1-22 ()
’)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The model-composition problem in user-interface
generation

R. E. KURT STIREWALT stirewalt@cse.msu.edu
Dept. of Computer Science and Engineering, Michigan State University, Fast Lansing, MI 4882/,

SPENCER RUGABER spencer@cc.gatech.edu
College of Computing, Georgia Institute of Technology, Atlanta, GA 30032

Abstract. Automated user-interface generation environments have been criticized for their
failure to deliver rich and powerful interactive applications [22]. To specify more powerful systems,
designers require multiple specialized modeling notations [15, 17]. The model-composition problem
is concerned with automatically synthesizing powerful, correct, and efficient user interfaces from
multiple models specified in different notations. Solutions to the model composition problem must
balance the advantages of separating code generation into specialized code generators each able to
take advantage of deep, model-specific knowledge against the correctness and efficiency obstacles
that result from such separation. We present a correct and efficient solution that maximizes the
advantage of separation by using run-time composition mechanisms.

Keywords: Model-based, user interface, code generation, multi-paradigm

1. Introduction

Building user interfaces (Uls) is time consuming and costly. In systems with graph-
ical Uls (GUIs), nearly 50% of source code lines and development time can be
attributed to the UI [14]. GUIs are usually built from a fixed set of modules
composed in regular ways. Hence, GUI construction is a natural target for automa-
tion. Automated tools have been successful in supporting the presentation aspect
of GUI functionality, but they provide only limited support for specifying behav-
ior and the interaction of the UI with underlying application functionality. The
model-based approach to interactive system development addresses this deficiency
by decomposing UI design into the construction of separate models, each of which
is declaratively specified [5]. Once specified, automated tools integrate the models
and generate an efficient system from them. The model-composition problem is the
need to efficiently implement and automatically integrate interactive software spec-
ified in separate, declarative models. This paper introduces the model-composition
problem and presents a solution.

A model is a declarative specification of some single coherent aspect of a user
interface, such as its appearance or how it interfaces to and interacts with the
underlying application functionality. By focusing attention on a single aspect of
a user interface, a model can be expressed in a highly-specialized notation. This
property makes systems developed using the model-based approach easier to build
and maintain than systems produced using other approaches [23].

2 STIREWALT AND RUGABER

D
§ T Application Dialogue Presentation
i nl1 Model Model Model
9 e
n

Application Dialogue Presentation
R T Module Module Module
e
L Synchronization ul

Module Toolkit

Figure 1. Model-based code generation

The MASTERMIND project [5, 15] is concerned with the automatic generation of
user interfaces from three kinds of models: Presentation models represent the ap-
pearance of user interfaces in terms of their widgets and how the widgets behave;
Application models represent which parts (functions and data) of applications are
accessible from the user interface; and Dialog models represent end-user interac-
tions, how they are ordered, and how they affect the presentation and the applica-
tion. A dialog model acts as the glue between presentation and application models
by expressing constraints on the sequencing of behavior in those models. Model-
specific compilers generate modules of code from each model, and these resulting
modules are composed into a complete user interface (Figure 1). A distinguish-
ing characteristic of MASTERMIND is that the model-specific code generators work
independently of one another.

Composing code generated from multiple models is difficult. A model, by de-
sign, represents a single aspect of a system and is neutral with respect to others [3].
Inevitably, however, functionality described in one model overlaps with or is depen-
dent upon functionality described in another. A button, for example, is specified in
a presentation model, but the behavior of the button influences behavior in other
models, such as when pressing the button causes other widgets to be enabled or dis-
abled. Such effects are described in a dialog model. The effect of pressing a button
can also cause an application method to be invoked. Such effects are described in
an application model. When code generated from multiple models must cooperate,
these redundancies and dependencies can be difficult to resolve. Resolving them
automatically means that behavior in different models must be correctly unified,
and the mechanism for this unification must be implemented efficiently.

The model-composition problem is concerned with automatically synthesizing
powerful, correct, and efficient user-interfaces from separate presentation, dialog,
and application models. We present a two-fold solution. First, we formalize the
three models as concurrent agents, which synchronize on common events (Sec-
tion 3). Second, we present a runtime architecture that supports the composition
of modules generated from independent model compilers (Section 4). We present

MODEL-COMPOSITION PROBLEM 3

the results of this approach on two examples and give evidence to show that it
scales up (Section 5).

2. Background

Model-based approaches to user-interface generation use models that are specified
in diverse and often incompatible notations. This characteristic complicates model
composition because the composition mechanisms in one model may not exist in an-
other (Section 2.1). Prior research on the architecture of user-interfaces suggests
using communicating agents to structure user-interface code (Section 2.2). For-
mal models of communicating agents provide a technique called conjunction, which
is useful for composing partial specifications of a system (Section 2.5). The con-
tribution of this paper is an extension of conjunction as a specification-composition
operator into a runtime-composition mechanism.

2.1. Model-based generation

The model-based approach to interactive system development expresses system
analysis, design, and implementation in terms of an integrated collection of mod-
els. Unlike conventional software engineering, in which designers compose software
documentation whose meaning and relevance can diverge from that of the deliv-
ered code, in the model-based approach, designers build models of critical system
attributes and then analyze, refine, and synthesize these models into running sys-
tems. Model-based UI generation works on the premise that development and
support environments may be built around declarative models of a system. Devel-
opers using this approach build interfaces by specifying models that describe the
desired interface, rather than writing a program that exhibits the behavior [21].

One characteristic of model-based approaches is that, by restricting the focus
of a model to a single aspect of a system, modeling notations can be specialized
and highly declarative. The MASTERMIND Presentation Model [6], for example,
combines concepts and terminology from graphic design with mechanisms for de-
scribing complex presentations using functional constraints. The MASTERMIND
Dialog Model [19] uses state and event constructs to describe the user-computer
conversation; the composition features include state hierarchy, concurrency, and
communication. The MASTERMIND Application Model combines concepts and ter-
minology from object-oriented design techniques [18] with mechanisms for compos-
ing complex behavior based on method invocation.

