
� � ���� ��
c� Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

The model�composition problem in user�interface

generation

R� E� KURT STIREWALT stirewalt�cse�msu�edu

Dept� of Computer Science and Engineering� Michigan State University� East Lansing� MI �����

SPENCER RUGABER spencer�cc�gatech�edu

College of Computing� Georgia Institute of Technology� Atlanta� GA �����

Abstract� Automated user�interface generation environments have been criticized for their
failure to deliver rich and powerful interactive applications 	��
� To specify more powerful systems�
designers require multiple specialized modeling notations 	��� ��
� The model�composition problem
is concerned with automatically synthesizing powerful� correct� and ecient user interfaces from
multiple models speci�ed in di�erent notations� Solutions to the model composition problem must
balance the advantages of separating code generation into specialized code generators each able to
take advantage of deep� model�speci�c knowledge against the correctness and eciency obstacles
that result from such separation� We present a correct and ecient solution that maximizes the
advantage of separation by using run�time composition mechanisms�

Keywords� Model�based� user interface� code generation� multi�paradigm

�� Introduction

Building user interfaces �UIs� is time consuming and costly� In systems with graph�
ical UIs �GUIs�� nearly ��� of source code lines and development time can be
attributed to the UI �	
�� GUIs are usually built from a �xed set of modules
composed in regular ways� Hence� GUI construction is a natural target for automa�
tion� Automated tools have been successful in supporting the presentation aspect
of GUI functionality� but they provide only limited support for specifying behav�
ior and the interaction of the UI with underlying application functionality� The
model�based approach to interactive system development addresses this de�ciency
by decomposing UI design into the construction of separate models� each of which
is declaratively speci�ed ���� Once speci�ed� automated tools integrate the models
and generate an ecient system from them� The model�composition problem is the
need to eciently implement and automatically integrate interactive software spec�
i�ed in separate� declarative models� This paper introduces the model�composition
problem and presents a solution�

A model is a declarative speci�cation of some single coherent aspect of a user
interface� such as its appearance or how it interfaces to and interacts with the
underlying application functionality� By focusing attention on a single aspect of
a user interface� a model can be expressed in a highly�specialized notation� This
property makes systems developed using the model�based approach easier to build
and maintain than systems produced using other approaches �����

� STIREWALT AND RUGABER

D
e
s
i
g
n

R
u
n

T
i
m
e

T
i
m
e UISynchronization

ToolkitModule

ModelModelModel
DialogueApplication Presentation

PresentationDialogueApplication
Module ModuleModule

Figure �� Model�based code generation

The Mastermind project ��� 	�� is concerned with the automatic generation of
user interfaces from three kinds of models� Presentation models represent the ap�
pearance of user interfaces in terms of their widgets and how the widgets behave�
Application models represent which parts �functions and data� of applications are
accessible from the user interface� and Dialog models represent end�user interac�
tions� how they are ordered� and how they a�ect the presentation and the applica�
tion� A dialog model acts as the glue between presentation and application models
by expressing constraints on the sequencing of behavior in those models� Model�
speci�c compilers generate modules of code from each model� and these resulting
modules are composed into a complete user interface �Figure ��� A distinguish�
ing characteristic of Mastermind is that the model�speci�c code generators work
independently of one another�

Composing code generated from multiple models is dicult� A model� by de�
sign� represents a single aspect of a system and is neutral with respect to others ����
Inevitably� however� functionality described in one model overlaps with or is depen�
dent upon functionality described in another� A button� for example� is speci�ed in
a presentation model� but the behavior of the button in�uences behavior in other
models� such as when pressing the button causes other widgets to be enabled or dis�
abled� Such e�ects are described in a dialog model� The e�ect of pressing a button
can also cause an application method to be invoked� Such e�ects are described in
an application model� When code generated from multiple models must cooperate�
these redundancies and dependencies can be dicult to resolve� Resolving them
automatically means that behavior in di�erent models must be correctly uni�ed�
and the mechanism for this uni�cation must be implemented eciently�

The model�composition problem is concerned with automatically synthesizing
powerful� correct� and ecient user�interfaces from separate presentation� dialog�
and application models� We present a two�fold solution� First� we formalize the
three models as concurrent agents� which synchronize on common events �Sec�
tion ��� Second� we present a runtime architecture that supports the composition
of modules generated from independent model compilers �Section ��� We present

