clich�es� so that obvious ones
are recognized early� while still providing a later� �try
harder� phase in which the more hidden clich�es can
be found� This gains e�ciency without permanently
sacri
cing completeness�

Furthermore� the knowledge about the program�



the requirements on recognition power� and the re�
sources available typically change as the tasks are be�
ing performed�

We have developed an experimental recognition
system� called GRASPR ����� which when given a library
of clich�es� 
nds all instances of clich�es in a program�
It can generate multiple views of a program as well
as near�miss recognitions of clich�es� It has a 	exible�
adaptable control structure that can accept advice and
guidance from external agents�

GRASPR is intended to be part of a future hybrid
reverse engineering system that integrates not only
purely code�driven recognition� but also more heuris�
tic techniques that generate expectations from other
information sources� such as documentation� to guide
the search for clich�es� GRASPR�s 	exibility is crucial
for interaction with such techniques� particularly given
the variation in knowledge and resources available for
di�erent application tasks�

Heuristics can be provided in a data�driven way�
rather than being hard�coded into the system� Expec�
tations about the clich�es that are likely to be found
and their locations can be used by GRASPR to fo�
cus its search� But these are not required as inputs�
The trade�o� between recognition power and compu�
tational expense can be explicitly controlled so that
some clich�es are recognized quickly� while other� more
expensive recognitions are postponed�

GRASPR� which stands for �GRAph�based System for
Program Recognition�� uses a graph parsing approach
to automating recognition� Its 	exibility arises from
using a chart parsing algorithm which makes control
and search strategies explicit�

��� Previous Recognition Work

Several researchers have shown the feasibility of au�
tomating recognition and the usefulness of its results�
most recently Bertels ���� Hartman ���� Johnson ����
Letovsky ����� Murray ����� Ning ����� and Wills �����
�See ���� for a more detailed description of these sys�
tems and earlier research in this area�

All existing recognition systems are isolated� stand�
alone systems which are not expected to interact with
people or with other reverse engineering techniques�
They all are committed to a rigid control strategy�
typically targeting a particular application� such as
debugging� restructuring� or documentation�

Some ��� ��� have cost�cutting heuristics built in
which are chosen on a trial�and�error basis� Some
��� ��� ��� search for a single best interpretation of the
program� while permanently cutting o� alternatives�
so their power cannot be incrementally increased�

They also cannot generate multiple views of the pro�
gram when desired� nor provide partial information
when only near�misses of clich�es are present�

Some recognition techniques take as input informa�
tion about the goals and purpose of the program �in
the form of a speci
cation ��� or model program �����
While these techniques show the utility of these ad�
ditional sources of information� they rely on this in�
formation being given as input� rather than accepting
and responding to it if it is available for a given task�

Much of the early work in program recognition pro�
vides no evaluation of the representations or tech�
niques used� More recent research includes some em�
pirical analysis� typically studying the accuracy of
recognition and the recognition rates over sets of pro�
grams �usually student programs in program tutoring
applications ��� ���� However� discussions of limita�
tions �except Hartman�s ��� have focused mainly on
implementational limitations� rather than on inherent
limitations of the approach� They also do not describe
how additional information or guidance from external
agents can help�

Our current work moves beyond studying feasibil�
ity� by examining computational costs� GRASPR�s toler�
ance to variation� and our graph formalism�s expres�
siveness in capturing programming clich�es� We do not
expect GRASPR by itself to scale up to large programs
and to recognize all forms of clich�es� Our goal is to
determine what forms of advice can focus its search
and broaden its representational capabilities� We are
interested in how GRASPR will interact with other re�
verse engineering techniques� including heuristic forms
of reasoning based on expectations� to contribute to a
wide range of software development and maintenance
tasks�

The next section discusses GRASPR�s graph pars�
ing approach to recognition� the parsing algorithm it
uses� and how it can be explicitly controlled� Then a
summary of the results of our experimentation with
GRASPR on real�world programs is given� pointing out
some forms of advice that are useful�

� GRASPR�s Architecture

GRASPR employs a graph parsing approach to au�
tomating program recognition� shown in Figure �� It
represents a program as a restricted form of directed
acyclic graph� called a �ow graph ��� ���� which is an�
notated with attributes� Nodes in the 	ow graph rep�
resent functions� edges denote data	ow� and attributes
capture control 	ow information� The clich�e library is
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Figure �� An example 	ow graph grammar rule�

encoded as an attributed graph grammar� whose rules
impose constraints on the attributes of 	ow graphs
matching the rules� right�hand sides� Recognition is
achieved by parsing the data	ow graph in accordance
with the grammar� Attribute constraint checking and
evaluation is interleaved with the parsing process�

Figure � shows an example of a graph grammar rule
encoding a simple clich�e� testing whether two num�
bers are within some �epsilon� of each other� The
right�hand side is a typical 	ow graph� capturing pri�
marily data	ow information� Control 	ow informa�
tion is stored in the attributes of a 	ow graph rep�
resenting a program� Each node has a control envi�

ronment attribute whose value indicates under which
conditions the function represented by the node is ex�
ecuted� Nodes in the same control environment rep�
resent functions that are all executed under the same
conditions� they are said to co�occur� Sink nodes� rep�
resenting conditional tests� carry two additional at�
tributes� success�ce and failure�ce� specifying the con�
trol environments containing functions that are exe�

cuted when the conditional test succeeds or fails� re�
spectively� The rule for Equality�within�Epsilon con�
strains all the nodes that match its right�hand side to
co�occur� The attribute�transfer rules specify how to
synthesize the left�hand side node attributes from the
attributes of the 	ow graph matching the right�hand
side� �These are stated informally in Figure �� see ����
for a formal description of the attribute language used
in encoding clich�es�

The parsing technique yields a hierarchical descrip�
tion of a plausible design of the program in the form
of derivation trees� which we call design trees� These
specify the clich�es found and their relationships to
each other� In general� GRASPR generates a forest of
design trees for a given program� These provide mul�
tiple views of parts of the program on multiple levels
of abstraction�

For example� one of the programs GRASPR recog�
nizes is a simulation program written in Common Lisp
by members of a parallel�processing research group
at MIT� It sequentially simulates a parallel message�
passing system� GRASPR correctly recognizes the main
algorithm of the program as being a clich�ed syn�
chronous simulation algorithm� which mimics the real
parallel machine by simulating the actions of its pro�
cessing nodes in �lock�step�� A portion of the de�
sign tree produced by GRASPR describing the recog�
nized clich�e is shown in Figure �� �The dashed lines
at the tree�s fringe are links to primitive operations in
the source code� which indicate the location of a par�
ticular clich�e in the code� Triangles denote subtrees
that are not shown due to space limitations�

The main advantages of using a graph grammar for�
malism for representing programs and clich�es is that
�� it eliminates many common forms of variation that
hinder recognition� such as� programming language
chosen and syntactic constructs used� �� it tends to
localize clich�es� and � it captures hierarchical rela�
tionships between clich�es so that parsing uncovers im�
plementational design decisions�

Our recognition system is able to recognize struc�
tured programs and clich�es containing conditionals�
loops with any number of exits� recursion� aggregate
data structures� and simple side e�ects due to assign�
ments� With the exception of CPU ����� existing recog�
nition systems cannot handle aggregate data structure
clich�es and a majority do not handle recursion� We are
working with programs that are in the ��� to ���� line
range� The largest program recognized by any exist�
ing recognition system is a ����line database program
recognized by CPU� All other systems work with pro�
grams on the order of tens of lines�
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Our motivation in working with these programs is
to push the limits of the graph parsing recognition
approach to determine what advice would be helpful
in scaling up to larger programs� Because techniques
for generating this advice have not yet been devel�
oped� whenever we identi
ed an inherent limitation
requiring advice� we performed transformations to the
programs to avoid encountering the limitation� This
allowed us to continue our study�

We also performed transformations to avoid limi�
tations in the current recognition technology� which
are not inherent to the graph parsing approach� The
most notable of these is the problem of dealing with
programs that perform side e�ects to mutable data
structures� To get around this limitation� we manually
translated our example programs to pure �functional
versions and recognized pure clich�es in them� For�
tunately� the translation was straightforward and we
plan to semi�automate it in the future by interleaving
data	ow analysis with the recognition of stereotypical
aliasing patterns �����

Our clich�e library contains a core set of general�
purpose� �utility� clich�es� along with a set of clich�es
from the domain of sequential simulation� These
are encoded in approximately ��� graph grammar
rules� They were manually collected from introduc�
tory computer science textbooks� books on simulation
and queueing systems� and by examining two example
simulator programs and speaking to their program�
mers� The library�s coverage is by no means absolute�
However� it demonstrates the kinds of algorithms and
data structures that can be expressed within our graph
grammar formalism�

��� Recognition as Subgraph Parsing

We formulate the program recognition problem in
terms of solving a parsing problem for 	ow graphs� A
	ow graph is an attributed� directed� acyclic graph�
whose nodes have ports � entry and exit points for
edges� A 	ow graph grammar is a set of rewriting
rules �or productions� each specifying how a node in
a 	ow graph can be replaced by a particular sub�	ow
graph� �A 	ow graph H is a sub��ow graph of a 	ow
graph F if and only if H�s nodes are a subset of F �s
nodes� and H�s edges are the subset of F �s edges that
connect only those ports found on nodes of H�

The subgraph parsing problem for 	ow graphs is�
Given a 	ow graph F and a context�free 	ow graph
grammar G� 
nd all possible parses of all sub�	ow
graphs of F that are in the language of G�

The program recognition problem of determining
which clich�es in a given library are in a given program
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�and their locations is formulated as a subgraph pars�
ing problem� Given a 	ow graph F representing the
program�s data	ow and a clich�e library encoded as
a 	ow graph grammar G� solve the subgraph parsing
problem on F and G� This formulates partial program
recognition as well as recognition of the program as a
whole� A clich�e instance may be surrounded by or in�
terleaved with unfamiliar code� but if it is localized in
a sub�	ow graph of the program�s 	ow graph� it will
be recognized by subgraph parsing�

��� Chart Parsing Flow Graphs

To solve the subgraph parsing problem� GRASPR

uses a graph parser which has evolved from Earley�s
string parsing algorithm ���� incorporating three key
improvements� �� generalization of string parsing to
	ow graphs �Brotsky ���� Lutz ����� �� generaliza�
tion of the control strategy to allow 	exibility in the
rule�invocation and search strategies employed �Kay
���� Thompson ����� Lutz ����� and �� extension of
the grammar formalism to capture aggregation rela�
tionships �Wills ���� between single inputs or outputs
of a non�terminal left�hand side node and a tuple of
inputs or outputs of a right�hand side sub�	ow graph�
�This is used to express the relationships between the
inputs and outputs of an abstract operation on ag�
gregate data structures and aggregates of the inputs
and outputs of the lower�level operations that make
up its concrete implementation� The formalism was
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also extended to handle variation in graphs due to
structure�sharing �Lutz ����� Wills ���� ��� and ag�
gregation organization �Wills �����

The 	exible control strategy inherited from the
chart parsers of Kay ���� Thompson ����� and Lutz ����
gives GRASPR its 	exibility� adaptability� and ability to
accept advice� This section conceptually describes this
aspect of the parser and how it is used by GRASPR� �For
more details� see �����

The parser maintains a database� called a chart� of
partial and complete analyses of the input graph in
the form of items� This is shown in Figure �� A com�
plete item represents the recognition of some sub�	ow
graph as some terminal or non�terminal in the gram�
mar� A partial item represents a partial recognition of
a non�terminal� The central action of the parser is to
repeatedly create new items by extending partial items
with complete items for nodes not yet matched� This
is called the �fundamental event�� In other words�
the parser is searching for matches of right�hand side
	ow graphs of grammar rules to sub�	ow graphs of the
input graph� Items represent stages in the search�

The parser continually generates items and adds
them to the chart� The process is conceptually par�
allel� but to implement it on a sequential machine�
an agenda must be used to queue up the items to be
added to the chart� Items are iteratively pulled o�
the agenda and placed in the chart� as illustrated in
Figure �� As an item is added� it is paired with other
items with which it can be combined� If the item be�
ing added is a complete item� then it is paired with
partial items that need it� On the other hand� if the
item added is a partial item� then it is paired with any
complete items for the non�terminals it needs�

This parser has a set of �control knobs� and pa�

rameters that can be set to achieve a desired control
strategy or accept and respond to advice� �Examples
of how these are used are given in the next section�

Agenda Access� Specifying the strategy for
pulling items from the agenda to be placed in the chart
is one way of controlling the parser�s search strategy�
For example� certain partial items might be pulled
from the agenda� based on which part of the input
graph they have started to match or based on how
much of their right�hand sides they have matched al�
ready�

Node Orderings� Associated with each rule in
the grammar is an ordering of the nodes in its right�
hand side specifying the order in which the nodes are
to be matched� This can be used to control the or�
der in which constraints �such as node�type and edge
connection constraints are enforced�

The ordering may be strict� in which case the nodes
are related in a chain� having exactly one minimal
node and exactly one maximal node� Otherwise� if
nodes can be related to more than one node in the or�
dering� the ordering is partial� The choice of whether
a node ordering is strict or partial a�ects the compu�
tational complexity and power of the parser� Strict
node orderings are cheaper� since they generate fewer
partial and duplicate items� However� partial node
orderings provide more near�miss information� which
is important in dealing with buggy programs and in
eliciting advice�

Adding to Agenda� By controlling which items
are added to the agenda and chart� the rule invoca�
tion strategy can be controlled� For example� to make
the parser adopt a bottom�up parsing strategy� when�
ever a complete item is added to the chart� new empty
items can be added to the agenda for each rule that
needs the complete item to get started �i�e�� the rule
has a minimal node in its node ordering that is of
the same type as the type derived by the complete
item� Currently� GRASPR uses this bottom�up strat�
egy� since it facilitates recognizing programs that con�
tain clich�es interleaved with unfamiliar code� How�
ever� if strong expectations are available about which
clich�es are likely to be found �and where� a top�down
rule invocation strategy can be used�

Extendibility Criterion� The extendibility crite�
rion constrains which pairs of items can be combined�
As is discussed later� this can be used to impose parti�
tioning constraints to enhance GRASPR�s performance�

Chart Monitors� Special�purpose monitors can
be de
ned to watch the chart for particular types of
items to enter� They can look for opportunities to
view part of the input graph in an alternative way in



order to yield more parses� The graph is not explicitly
changed to the alternative view� Instead� new items
are created which represent the alternative views and
these are added to the agenda� For example� monitors
such as these are used to deal with variation due to
redundant computations� when the result of some in�
expensive computation is needed more than once� pro�
grams can vary in whether they recompute the value
each time it is needed or cache the result in a tempo�
rary variable� A monitor watches for redundant com�
putations and generates a canonical view in which the
computations are performed once�

Monitors can also elicit advice by detecting
question�triggering patterns �which are encoded in
rules included in the grammar along with rules for
clich�es� For example� a pattern might indicate that
a particular constraint is likely to hold� When such
a pattern is found� the recognition system can ask
whether the constraint is satis
ed� This is useful if
the constraint is di�cult or costly for the parser to
check� The question might be more easily answered
by some other source �such as a person�

Monitors also watch for classes of near�miss recog�
nitions to arise that can be 
xed and resumed� Items
that are failing certain constraints might be made
to complete by explicitly making simplifying assump�
tions that allow these constraints to be satis
ed�

The tasks set up by chart monitors can be priori�
tized so that those that are expensive or less likely to
be e�ective can be postponed while quick� promising
tasks are accomplished 
rst�

� Evaluation� What Advice is Useful�

GRASPR is intended to be integrated with techniques
that can focus its search and complement its code�
driven� formal parsing process with heuristic reason�
ing from expectations� To determine what forms of
advice should be given to GRASPR� we are studying
its strengths and weaknesses in the context of our ex�
ample simulator programs� This study is facilitated
by the formal graph grammar framework on which
GRASPR is based� This section brie	y summarizes our

ndings so far in three areas� �� the variation GRASPR
can tolerate� �� the expressiveness of its grammar
formalism for capturing clich�es� and �� the costs of
its recognition tasks� In each case� examples of some
sources of di�culties are presented to illustrate the
forms of guidance that would be useful to GRASPR� �For
more details and examples� see �����

��� Tolerating Variation

Program recognition is di�cult because clich�es may
appear in programs in a wide variety of forms� The
	ow graph representation for programs and clich�es has
signi
cant advantages over the text�based represen�
tations used by many other recognition systems� It
makes GRASPR robust under syntactic variation �in the
choice of syntactic constructs and programming lan�
guage� implementational variation �in the choice of
concrete algorithms and data structures for abstrac�
tions� and organizational variation �in the nesting of
aggregate data structures and in subroutine decompo�
sition� In addition� GRASPR is robust under variation
due to delocalization of clich�es� unfamiliar code� and
function�sharing optimizations� �See ���� ��� ��� for
details and examples of how these classes of variation
are tolerated�

Di�culties arise when a program�s data and control
	ow are implicit or derived or cannot be determined
statically� For example� when a program accepts func�
tional inputs� some data and control 	ow information
is statically unavailable� If portions of clich�es are con�
tained in these inputs� then GRASPR must explicitly
ask whether the input functions satisfy the relevant
constraints�

A common source of derived data	ow is the use of
handles� in which some piece of data is stored in a
pooling structure �e�g�� a hash table and an index to
the data is passed around the program� To use the
piece of data� the program must 
rst look it up� This
introduces intermediate computation that interrupts
data 	owing from one primitive operation to another�

To deal with derived data	ow� GRASPR needs advice
pointing it out� One way GRASPR might elicit this ad�
vice is by looking for �question�triggering� patterns�
For example� standard look�up and update functions
suggest that a handle is being used� Recognizing pat�
terns of data structure creation in which each new
structure �e�g�� �NODE� is collected in a larger struc�
ture �e�g�� stored in the variable ��NODES�� suggests
that the larger structure might be a pooling structure�
These hypotheses can be presented to the user or some
expectation�driven component for con
rmation �e�g��
based on mnemonic names and documentation� Once
the derived data	ow is uncovered� GRASPR can gen�
erate an alternative view of the 	ow graph in which
the derived data	ow links become explicit attributed
edges�

Unpredictable variations are also introduced by
special�case optimizations of clich�es which simplify the
general case in the context of a particular program�
Not all special�case simpli
cations of clich�es are them�



selves clich�es� so we do not want to enumerate them
all in the clich�e library�

Non�clich�ed optimizations often cause some� but
not all of a clich�e to be recognized� They often avoid
computation by taking advantage of an opportune
equality or an intentionally cached value� One way to
elicit advice on whether some computation is a special�
case optimization is to generate maximally�sized near�
miss recognitions of the clich�e and then generate a
hypothesis that the value used is equal to the result
of the computation in the part of the clich�e not yet
matched� This can then be con
rmed by an exter�
nal agent� such as a person� or by applying limited
reasoning techniques to uncover data	ow equalities or
conditional simpli
cations in simple cases ��� ����

��� Grammar Expressiveness

Our graph formalism is expressive enough to cap�
ture general�purpose programming clich�es� such as
priority�queue insert� as well as clich�es from the simu�
lation domain� The formalism is able to concisely en�
code algorithmic and data aggregation clich�es whose
constraints are primarily based on data and control
	ow�

However� although the graph formalism allows us
to encode clich�es on a high level of abstraction� the
level of abstraction is still limited by the amount of
detail that must be speci
ed about the clich�es �e�g��
function types and arity� and exact data	ow connec�
tions� This makes it di�cult to capture some loosely
constrained clich�es� A simple example of one clich�e
that is di�cult to capture is a common type of condi�
tional dispatch which occurs in program interpreters
�particularly for Lisp�like languages� The standard
algorithm dispatches on the type of an expression� to
code for handling that expression� Instances of this
clich�e vary with the types of expressions that can be
interpreted� The number and type of test cases in the
conditional dispatch vary� as do the actions to which
they are dispatched� Also� the data	ow connection
constraints are loose� This clich�e is di�cult to encode
in the grammar formalism because it requires speci�
fying which functions are involved in the clich�e� their
arity� and the exact data	ow between them�

GRASPR would bene
t from collaboration with a
complementary �yet to be developed recognition sys�
tem that recognizes collections of coarse control 	ow
and data	ow constraints� The results of this recogni�
tion could be easily integrated into GRASPR by adding
complete items representing them to GRASPR�s agenda
and chart�

��� Cost

GRASPR is performing a constrained search for
matches of clich�es � for each rule of the grammar� the
parser is searching for a way to match each node of the
rule�s right�hand side to an instance of the node�s type
in the input graph� This is inherently exponential� �In
fact� the subgraph parsing problem for 	ow graphs is
NP�complete ����� so it is unlikely that there is a sub�
graph parsing algorithm that is not exponential in the
worst case�

However� in the practical application of graph pars�
ing to recognizing complete instances of clich�es� con�
straints are strong enough to prevent exponential be�
havior in practice� The three key constraints that
come into play are� �� constraints on node types�
which correspond to function types� �� edge connec�
tion constraints� which represent data	ow dependen�
cies� �� and co�occurrence constraints� which are a
class of control 	ow constraints that require a set of
functions to all be executed under the same control
conditions� �See ���� for a detailed discussion and sup�
porting statistics�

As we increase the recognition power of GRASPR to
make it generate more partial recognitions of clich�es�
we lose the advantage of strong constraint pruning�
What is most expensive for GRASPR to do is the task of
near�miss recognition of clich�es � recognizing all pos�
sible partial �as well as complete instances of clich�es�
This task is useful in robustly dealing with buggy pro�
grams� learning new clich�es� and eliciting advice�

This section shows how we can explicitly make the
trade�o� between recognition power and cost� and con�
trol the application order of constraints� It also shows
how GRASPR can use indexing and partitioning advice�

Recognition Power versus Cost

We can explicitly control how much partial informa�
tion GRASPR is to generate by specifying the type
of node ordering associated with each grammar rule�
Strict node orderings specify only one order of match�
ing a rule�s right�hand side� If a node is missing or
violates some constraint� all nodes following it in the
ordering are prevented from being matched� Strict or�
derings are used to recognize only complete instances
of clich�es� Partial node orderings allow more than one
order in which to match right�hand side nodes� since a
partial item can be extended with more than one item
if there is more than one next unmatched node in the
ordering� If a portion is missing or violates a con�
straint� it does not necessarily prevent other parts of
the right�hand side from being matched� Partial node



orderings allow GRASPR to explore more of the search
space� at the expense of space and time� The extreme
�and most costly partial node ordering in which no
node is ordered with respect to any other node causes
maximally�sized near�misses to be recognized�

Ordering Constraint Application

To achieve its best performance� GRASPR should ap�
ply the strongest constraints 
rst� One particularly
easy way to advise GRASPR to do this is through the
choice of node orderings� Salient node types should be
matched before more common node types� This im�
poses strong disambiguation constraints early� Nodes
that are connected to lots of other nodes or are
constrained to co�occur with other nodes should be
matched early� since more binary constraints apply to
them and their matches will better constrain the nodes
that follow them in the ordering� Node orderings can
be produced automatically based on the properties of
a given input graph and grammar�

Indexing and Partitioning

Advice on which non�terminals to look for �indexing
and which sub�	ow graphs to focus GRASPR�s search on
�partitioning would be helpful� particularly in dealing
with the expense of near�miss recognition� This advice
can come from an external agent� that has access to
more information about the program than is found
in the source code� For example� people can often
break up a program into pieces that �go together� in
that they provide a particular functionality or belong
to the same abstract domain�speci
c concept� They
base this partitioning on design documentation and
program comments or even simply names of subrou�
tines and variables� The DESIRE system ��� attempts
to automate this process� Based on a rich domain
model� it recognizes patterns of organization and lin�
guistic idioms in a program associated with concepts
in the program�s problem domain� This information
can be used to quickly draw attention to sections of
the program where there may be clich�es related to
a particular concept� Other� more conventional tech�
niques for reverse engineering large programs also pro�
vide ways of extracting possible partitions �e�g�� by
clustering ��� and slicing �����

Partitioning and indexing advice can be used by
GRASPR in two ways� One way is to use it to statically
narrow down the grammar and input 	ow graph given
to the parser beforehand� The other is to interleave
indexing and partitioning techniques with recognition�

allowing the focus to change as deeper knowledge of
the program is acquired�

The danger of static� a priori partitioning is that
a clich�e might be missed if it is not contained within
some partition boundary� This technique works best
if there are standard partitionings of clich�es and the
clich�es appear in programs in these same organiza�
tions� �For example� Hartman ��� has identi
ed a re�
stricted class of clich�es� called control concepts� that
have this property�

GRASPR can use dynamic partitioning advice by in�
corporating it into the extendibility criterion so that
items that are candidates for combination must repre�
sent recognitions of sub�	ow graphs within the same
partition� The extendibility criterion need not perma�
nently prohibit pairs of items from being combined�
Rather� pairs that fail it might be postponed from
combination until a �try�harder� phase� This allows
certain combinations to be preferred over others� while
allowing less favorable combinations to be tried later�
as the partitions are re
ned� The choice of which post�
poned combinations to try might be based on whether
they are in areas where no clich�e has yet been rec�
ognized or whether they involve partial items that
are near�misses or have salient parts matched already�
Thus� completeness need not be lost due to heuristic
partitioning� Also� the partitioning constraint can be
selectively applied �e�g�� rule by rule or between se�
lected pairs of nodes within a rule�s right�hand side�

� Conclusion� Looking to the Future

Recognition by graph parsing has signi
cant advan�
tages in tolerating variation and uncovering implemen�
tational design decisions� Parsing also provides a solid�
formal framework for characterizing its strengths and
weaknesses�

Although the scalability of this approach is re�
stricted by its representational rigidity and by the ex�
pense of near�miss recognition� GRASPR is not intended
to scale up on its own� It has been given a 	exible con�
trol strategy� which enables it to accept advice from
external agents to address its limitations� Depend�
ing on the information available about the program�
heuristics can be easily added� changed� applied se�
lectively� or overruled� GRASPR can also be tailored to
the resources available and recognition power required
for a particular task� making it applicable in multiple
reverse engineering contexts�

In general� recognition is an inherently code�driven
�bottom�up technique� which focuses on what is fa�



miliar in the code� To round out a reverse engineer�
ing system that incorporates it� recognition must be
complemented in two ways� �� with an expectation�
driven �top�down technique and �� with techniques
to deal with the unfamiliar �novel or buggy parts of
programs� GRASPR�s 	exible control architecture pro�
vides a seed for a future hybrid reverse engineering
system which integrates many di�erent components
for extracting design information from source code and
any knowledge sources associated with it� such as its
documentation� domain model� and execution traces�

More empirical study must be done to determine
the role of recognition in this system� To do this� cur�
rent recognition technology must be extended to deal
with broader classes of programs and clich�es� �Im�
portant extensions are the ability to deal with side ef�
fects to mutable objects and the ability to capture and
recognize loosely constrained clich�es� Tools must be
developed to facilitate clich�e acquisition� More study
is also needed of how recognition scales up to larger
clich�e libraries�
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