Figure 2 compares the MASTERMIND models in terms of their domains of dis-
course, communication mechanisms, runtime components, and how they are com-
posed. Composition mechanisms in one model may not exist in another model.
No single one of these intra-model mechanisms is sufficient for composing all three
MASTERMIND models. The model-composition problem can be restated as the need
to unify behavior in multiple models without violating the rules of intra-model com-
position and while generating efficient code. The model-composition problem is a
declarative instance of the problem of constructing a software system where the ma-

4 STIREWALT AND RUGABER

Module Process Action Intra-module
Implementation Implementation Composition
Application Abstract Method Subclassing
pp Classes Invocation Aggregation
. Amulet Constraints, Instantiation,
Presentation . .
Objects Commands Aggregation
. State Synchronous Orthogonal
Dialog . . "
Machines Message passing Composition

Figure 2. Multi-paradigm action implementations

jor components are expressed with programming languages from different families
or paradigms. Zave has called this the multi-paradigm programming problem [24].

2.2. Multi-agent user-interface architectures

The MASTERMIND approach to model composition builds on prior work in multi-
agent user-interface architectures, which provide design heuristics for structuring
interactive systems. These architectures describe interactive systems as collections
of communicating agents, which are independent computational units with identity
and behavior. Two general frameworks—Model-View-Controller (MVC) [11] and
Presentation-Abstraction-Control (PAC) [7]—define specific agent roles and provide
guidance on how agents should be connected.

MVC prescribes how SmallTalk simulations can be composed by instantiating in-
stances of three types of agents: models (not to be confused with the MASTERIMIND
models) describing application state, views providing presentations of models, and
controllers allowing users to affect simulation behavior. A view registers interest in
one or more attributes of a model. When an attribute changes, all registered views
are notified so that they can recompute their display if necessary.

The PAC framework more closely matches MASTERMIND than does MVC. In
PAC, a presentation agent maintains the state of the display and accepts input
from the user, an abstraction agent maintains a representation of the underlying
application state, and a controller agent ensures that presentation and abstraction
remain synchronized. The MASTERMIND Presentation, Application, and Dialog
models are descriptions of the roles played by PAC’s presentation, abstraction, and
controller agents.

Since MASTERMIND models describe PAC agents, we chose to make MASTERMIND
models compose in the same manner that PAC agents compose. Specifically, the
presentation and application models define actions, which are ordered by temporal
constraints in the dialog model. To make these ideas more formal, we built upon
prior work on formal definitions of agent composition.

MODEL-COMPOSITION PROBLEM 5

2.3. Formal models of agents

The PAC framework provides heuristic definitions of user-interface agent roles and
connections. PAC agents are concurrent, and they compose by communicating con-
trol and data messages among themselves. To generate code from the models of
these agents, we need to formalize the building blocks of agents and agent compo-
sition. We chose the terminology and definitions that have been adopted by the
various process algebras, specifically LoTos [4]. Process algebras formalize concur-
rency and communication, and they have proved particularly useful for describing
UI software as a collection of agents [1, 2]. Other notations, such as StateCharts [8]
and Petri nets [16], have also been explored for modeling UT agents, as these alter-
native notations also provide definitions of concurrency and communication. We
chose LOTOS because composition in LOTOS resembles conjunction [25], which is a
useful paradigm for composing partial specifications (Section 2.5).

We model the behavior of an agent using a LOTOS abstraction called a process,
which is a computational entity whose internal structure can only be discovered by
observing how it interacts with its environment. Processes perform internal (unob-
servable) computations and interact with other, concurrently executing, processes.
The interaction between processes is synchronous: If one process tries to commu-
nicate with a process that is not ready to communicate, the former process blocks
until the latter is ready. Thus, the act of communicating synchronizes concurrent
processes.

A process represents the state of an agent as a procedure for performing future
actions. An action is an atomic computational step taken by an individual pro-
cess. Actions of a process can be observed through the events in which the actions
participate. An event is an observable unit of multi-process communication. Mul-
tiple processes participate in an event by simultaneously performing actions over
the same gate. A gate is a primitive synchronization device used to observe the
occurrence of an action in a process. Each action is associated with a single gate.
The gates of a composite agent are the union of the gates of its constituents. If two
or more constituents name the same gate, then any actions over that gate proceed
simultaneously. That is, the processes associated with the constituent agents syn-
chronize actions that share the same gate name. Thus, gates also represent a class
of possible inter-process synchronization events. During such an event, an action
can offer one or more data values that can be observed by actions in other processes
that are participating in the same event.

A complete agent is modeled by a process that represents the initial state of the
agent. A multi-agent system is modeled by a collection of concurrent, communi-
cating processes. When composing a system of multiple agents, the designer must
decide how to coordinate actions in the various processes that model the agents.
Processes are coordinated by synchronizing actions labeled with identically named
gates.

6 STIREWALT AND RUGABER

2.4. Lotos

LoTos is a rich language for specifying the partial ordering of actions within a
process and the structure of multi-process interactions. Complex processes may
be expressed by either combining sub-processes using an ordering operator (e.g.,
process P is the sequential composition of sub-processes Py and P») or by conjoining
sub-processes so that they run independently but synchronize actions with gates.
An event allows values to flow between participating actions. LOTOS also describes
the semantics of value passing with respect to synchronization.
Actions in LoTOS have the following structure:

action = gate (input|output) *
input = '?" identifier "' type
output = "I expression

gate ::= identifier

Each action names a gate and zero or more inputs and outputs. An input names a
variable in which to record a value that is offered by an action in another process. An
output is an expression for computing a value to offer to actions in other processes.

Actions concisely represent the occurrence of many possible events. Like actions,
events are associated with a particular gate. Unlike actions, events have no concept
of input or output; rather they represent unique values that flow between actions.
Events have the following structure:

event == gate (value) *

n

value = constant

Note that the values are always constants because events are unique assignments
of values during a synchronization.

In LoTos, the gates over which two conjoined processes are required to synchro-
nize must be specified between the vertical lines that symbolize the conjunction
operator (||). For example, given the following LOTOS process definitions:

process P [g1,92,95]...endproc
process Q [g1,92,94] - .. endproc
process R [g1,92,93,91] := P [[g1,92]| Q endproc

Process R behaves like P on gate g3 and @) on gate g4, but R must behave like P
and @ in synchrony on gates g; and gs.

For processes with many gates, the LOTOS notation quickly becomes unreadable.
In this paper, we abbreviate the conjunction operator using notational conventions
similar to those used in CSP [9]. In our abbreviated notation, we write the conjunc-
tion of P and @ as P || @ with the understanding that P and () must synchronize on
gates that are common to the agents whose states P and @) respectively represent.

Suppose the behavior of an agent can be described by a LoTOS process B. If the
agent can perform an action by synchronizing on event e (denoted B(e)), then its

MODEL-COMPOSITION PROBLEM 7

behavior from that point on is defined by another process B' = B(e). The systems
under study are deterministic, which means that B(e) is always unique. Moreover,
when a system is defined by conjoining sub-processes, the compositional structure is
preserved throughout the lifetime of the system. That is,if B=B; || B2 || --- || Bn
then B(e) = B} || ... || B!, where:

B - B;(e) if e occurs over a gate of agent i
i~ .
B; otherwise

Any event that can be observed of a process P can also be observed of any con-
junction of P with other processes. This fact will be important when we define the
Obs observer function (Section 3.4).

2.5. Congunction as composition

Alexander uses conjunction to compose separately defined application and pre-
sentation agents [2]. Abowd uses agent-based separation to illuminate usability
properties of interactive systems [1]. Both of these approaches rely on the use of
conjunction to compose agents that are defined separately but interact. In fact, con-
junction is a general operator for composing partial specifications of a system [25].
The idea is that each partial specification imposes constraints upon variables (or,
in the case of agents, events) that are mentioned in other partial specifications.
When these specifications are conjoined, the common variables must satisfy all
constraints.

We define the behavior of a system generated from MASTERMIND models to be
any behavior that is consistent with the conjunction of constraints imposed by the
dialog, presentation, and application models. We then extend conjunction from a
specification tool into a mechanism for composing runtime modules.

2.6. Summary

Three issues must be addressed to solve the model-composition problem: The so-
lution must generate user-interfaces with rich dynamic behavior, the correctness of
module composition must be demonstrated, and the generated modules must co-
operate efficiently. In MASTERMIND, the rich expressive power is achieved through
special-purpose modeling notations [15, 5]. The remainder of this paper addresses
the generation of correct implementations with maximal efficiency while preserving
the expressive power of MASTERMIND models.

3. Model-composition theory

Recall from Figure 1 that each class of model has a code generator that synthesizes
runtime modules for models in that class. The modules are generated without
detailed knowledge of the other models. At run time, however, modules must

8 STIREWALT AND RUGABER

cooperate as prescribed by the conjunction of the models that generated them. This
section describes the relationship between model composition and the mechanism
by which the associated modules cooperate at runtime.

3.1. Notation

The subject of this paper is the automatic generation and composition of runtime
modules from design-time models. A module is a unit of code generated from a
single model. We use a third class of construct—the LOTOS process—to define the
correctness of model and module composition. In formal arguments, we need to
refer to all three types of constructs; thus we distinguish the constructs by using
different, fonts. We also need special functions that map models and modules into
comparable domains.

We represent the classes of MASTERMIND models using German letters. The sym-
bols B, ©, and 2 represent respectively the classes of MASTERMIND presentation,
dialog, and application models. We use the italic font to represent LOTOS processes
and the semantic models of these processes. The set Process represents the set of
LoTos processes. Specific processes are written in capital italic letters (e.g., P,
D, and A, respectively). The set TraceSets defines the set of event traces over
the alphabet of gates and the space of values that can be offered and observed by
LoTos actions. The function Tr : Process — TraceSets maps a LOTOS process
to the set of all event traces that can be observed of that process.

We represent runtime entities using the Sans serif font. The set Component rep-
resents the class of all runtime components. A component is a block of code that
provides gates for observing the actions of the component. By defining components
as runtime code that provides gates for observing behavior, we can define the func-
tion Obs : Component — T'raceSets that maps a component to the set of event
traces that can be observed through the gates that the component provides.

There are two categories of component in the MASTERMIND architecture: the gen-
erated modules and the synchronous composition of these modules. Instances of the
generated modules are written Pres, Dialog, and Appl, respectively. We also think
of the modules in synchronous composition as a component, which is attained by
connecting the generated modules using some synchronization infra-structure (de-
fined in Section 4). This composite component is written Synch[Pres, Dialog, Appl].
The name Synch suggests that the component is the synchronization of the three
generated modules; the brackets suggest that the generated modules fit into the
larger system and that Synch by itself is not a component.

3.2. Inter-model composition

Model-based code generators construct runtime modules from design-time mod-
els. The code generation strategy is model-specific, reflecting the specialization of
models to a particular aspect of a system. At run time, however, modules must co-
operate, and the cooperative behavior must not violate any correctness constraints
imposed by the models. There is an inherent distinction between behavior that

MODEL-COMPOSITION PROBLEM 9

is limited to the confines of a given model and behavior that affects or is affected
by other models. Inter-model composition is concerned with managing this latter
inter-model behavior.

Some behavior is highly model specific and neither influences nor is affected by
behavior specified in other models. As Figure 2 illustrates, in a M ASTERMIND
presentation model, graphical objects are implemented using primitives from the
Amulet toolkit [13], and attribute relations are implemented as declarative formulas
that, at runtime, eagerly propagate attribute changes to dependent attributes. As
long as changes in these attributes do not trigger behavior in dialog or application
models, these aspects can be ignored when considering model composition.

In an application model, object specifications are compiled into abstract classes
under the assumption that the designer will later extend these into subclasses and
provide implementations for the abstract methods. As long as the details of these
extensions do not trigger behavior in dialog or presentation models, this application
behavior may also be ignored when defining model composition.

Within a module, entities compose according to a model-specific policy. In a
presentation model, for example, objects compose by part-whole aggregation, and
attributes compose by formula evaluation over dependent attributes. In an applica-
tion model, objects compose using a combination of subclassing, aggregation, and
polymorphism. When considering how models compose, some details of intra-model
composition can be abstracted away, but not all of them. Models impose tempo-
ral sequencing constraints on the occurrence of inter-model actions, and models
contribute to the values computed by the entire system. These constraints and
contributions must be captured in some form and used to reason about model
composition.

We map this inter-model behavior into a semantic domain that is common across
all of the models. This domain is described by the LOTOS notation, which specifies
temporal constraints on actions and data values. We assume that LOTOS processes
can be derived from the text of a model specification (Section 3.4). Designers
may, for example, need to designate actions of interest to other models. LoTOS
processes do not capture all of the behavior of models in composition, but they do
express the essential inter-model constraining behavior.

3.3. Ezample

We now present an example of inter-model behavior expressed as a LOTOS process.
The dialog model being considered is for a Print/Save widget similar to those
found in the user interfaces of drawing tools, web browsers, and word processors
(See Figure 3). These widgets allow the user to format a document for printing
either to a physical printer or to a file on disk; we call the former task printing and
the latter task saving. Options specific to printing, such as print orientation (e.g.,
portrait vs. landscape), and to saving, such as the name of the file into which to
save, are typically enabled and disabled depending upon the user’s choice of task.
These ordering dependencies are reflected in the dialog model for this widget shown
by the LOTOS process in Figure 4.

10 STIREWALT AND RUGABER

Print To: - File ~ Printer

Filename:

Orientation: N Fovhualin

cerm

g "
H AT b Tt
v R B ".*._;h.-'a.-

E| |

Figure 3. Screen shot of the Print/Save dialog box

The process PrintSave can synchronize on any of the gates that follow it in square
brackets. In this example, the gates print, save, go, cancel, layout, and kbd (line
1 in the figure) define points for synchronizing with the presentation; whereas the
gates [pr and write define points for synchronizing with the underlying application.
The process parameters Ipdhost and filename (line 2) store the name of the default
printer and the user-selected filename, respectively. The parameter doc represents
the document to be printed or saved, and the parameter port represents the print
orientation (portrait if true, landscape if false).

The widget in Figure 3 is specified by a separate presentation model (not shown).
This model defines a pair of radio buttons labeled File and Printer and two buttons
labeled OK, and CANCEL. When these buttons are pressed, they offer the events
save, print, go, and cancel respectively. The presentation model also contains a
pair of radio buttons that specify paper orientation. These buttons display graphics
of a page in either portrait or landscape mode and, when selected, offer the event
port with a value of true if the choice is for portrait orientation and false for
landscape orientation. Finally, there is a text entry box in which the user can type
in a file name. As the user edits this name, the text box responds by offering the
contents of the string typed so far as part of the kbd event. Note that the actual
keys being pressed are not returned, as editing functionality is best handled in a
text widget and is not considered inter-model behavior. A separate application
model (not shown) defines procedures for issuing a print request and saving a file
to disk. These procedures are responsive to the events Ipr and write respectively.
Actions that synchronize on these events offer a number of values including printer
name (Ipdhost) and filename (filename).

MODEL-COMPOSITION PROBLEM 11

1. process PrintSave[print, save, go, cancel, layout, kbd, lpr, write |
2. (lpdhost, filename : string, doc : doctype, port : bool) : exit :=
3. P[go, lpr, write, layout, kbd] [> (cancel; exit)
4. where
5. process PJ go, lpr, write, layout, kbd | : exit :=
6. Layout[go, Ipr, layout] [> (save; F[go, lpr, write, layout, kbd |)
7. endproc
8. process F[go, lpr, write, layout, kbd | : exit :=
9. Edit[go, write, kbd] [> (print; P[go, lpr, write, layout, kbd])
10. endproc
11. process Layout| go, lpr, layout | : exit :=
12. (layout ? port; Layout[go, lpr, layout |)
13. [] (go; lpr ! Ipdhost ! port ! doc; exit)
14. endproc
15. process Edit[go, write, kbd | : exit :=
16. (kbd ? filename; Edit[go,write,kbd |)
17. [] (go; write ! doc ! file; exit))
18. endproc
19. endproc

Figure 4. Print/Save dialog process.

The temporal structure of dialog, presentation, and application model composi-
tion is given in the behavior specification (line 3). The behavior of PrintSave is
the behavior of the process P (defined on lines 5 through 7) with the caveat that it
may be disabled (terminated) at any time by the observation of the cancel event.
Disabling is shown with the [> operator. Process P represents which interactions
and application invocations must happen in order to send a document to a printer.
Most of this functionality is actually expressed in the sub-process Layout (defined
on lines 11 through 14). P behaves like Layout in the normal case, but it can be
disabled if the save event is observed. Recall that the save event is offered whenever
the user presses the Save to File button in the presentation model. The process
F (defined on lines 8 through 10) likewise behaves like the process Edit (defined
on lines 15 through 18) in the normal case, but is disabled if the event print is
observed. Note that F' and P can disable each other, which means that the user
can switch back and forth between printing and saving as many times as he or she
likes before hitting the Go button.

12 STIREWALT AND RUGABER

A
2 —22 5 Process

o] [

Ob
Component ——— TraceSets

Figure 5. Dialog compiler correctness.

3.4. Models, modules, and processes

Processes like those shown in Figure 4 are useful for understanding the relationship
between models and modules. This relationship is complex, and so we describe it
first for a single model and then for the three models in composition. We now
formalize correctness conditions for the MASTERMIND dialog model. A similar
formalization exists for the other MASTERMIND models.

Figure 5 shows the relationship between dialog models (members of the set D),
runtime modules generated by dialog models (members of the set Dialog), and the
inter-model behavior of dialog models (members of the set Process). The relation-
ships between these sets are defined as functions that map members of one set into
members of another. The function Cp : ® — Dialog maps dialog models to runtime
modules. Think of Cp as an abstract description of the dialog-model compiler. The
function Ap : ® — Process maps dialog models into LOTOS processes describing
their inter-model behavior. Think of Ap as an abstract interpretation of the dialog
model expressing its semantics in LOTOS.

These sets and functions are related by the commutative diagram of Figure 5.
Externally observable model behavior is mapped into a LOTOS process by Ap, and
the set of traces of a module’s externally observable events is recorded by Obs. We
say that a dialog model d € © is consistent with the module Cp(d) if every trace
o € Obs(Cp(d)) is in the set T'r(Ap(d)) and if there are no sequences ¢ € Tr(Ap(d))
such that ¢ € Obs(Cp(d)). That is, the inter-model behavioral interpretation of d
agrees exactly with the observable behavior of the runtime module generated from
d. Commutativity of the diagram requires this property for any dialog model in
the set .

3.5. Model-based synthesis

The correctness relationship between models and modules (Figure 5) can be ex-
tended to specify the correctness of module composition. We now have functions
Ap, Ap, and A4 that map models into LOTOS processes. These processes should
compose by conjunction. We also have a runtime component Synch that combines
modules Pres, Dialog, and Appl into a single component whose actions are observ-
able by the Obs function. Figure 6 shows the constraints on the behavior of these
entities. Let p € B, d € D, and a € A. Then the code generated from these

MODEL-COMPOSITION PROBLEM 13

VpeP: VdeD: Vae:
Obs(Synch[Cp(p),Cp(d),Ca(a)])
=Tr(Ap(p) || Ap(d) || Aa(a))

Figure 6. Module-composition correctness.

models is correct if and only if, for any observable behavior o, o is a legal trace in
the conjunction of the models. This equation defines the conditions necessary for
correct module composition without assuming any model-specific interpretation of
these actions. It serves, therefore, as a specification of design requirements. In the
next section, we present an implementation that satisfies these requirements.

4. Module-composition runtime architecture

We now turn to the designs of the run-time synchronization module and model-
specific compilers of Figure 1. The essential design problem is how to make the
generated modules compose while retaining the independence of the model-specific
compilers. The conditions of Figure 6 impose constraints on these designs. For-
tunately, these constraints do not require model-specific knowledge (e.g., graphical
concepts in the presentation model or data layout in the application model). Thus,
module-composition logic can be separated from the model-specific functionality
within a module. This separation is the key to making model-based synthesis inde-
pendent without sacrificing the correctness of module integration. The MASTER-
MIND runtime library contains efficient primitive classes that enable independent
module synthesis and correct composition by conjunction. This library provides
a great deal of generality and flexibility for code generation. In this paper, we
describe only those aspects of the library that are relevant for supporting inde-
pendent synthesis. First, we introduce the mechanism for composing generated
modules (Section 4.1). We then describe how this mechanism implements con-
junction without sacrificing the independence of model synthesis (Section 4.2) and
demonstrate its operation through an example (Section 4.3).

4.1. Design structures to support conjunction

To facilitate the independence of model synthesis, we designed a mechanism that
enables a module to compose with other modules without directly referencing them.
As Figure 1 suggests, generated modules compose through the aid of a special syn-
chronization component, called Synch. We designed the Synch interface to simplify
the generation of modules. This section describes the interface and the process of
model compilation and integration.

Figure 7 illustrates the interface between the generated modules and the Synch
component. Modules contain Action objects that link (explicitly refer to) Gate

14 STIREWALT AND RUGABER

LActmi {ActioriJ LActlori [ActioriJ LActior] {ActioriJ

Synch

Figure 7. Structural depiction of composition according to Synch[Pres, Dialog, Appl].

objects in the Synch component. As the names suggest, an Action object reifies
a LOTOS action, and a Gate object reifies a LOTOS gate. At runtime, Actions
implement a unit of observable behavior in a module, and Gates implement the
synchronization of Actions by conjunction. The mathematical connection between
LoTos actions and gates is reified using explicit links between Action and Gate
objects. These links constitute the mechanism for composing generated modules
with the Synch component: A module “plugs in” to the architecture by linking its
Action objects to appropriate Gate objects in the Synch component. The dashed
lines in Figure 7 illustrate some (of many possible) links.

This architecture enables model synthesis to be treated separately from module
integration, similar to the way compilation is treated separately from linking in
traditional programming. This separation allows a module to be synthesized from
a single model, independent of the synthesis of the other models. During synthesis,
model-based compilers independently generate modules. Any behavior that must
be observed by other modules must be packaged into an instance of the class Action.
When emitting the code that creates this instance, the compiler also writes out the
name of the associated gate to an auxiliary file. Consequently the output of a
model compiler is a module and an auxiliary file listing the names of dependent
gates. During module integration, a module integrator reads in these auxiliary
files, creates the Synch component, and combines it with the generated modules to
produce an executable image.

Going back to our running example, consider the compilation of the presentation
model for the Print/Save dialog box (Figure 3). As the model is processed, the
compiler emits Action objects that interface directly with UT toolkit widgets. After
compilation, the Pres module will contain an Action for each widget in the dialog
box. For example, there will be a distinct Action object paired with the OK and
CANCEL buttons, each of the radio buttons, and Filename text-entry widget.
To integrate the Pres module with the other modules, each of these Actions must
link to Gate objects in the Synch component.

Note that when the Actions are being emitted, the corresponding Gate object
will not yet exist, as the Gate is created by the module integrator. Thus, the link
between an Action and its corresponding Gate cannot be established at compile
time. Instead, an Action object is instantiated with the name of the gate over

MODEL-COMPOSITION PROBLEM 15

Action {abstract} | synchronizes Gate {abstract}
voi d enabl e(); voi d confirn(Listener*);
voi d disable(); voi d synchroni ze();

‘ ActionRol e {abstract} ‘ ‘ Modul eSour ce ‘ Dial Gate

void register(Dial*);
‘ ‘ void unregister(Dial*);

Li stener {abstract} Command {abstract}
void listen(); voi d execute();
voi d ignore();
Di al AppGat e PresDi al Gate
voi d register(Appl *); void register(Pres*);
"""" Cegend 77T voi d unregister(Appl*); voi d unregister(Pres*);

"\ generdization iE iE
(disjoint subclasses)

A generaization
(overlapping subclasses)
PresDi al AppGat e

Figure 8. Detailed design of action and gate classes.

which it must synchronize. At runtime, the Action uses this name to locate the
corresponding Gate. Because the module integrator creates a Gate for each named
gate, the Action object can assume that the gate will exist at runtime. This design
greatly simplifies model compilation: The presentation-model compiler need not
concern itself with locating an object in another component. Rather, the compiler
simply creates a module using Action objects and writes out the names of gates to
an auxiliary file.

4.2. Behavior of the design structures

The synthesis of one MASTERMIND model can proceed independently of the synthe-
sis of other models because the generated modules only refer to each other indirectly,
through Gate objects. The Gate objects are responsible for determining when a syn-
chronization should occur and dispatching control the associated Action objects in
an appropriate order once the synchronization constraints are satisfied. Conse-
quently, Action objects need not be concerned with these issues. Rather, Actions
are concerned with implementing model-specific functionality. This separation is
crucial to supporting the independence of model synthesis.

Figure 8 describes the design of classes Action and Gate. Class Gate is designed to
internalize information about the modules whose actions are required to synchronize
at the gate. Henceforth, we shall refer to this information as the synchronization
constraint of a Gate. The rules of conjunction (Figure 6) establish a small number
of possible variations of this constraint. At runtime, a Gate determine whether or
not to synchronize by checking whether or not this constraint is satisfied. To make
this determination, a Gate must infer the location (module) of each Action that
wishes to synchronize over the Gate. We call this process of inference tabulation.

16 STIREWALT AND RUGABER

Tabulation occurs when an Action announces its readiness to synchronize. Such
announcements are made by an Action registering itself with its Gate; an Action
registers itself by passing itself to an invocation of the register operation on its Gate.
When a Gate determines that its constraint is satisfied, it invokes the synchronize
operation, which dispatches control to the registered Actions so that they may
execute.

For a Gate to tabulate the modules that request activity, the Gate must be able
to infer the module of every Action that registers. This means that an Action
must know the module in which it exists. Class Action has a subclass, called
ModuleSource, which further specializes into three subclasses, Pres, Dial,and Appl
(not shown in the figure). The concrete class of every Action must inherit from one
of these three subclasses. We implemented tabulation by specializing the register
operation so that it dispatches based on these subclasses. The subclasses of Gate
contain module variations of the register function. These subclasses embody each
of the three possible synchronization constraints that arise in MASTERMIND. The
constraint associated with class PresDialGate requires Pres and Dial actions to be
present at the Gate. Similarly, the constraint associated with class DialApplGate
requires Dial and Appl actions to be present at the Gate, and the constraint associ-
ated with class PresDialogApplGate requires all actions from all three modules to be
present at the Gate. These are the only three types of synchronization constraints
required of MASTERMIND-generated user interfaces.

The next issue concerns dispatching control to registered actions once a Gate’s
synchronization constraint is satisfied. MASTERMIND supports two different action-
control mechanisms (generalized by ActionRole). One mechanism is a generic inter-
face for executing a model-specific operation (class Command). The other mechanism
is a generic interface for reactively observing an asynchronous event, such as a user
interaction with a graphical widget (class Listener). What happens when a Gate’s
synchronization constraint is satisfied depends upon the control mechanisms used
by the registered Actions. For example, if two Commands are waiting at a Gate, and
they satisfy the synchronization constraint for the Gate, then the execute method
for both Commands are invoked. If, instead, one of these actions is a Listener and
the other is a Command, then the Command is not invoked until the Listener receives
an event. Because Listeners are reactive, they need to be able to announce the
reception of an event to the Gate. This is accomplished by invoking the confirm
operation on the Gate.

A module requests the performance of an Action by invoking the operation enable.
Enabling causes an Action to register itself with its Gate. Our design abstracts
the logic for requesting the performance of an Action into the enable and disable
methods, which correctly cooperate with the corresponding Gate irrespective of the
particular synchronization constraints. Thus, the logic can be completely encap-
sulated in the abstract class Action, which a model-compiler writer need never
modify. Moreover, model-compiler writers can package model-specific functionality
using one of two quite different control policies, Command and Listener. One con-
sequence of this design is that the module integrator must determine the type of
Gate to emit. This is a simple task, however, given the information written to the

MODEL-COMPOSITION PROBLEM 17

Text Fi el dActi on wi dget Am Text _I nput _W dget
void listen(); void Do(); O
Qvoidignore(): ! ‘,,,,,,,J
| i y
i wi dget - >St a”()ﬁ wi dget - >synchr oni zes- >confi rn()lﬁ
|

v

Legend
wi dget - >St op() ; N\ generdlization

O- = pointer to operation pseudocode

Figure 9. Example of use.

auxiliary files by the model compilers. For example, the gate cancel that is used
in the Print/Save dialog is used in both the presentation model, where it observes
the pressing of the CANCEL button, and in the dialog model, where it observes
the completion of the dialog. Because modules compose by conjunction, the Gate
associated with cancel always synchronizes an action from the Pres module with an
action from the Dialog module. To implement this behavior, the module integrator
emits an instance of PresDialogGate, which is returned when the associated Actions
link to the named gate.

4.3. Ezample

We now demonstrate how these features work in the context of the Print/Save
dialog. Recall from Figure 3 the text entry field that allows a user to enter file
name in which to save a document. In the dialog model (Figure 4), the entry of
the file name is modeled as an atomic action over the gate kbd. To connect this
dialog action to the text entry widget that ultimately witnesses the action, we need
a presentation Action that knows how to attach to the text entry widget, and we
need a Gate object to represent the kbd gate.

Figure 9 illustrates how a reusable action that listens for text entry can be
created from the primitives introduced in Section 4.2. The presentation-model
compiler emits instances of this class to implement text-entry boxes. In the fig-
ure, we rendered the primitive classes in grey to distinguish them from new ob-
jects and classes that the model-compiler writer creates. The new class is called
TextFieldAction. It inherits from class Pres because its instances will be emitted
into the Pres module. It inherits from class Listener because it is concerned with
monitoring and controlling the text-input widget. The class is associated with an
Am_Text_Input_Widget object by an association called widget. This object is prede-

18 STIREWALT AND RUGABER

fined in the Amulet toolkit [13], which the current version of MASTERMIND uses for
presentation support. The TextFieldAction controls the Amulet object by invoking
the Start and Stop operations on the object, which instruct the widget to enable
and disable keyboard input. The invocations of these methods form the implemen-
tation of listen and ignore respectively. We also need a way for the widget to
signal the Action object with the event. This is accomplished by overriding the Do
method of the widget to go find the Gate associated with the Action and invoke
the confirm operation on this Gate to signify the occurrence of the event. The Do
method can be thought of as a callback function that Amulet invokes to deliver an
keyboard event (in this case, the event is a keyboard return).

The example serves to illustrate the sequence of behaviors that are enacted by
the MASTERMIND library primitives. Suppose an object of class TextFieldAction
is registered at the Gate associated with kbd. If the synchronization constraint for
this Gate is satisfied, the Gate invokes the listen method of the TextFieldAction.
This invocation in turn causes the Start method of the Am Text Input_Widget to
be invoked, which enables user input at the widget. If the synchronization context
changes so that the constraint is no longer satisfied—either because the Pres module
disables the TextFieldAction or because another module disables an Action that
is waiting at the Gate, then the Gate invokes the ignore operation. This causes
the TextFieldAction to invoke the Stop method of the Am Text_Input_Widget, which
disables text input. If, on the other hand, the user enters a string and hits the
return key, the Do method of the widget is invoked. This causes the invocation of
the confirm method on the Gate, and the Gate proceeds to execute any Commands
that are waiting.

4.4. Summary

Our design enables independent code generation because the Actions in a gener-
ated module are insulated from Actions in other modules by the gate objects. We
compose modules by creating Gate objects that embody the synchronization re-
quirements of the models and by linking Actions to their Gates. The independence
that is afforded by this approach allows model-based code generators to apply deep
model-specific knowledge to the synthesis of code.

5. Results and status

We evaluated our solution to the model-composition problem with respect to power,
correctness, and efficiency. Multi-paradigm actions have proved easy to specialize
to accommodate features from disparate implementation toolkits and architectures.
For example, we have specialized Actions to represent actions in: the Amulet object
system [13], the C++ object system, and a special-purpose state-machine language.
Figure 2 summarizes the different applications and results.

MODEL-COMPOSITION PROBLEM 19

5.1. Power

We were able to express user interfaces using our modeling notations in several
case studies. We tested the quality of user interfaces on two specific examples: the
Print/Save widget described in Section 3.3 and an airspace-and-runway executive
that supports an air-traffic controller (ATC) [19]. The former demonstrates the
ability to generate common, highly reusable code for standard graphical user inter-
faces. The latter demonstrates the ability to support a complex application using
a direct-manipulation interface.

The ATC example testifies to the power of our approach. When a flight number is
keyed into a text-entry box, an airplane graphic, annotated with the flight number,
appears in the airspace. As more planes come into the airspace, the controller keys
their flight number into the text-entry box. When the controller decides to change
the position of a plane, she does so by dragging the airplane icon to a new location
on the screen. As soon as she presses and holds the mouse button, a feedback
object shaped like an airplane appears and follows the mouse to the new location.
When the mouse is released, the plane icon moves to the newly selected location.

The presentation model of the ATC example is quite rich. It specifies gridding so
that airplane graphics are always uniformly placed within the lanes, and it speci-
fies feedback objects that present controllers information about the planes during
operation. In a real deployment, the locations of flights change in response to asyn-
chronous application signals from special hardware monitors. In such a deployment,
these signals would be connected to Listener actions and would fit into the frame-
work without change. For more details on this case study and the Print/Save dialog,
see Stirewalt’s dissertation [19].

5.2. Correctness

In addition to being able to generate and manage powerful user interfaces, the com-
position of our modules is correct. Two aspects of our approach require justification
on these grounds. First is the design of runtime action synchronization. Second
is the synthesis of runtime dialog components (members of the set D) from dialog
models.

This paper addresses the theoretical issues involved in the design of runtime
action synchronization. The Gate and Action classes are traceable refinements of
the corresponding concepts in LOTOS. In practice, we found this design to be quite
robust. One aspect of synchronization correctness, which we do not address in
this paper, is how to show that a model-specific specialization of Action does not
violate the delicate callback protocol that underlies the system. For example, say
that an Appl, which when modeled in LOTOS observes a value z and offers a value
Yy, is to be implemented using a method invocation. The method should bind z to
its parameter and bind its return value to y. Since value offerings are evaluated in
sequence, how can we be sure that the ordering of evaluation does not interfere with
the invocation of the method or vice versa? Currently, we check this by inspection,
but we are investigating ways of packaging this problem so that a model checker

20 STIREWALT AND RUGABER

(e.g., SPIN [10], SMV [12]) can detect such anomalies. Stirewalt used the SMV
model checker to validate the inter-operation of Action and Gate objects [19].

As we mentioned earlier, the MASTERMIND Dialog model notation is a syntactic
sugaring for a subset of LoT0s. This language is described in greater detail in [20].
We implemented a prototype dialog model code generator whose correctness was
validated as described in Stirewalt [19]. This code generator compiles dialog models
without reference to other models.

5.3. Efficiency

We measured efficiency empirically by applying our code generator on the ATC
example. We generated dialog modules and connected these with hand-coded pre-
sentation and application modules. On the examples we tried, we observed no
time delays between interactions. We quantified these results by instrumenting the
source code to measure the use of computation resources and wall-clock time. The
maximum time taken during any interaction was 0.04 seconds. This compares well
to the de facto HCI benchmark of response time, 0.1 seconds. We believe that more
heavyweight, middle-ware solutions, such as implementing synchronization through
object-request brokers, are not competitive with these results.

5.4. Future work

We are currently completing a more robust dialog code generator. This new code
generator incorporates state-space reduction technology and will improve interac-
tion time, which in the prototype is a function of the depth of a dialog expression,
with interaction that executes in constant time.

6. Conclusions

How to generate code for a specialized modeling notation is a well understood
problem. Integrating code generated from multiple models is not. Integration is
much more complicated than merely linking compiled object modules. For models
to be declarative, they must assume that entities named in one model have behavior
that is elaborated in another model. Designers want to treat presentation, temporal
ordering, and effect separately because each aspect in isolation can be expressed in
a highly specialized language that would be less clear if it were required to express
the other aspects as well. For interactive systems, composition by conjunction is
essential to separating complex specifications into manageable pieces.
Unfortunately, programming languages like C++ and Java do not provide a con-
junction operator. Such an operator is difficult to implement correctly and effi-
ciently, and, in fact, we did not try to implement it. Rather, by casting model
composition into a formal framework that includes conjunction, we are able to
express a correct solution and then refine the correct solution into an efficient de-

MODEL-COMPOSITION PROBLEM 21

sign. This is a key difference between our approach and middle-ware solutions that
implement object composition by general event registry and callback.

Our results contribute to the body of automated software engineering research in
two ways. First, our framework is a practical solution that helps to automate the
engineering of interactive systems. Second, our use of formal methods to identify
design constraints and the subsequent refinement of these constraints into an object-
oriented design may serve as a model for other researchers trying to deal with model
composition in the context of code generation. The formality of the approach allows
us to minimize design constraints and is the key to arriving at a powerful, correct,
and efficient solution.

References

1. G. D. Abowd. Formal Aspects of Human-Computer Interaction. PhD thesis, University of
Oxford, 1991.

2. H. Alexander. Structuring dialogues using CSP. In M. Harrison and H. Thimbleby, editors,
Formal Methods in Human-Computer Interaction. Cambridge University Press, 1990.

3. L. Bass and J. Coutaz. Developing Software for the User Interface. SEI Series in Software
Engineering. Addison-Wesley, 1991.

4. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LoT0s. Com-
puter Network ISDN Systems, 14(1), 1987.

5. T.P. Browne et al. Using declarative descriptions to model user interfaces with MASTERMIND.
In F. Paterno and P. Palanque, editors, Formal Methods in Human Computer Interaction.
Springer-Verlag, 1997.

6. P. Castells, P. Szekely, and E. Salcher. Declarative models of presentation. In TUI’97:
International Conference on Intelligent User Interfaces, pages 137-144, 1997.

7. J. Coutaz. PAC, an object-oriented model for dialog design. In Human Computer Interaction
- INTERACT’87, pages 431-436, 1987.

8. D. Harel. On visual formalisms. Communications of the ACM, 31(5), 1988.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice/Hall International, 1985.

10. G. J. Holzmann. The model checker spin. IEEE Transactions on Software Engineering,
23(5):279-295, May 1997.

11. G. E. Krasner and S. T. Pope. A cookbook for using the model view controller user interface
paradigm in smalltalk. Journal of Object Oriented Programming, 1(3), 1988.

12. K. L. McMillan. Symbolic Model Checking: An Approach to the State Ezplosion Problem.
PhD thesis, Carnegie Mellon University, 1992. CMU-CS-92-131.

13. B. A. Myers et al. The Amulet environment: New models for effective user-interface software
development. IEEE Transactions on Software Engineering, 23(6), 1997.

14. B. A. Myers and M. B. Rosson. Survey on user interface programming. In SIGCHI’92:
Human Factors in Computing Systems, May 1992.

15. R. Neches et al. Knowledgeable development environments using shared design models. In
Intelligent Interfaces Workshop, pages 63-70, 1993.

16. P. Palanque, R. Bastide, and V. Senges. Validating interactive system design through the
verification of formal task and system models. In Working Conference on Engineering for
Human Computer Interaction, 1995.

17. A. Puerta. The Mecano project: Comprehensive and integrated support for model-based
user interface development. In Computer-Aided Design of User Interfaces, 1996.

18. J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

19. R. E. K. Stirewalt. Automatic Generation of Interactive Systems from Declarative Models.
PhD thesis, Georgia Institute of Technology, 1997.

20. R. E. K. Stirewalt and S. Rugaber. Design and implementation of mdl: The mastermind
dialogue language. In preparation.

22

22.

23.

24.

25.

STIREWALT AND RUGABER

P. Szekely et al. Declarative models for user-interface construction tools: the MASTERMIND
approach. In Bass and Unger, editors, Engineering for Human-Computer Interaction. Chap-
man & Hall, 1996.

Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface builders: Model-based inter-
face tools. In Bridges Between Worlds: Human Factors in Computing Systems: INTER-
CHI’93, 1993.

S. Wilson et al. Beyond hacking: A model based approach to user interface design. In J. L.
Alty, D. Diaper, and S. Guest, editors, People and Computers VIII, Proceedings of the HCI
’93 Conference, 1993.

P. Zave. A compositional approach to multiparadigm programming. IEEE Software, 6(5),
September 1989.

P. Zave and M. Jackson. Conjunction as composition. ACM Transactions on Software
Engineering and Methodology, 2(4):371-411, 1993.