MODEL�COMPOSITION PROBLEM �

the results of this approach on two examples and give evidence to show that it
scales up �Section ���

�� Background

Model�based approaches to user�interface generation use models that are speci�ed
in diverse and often incompatible notations� This characteristic complicates model
composition because the composition mechanisms in one model may not exist in an�
other �Section ����� Prior research on the architecture of user�interfaces suggests
using communicating agents to structure user�interface code �Section ����� For�
mal models of communicating agents provide a technique called conjunction� which
is useful for composing partial speci�cations of a system �Section ����� The con�
tribution of this paper is an extension of conjunction as a speci�cation�composition
operator into a runtime�composition mechanism�

���� Model�based generation

The model�based approach to interactive system development expresses system
analysis� design� and implementation in terms of an integrated collection of mod�
els� Unlike conventional software engineering� in which designers compose software
documentation whose meaning and relevance can diverge from that of the deliv�
ered code� in the model�based approach� designers build models of critical system
attributes and then analyze� re�ne� and synthesize these models into running sys�
tems� Model�based UI generation works on the premise that development and
support environments may be built around declarative models of a system� Devel�
opers using this approach build interfaces by specifying models that describe the
desired interface� rather than writing a program that exhibits the behavior ��	��
One characteristic of model�based approaches is that� by restricting the focus

of a model to a single aspect of a system� modeling notations can be specialized
and highly declarative� The Mastermind Presentation Model ���� for example�
combines concepts and terminology from graphic design with mechanisms for de�
scribing complex presentations using functional constraints� The Mastermind

Dialog Model �	�� uses state and event constructs to describe the user�computer
conversation� the composition features include state hierarchy� concurrency� and
communication� The Mastermind Application Model combines concepts and ter�
minology from object�oriented design techniques �	�� with mechanisms for compos�
ing complex behavior based on method invocation�
Figure � compares the Mastermind models in terms of their domains of dis�

course� communication mechanisms� runtime components� and how they are com�
posed� Composition mechanisms in one model may not exist in another model�
No single one of these intra�model mechanisms is sucient for composing all three
Mastermind models� The model�composition problem can be restated as the need
to unify behavior in multiple models without violating the rules of intra�model com�
position and while generating ecient code� The model�composition problem is a
declarative instance of the problem of constructing a software system where the ma�

� STIREWALT AND RUGABER

Module
Process

Implementation

Action

Implementation

Intra�module

Composition

Application
Abstract
Classes

Method
Invocation

Subclassing
Aggregation

Presentation
Amulet
Objects

Constraints�
Commands

Instantiation�
Aggregation

Dialog
State

Machines
Synchronous

Message passing
Orthogonal
Composition

Figure �� Multi�paradigm action implementations

jor components are expressed with programming languages from di�erent families
or paradigms� Zave has called this the multi�paradigm programming problem ��
��

���� Multi�agent user�interface architectures

The Mastermind approach to model composition builds on prior work in multi�
agent user�interface architectures� which provide design heuristics for structuring
interactive systems� These architectures describe interactive systems as collections
of communicating agents� which are independent computational units with identity
and behavior� Two general frameworks�Model�View�Controller �MVC� �		� and
Presentation�Abstraction�Control �PAC� ����de�ne speci�c agent roles and provide
guidance on how agents should be connected�

MVC prescribes how SmallTalk simulations can be composed by instantiating in�
stances of three types of agents� models �not to be confused with theMasterimind

models� describing application state� views providing presentations of models� and
controllers allowing users to a�ect simulation behavior� A view registers interest in
one or more attributes of a model� When an attribute changes� all registered views
are noti�ed so that they can recompute their display if necessary�

The PAC framework more closely matches Mastermind than does MVC� In
PAC� a presentation agent maintains the state of the display and accepts input
from the user� an abstraction agent maintains a representation of the underlying
application state� and a controller agent ensures that presentation and abstraction
remain synchronized� The Mastermind Presentation� Application� and Dialog
models are descriptions of the roles played by PAC�s presentation� abstraction� and
controller agents�

SinceMastermindmodels describe PAC agents� we chose to makeMastermind

models compose in the same manner that PAC agents compose� Speci�cally� the
presentation and application models de�ne actions� which are ordered by temporal
constraints in the dialog model� To make these ideas more formal� we built upon
prior work on formal de�nitions of agent composition�

MODEL�COMPOSITION PROBLEM �

���� Formal models of agents

The PAC framework provides heuristic de�nitions of user�interface agent roles and
connections� PAC agents are concurrent� and they compose by communicating con�
trol and data messages among themselves� To generate code from the models of
these agents� we need to formalize the building blocks of agents and agent compo�
sition� We chose the terminology and de�nitions that have been adopted by the
various process algebras� speci�cally Lotos �
�� Process algebras formalize concur�
rency and communication� and they have proved particularly useful for describing
UI software as a collection of agents �	� ��� Other notations� such as StateCharts ���
and Petri nets �	��� have also been explored for modeling UI agents� as these alter�
native notations also provide de�nitions of concurrency and communication� We
chose Lotos because composition in Lotos resembles conjunction ����� which is a
useful paradigm for composing partial speci�cations �Section �����

We model the behavior of an agent using a Lotos abstraction called a process�
which is a computational entity whose internal structure can only be discovered by
observing how it interacts with its environment� Processes perform internal �unob�
servable� computations and interact with other� concurrently executing� processes�
The interaction between processes is synchronous� If one process tries to commu�
nicate with a process that is not ready to communicate� the former process blocks
until the latter is ready� Thus� the act of communicating synchronizes concurrent
processes�

A process represents the state of an agent as a procedure for performing future
actions� An action is an atomic computational step taken by an individual pro�
cess� Actions of a process can be observed through the events in which the actions
participate� An event is an observable unit of multi�process communication� Mul�
tiple processes participate in an event by simultaneously performing actions over
the same gate� A gate is a primitive synchronization device used to observe the
occurrence of an action in a process� Each action is associated with a single gate�
The gates of a composite agent are the union of the gates of its constituents� If two
or more constituents name the same gate� then any actions over that gate proceed
simultaneously� That is� the processes associated with the constituent agents syn�
chronize actions that share the same gate name� Thus� gates also represent a class
of possible inter�process synchronization events� During such an event� an action
can o�er one or more data values that can be observed by actions in other processes
that are participating in the same event�

A complete agent is modeled by a process that represents the initial state of the
agent� A multi�agent system is modeled by a collection of concurrent� communi�
cating processes� When composing a system of multiple agents� the designer must
decide how to coordinate actions in the various processes that model the agents�
Processes are coordinated by synchronizing actions labeled with identically named
gates�

� STIREWALT AND RUGABER

���� Lotos

Lotos is a rich language for specifying the partial ordering of actions within a
process and the structure of multi�process interactions� Complex processes may
be expressed by either combining sub�processes using an ordering operator �e�g��
process P is the sequential composition of sub�processes P� and P�� or by conjoining
sub�processes so that they run independently but synchronize actions with gates�
An event allows values to �ow between participating actions� Lotos also describes
the semantics of value passing with respect to synchronization�
Actions in Lotos have the following structure�

action ��� gate �inputjoutput� �

input ��� ��� identifier ��� type

output ��� ��� expression

gate ��� identifier

Each action names a gate and zero or more inputs and outputs� An input names a
variable in which to record a value that is o�ered by an action in another process� An
output is an expression for computing a value to o�er to actions in other processes�
Actions concisely represent the occurrence of many possible events� Like actions�

events are associated with a particular gate� Unlike actions� events have no concept
of input or output� rather they represent unique values that �ow between actions�
Events have the following structure�

event ��� gate �value� �

value ��� ��� constant

Note that the values are always constants because events are unique assignments
of values during a synchronization�
In Lotos� the gates over which two conjoined processes are required to synchro�

nize must be speci�ed between the vertical lines that symbolize the conjunction
operator �k�� For example� given the following Lotos process de�nitions�

process P � g�� g�� g� � � � � endproc
process Q � g�� g�� g� � � � � endproc
process R � g�� g�� g�� g� � �� P j�g�� g��j Q endproc

Process R behaves like P on gate g� and Q on gate g�� but R must behave like P
and Q in synchrony on gates g� and g��
For processes with many gates� the Lotos notation quickly becomes unreadable�

In this paper� we abbreviate the conjunction operator using notational conventions
similar to those used in CSP ���� In our abbreviated notation� we write the conjunc�
tion of P and Q as P k Q with the understanding that P and Qmust synchronize on
gates that are common to the agents whose states P and Q respectively represent�
Suppose the behavior of an agent can be described by a Lotos process B� If the

agent can perform an action by synchronizing on event e �denoted B�e��� then its

MODEL�COMPOSITION PROBLEM �

behavior from that point on is de�ned by another process B� � B�e�� The systems
under study are deterministic� which means that B�e� is always unique� Moreover�
when a system is de�ned by conjoining sub�processes� the compositional structure is
preserved throughout the lifetime of the system� That is� if B � B� k B� k � � � k Bn

then B�e� � B�
�
k � � � k B�

n where�

B�
i �

�
Bi�e� if e occurs over a gate of agent i

Bi otherwise

Any event that can be observed of a process P can also be observed of any con�
junction of P with other processes� This fact will be important when we de�ne the
Obs observer function �Section �����

���� Conjunction as composition

Alexander uses conjunction to compose separately de�ned application and pre�
sentation agents ���� Abowd uses agent�based separation to illuminate usability
properties of interactive systems �	�� Both of these approaches rely on the use of
conjunction to compose agents that are de�ned separately but interact� In fact� con�
junction is a general operator for composing partial speci�cations of a system �����
The idea is that each partial speci�cation imposes constraints upon variables �or�
in the case of agents� events� that are mentioned in other partial speci�cations�
When these speci�cations are conjoined� the common variables must satisfy all
constraints�
We de�ne the behavior of a system generated from Mastermind models to be

any behavior that is consistent with the conjunction of constraints imposed by the
dialog� presentation� and application models� We then extend conjunction from a
speci�cation tool into a mechanism for composing runtime modules�

���� Summary

Three issues must be addressed to solve the model�composition problem� The so�
lution must generate user�interfaces with rich dynamic behavior� the correctness of
module composition must be demonstrated� and the generated modules must co�
operate eciently� In Mastermind� the rich expressive power is achieved through
special�purpose modeling notations �	�� ��� The remainder of this paper addresses
the generation of correct implementations with maximal eciency while preserving
the expressive power of Mastermind models�

�� Model�composition theory

Recall from Figure � that each class of model has a code generator that synthesizes
runtime modules for models in that class� The modules are generated without
detailed knowledge of the other models� At run time� however� modules must

� STIREWALT AND RUGABER

cooperate as prescribed by the conjunction of the models that generated them� This
section describes the relationship between model composition and the mechanism
by which the associated modules cooperate at runtime�

���� Notation

The subject of this paper is the automatic generation and composition of runtime
modules from design�time models� A module is a unit of code generated from a
single model� We use a third class of construct�the Lotos process�to de�ne the
correctness of model and module composition� In formal arguments� we need to
refer to all three types of constructs� thus we distinguish the constructs by using
di�erent fonts� We also need special functions that map models and modules into
comparable domains�
We represent the classes ofMastermind models using German letters� The sym�

bols P� D� and A represent respectively the classes of Mastermind presentation�
dialog� and application models� We use the italic font to represent Lotos processes
and the semantic models of these processes� The set Process represents the set of
Lotos processes� Speci�c processes are written in capital italic letters �e�g�� P �
D� and A� respectively�� The set TraceSets de�nes the set of event traces over
the alphabet of gates and the space of values that can be o�ered and observed by
Lotos actions� The function Tr � Process � TraceSets maps a Lotos process
to the set of all event traces that can be observed of that process�
We represent runtime entities using the Sans serif font� The set Component rep�

resents the class of all runtime components� A component is a block of code that
provides gates for observing the actions of the component� By de�ning components
as runtime code that provides gates for observing behavior� we can de�ne the func�
tion Obs � Component � TraceSets that maps a component to the set of event
traces that can be observed through the gates that the component provides�
There are two categories of component in theMastermind architecture� the gen�

erated modules and the synchronous composition of these modules� Instances of the
generated modules are written Pres� Dialog� and Appl� respectively� We also think
of the modules in synchronous composition as a component� which is attained by
connecting the generated modules using some synchronization infra�structure �de�
�ned in Section ��� This composite component is written Synch�Pres�Dialog�Appl��
The name Synch suggests that the component is the synchronization of the three
generated modules� the brackets suggest that the generated modules �t into the
larger system and that Synch by itself is not a component�

���� Inter�model composition

Model�based code generators construct runtime modules from design�time mod�
els� The code generation strategy is model�speci�c� re�ecting the specialization of
models to a particular aspect of a system� At run time� however� modules must co�
operate� and the cooperative behavior must not violate any correctness constraints
imposed by the models� There is an inherent distinction between behavior that

MODEL�COMPOSITION PROBLEM �

is limited to the con�nes of a given model and behavior that a�ects or is a�ected
by other models� Inter�model composition is concerned with managing this latter
inter�model behavior�
Some behavior is highly model speci�c and neither in�uences nor is a�ected by

behavior speci�ed in other models� As Figure � illustrates� in a Mastermind

presentation model� graphical objects are implemented using primitives from the
Amulet toolkit �	��� and attribute relations are implemented as declarative formulas
that� at runtime� eagerly propagate attribute changes to dependent attributes� As
long as changes in these attributes do not trigger behavior in dialog or application
models� these aspects can be ignored when considering model composition�

In an application model� object speci�cations are compiled into abstract classes
under the assumption that the designer will later extend these into subclasses and
provide implementations for the abstract methods� As long as the details of these
extensions do not trigger behavior in dialog or presentation models� this application
behavior may also be ignored when de�ning model composition�
Within a module� entities compose according to a model�speci�c policy� In a

presentation model� for example� objects compose by part�whole aggregation� and
attributes compose by formula evaluation over dependent attributes� In an applica�
tion model� objects compose using a combination of subclassing� aggregation� and
polymorphism� When considering how models compose� some details of intra�model

composition can be abstracted away� but not all of them� Models impose tempo�
ral sequencing constraints on the occurrence of inter�model actions� and models
contribute to the values computed by the entire system� These constraints and
contributions must be captured in some form and used to reason about model
composition�
We map this inter�model behavior into a semantic domain that is common across

all of the models� This domain is described by the Lotos notation� which speci�es
temporal constraints on actions and data values� We assume that Lotos processes
can be derived from the text of a model speci�cation �Section ����� Designers
may� for example� need to designate actions of interest to other models� Lotos

processes do not capture all of the behavior of models in composition� but they do
express the essential inter�model constraining behavior�

���� Example

We now present an example of inter�model behavior expressed as a Lotos process�
The dialog model being considered is for a Print�Save widget similar to those
found in the user interfaces of drawing tools� web browsers� and word processors
�See Figure ��� These widgets allow the user to format a document for printing
either to a physical printer or to a �le on disk� we call the former task printing and
the latter task saving� Options speci�c to printing� such as print orientation �e�g��
portrait vs� landscape�� and to saving� such as the name of the �le into which to
save� are typically enabled and disabled depending upon the user�s choice of task�
These ordering dependencies are re�ected in the dialog model for this widget shown
by the Lotos process in Figure ��

�	 STIREWALT AND RUGABER

Figure �� Screen shot of the Print�Save dialog box

The process PrintSave can synchronize on any of the gates that follow it in square
brackets� In this example� the gates print� save� go� cancel� layout� and kbd �line
	 in the �gure� de�ne points for synchronizing with the presentation� whereas the
gates lpr and write de�ne points for synchronizing with the underlying application�
The process parameters lpdhost and filename �line �� store the name of the default
printer and the user�selected �lename� respectively� The parameter doc represents
the document to be printed or saved� and the parameter port represents the print
orientation �portrait if true� landscape if false��

The widget in Figure � is speci�ed by a separate presentation model �not shown��
This model de�nes a pair of radio buttons labeledFile andPrinter and two buttons
labeled OK� and CANCEL� When these buttons are pressed� they o�er the events
save� print� go� and cancel respectively� The presentation model also contains a
pair of radio buttons that specify paper orientation� These buttons display graphics
of a page in either portrait or landscape mode and� when selected� o�er the event
port with a value of true if the choice is for portrait orientation and false for
landscape orientation� Finally� there is a text entry box in which the user can type
in a �le name� As the user edits this name� the text box responds by o�ering the
contents of the string typed so far as part of the kbd event� Note that the actual
keys being pressed are not returned� as editing functionality is best handled in a
text widget and is not considered inter�model behavior� A separate application
model �not shown� de�nes procedures for issuing a print request and saving a �le
to disk� These procedures are responsive to the events lpr and write respectively�
Actions that synchronize on these events o�er a number of values including printer
name �lpdhost� and �lename �filename��

MODEL�COMPOSITION PROBLEM ��

	� process PrintSave� print� save� go� cancel� layout� kbd� lpr� write �

�� � lpdhost� �lename � string� doc � doctype� port � bool � � exit ��

�� P� go� lpr� write� layout� kbd � �� � cancel� exit �

� where

�� process P� go� lpr� write� layout� kbd � � exit ��

�� Layout� go� lpr� layout � �� � save� F� go� lpr� write� layout� kbd � �

�� endproc

�� process F� go� lpr� write� layout� kbd � � exit ��

�� Edit� go� write� kbd � �� � print� P� go� lpr� write� layout� kbd � �

	�� endproc

		� process Layout� go� lpr� layout � � exit ��

	�� � layout � port� Layout� go� lpr� layout � �

	�� �� � go� lpr � lpdhost � port � doc� exit �

	
� endproc

	�� process Edit� go� write� kbd � � exit ��

	�� � kbd � �lename� Edit� go�write�kbd � �

	�� �� � go� write � doc � �le� exit � �

	�� endproc

	�� endproc

Figure �� Print�Save dialog process�

The temporal structure of dialog� presentation� and application model composi�
tion is given in the behavior speci�cation �line ��� The behavior of PrintSave is
the behavior of the process P �de�ned on lines � through �� with the caveat that it
may be disabled �terminated� at any time by the observation of the cancel event�
Disabling is shown with the �� operator� Process P represents which interactions
and application invocations must happen in order to send a document to a printer�
Most of this functionality is actually expressed in the sub�process Layout �de�ned
on lines 		 through 	
�� P behaves like Layout in the normal case� but it can be
disabled if the save event is observed� Recall that the save event is o�ered whenever
the user presses the Save to File button in the presentation model� The process
F �de�ned on lines � through 	�� likewise behaves like the process Edit �de�ned
on lines 	� through 	�� in the normal case� but is disabled if the event print is
observed� Note that F and P can disable each other� which means that the user
can switch back and forth between printing and saving as many times as he or she
likes before hitting the Go button�

�� STIREWALT AND RUGABER

D
AD����� Process

CD

��y ��yTr
Component

Obs
����� TraceSets

Figure �� Dialog compiler correctness�

���� Models	 modules	 and processes

Processes like those shown in Figure � are useful for understanding the relationship
between models and modules� This relationship is complex� and so we describe it
�rst for a single model and then for the three models in composition� We now
formalize correctness conditions for the Mastermind dialog model� A similar
formalization exists for the other Mastermind models�
Figure � shows the relationship between dialog models �members of the set D��

runtime modules generated by dialog models �members of the set Dialog�� and the
inter�model behavior of dialog models �members of the set Process�� The relation�
ships between these sets are de�ned as functions that map members of one set into
members of another� The function CD � D� Dialog maps dialog models to runtime
modules� Think of CD as an abstract description of the dialog�model compiler� The
function AD � D � Process maps dialog models into Lotos processes describing
their inter�model behavior� Think of AD as an abstract interpretation of the dialog
model expressing its semantics in Lotos�
These sets and functions are related by the commutative diagram of Figure ��

Externally observable model behavior is mapped into a Lotos process by AD � and
the set of traces of a module�s externally observable events is recorded by Obs� We
say that a dialog model d � D is consistent with the module CD�d� if every trace
� � Obs�CD�d�� is in the set Tr�AD�d�� and if there are no sequences � � Tr�AD�d��
such that � �� Obs�CD�d��� That is� the inter�model behavioral interpretation of d
agrees exactly with the observable behavior of the runtime module generated from
d� Commutativity of the diagram requires this property for any dialog model in
the set D�

���� Model�based synthesis

The correctness relationship between models and modules �Figure �� can be ex�
tended to specify the correctness of module composition� We now have functions
AP � AD� and AA that map models into Lotos processes� These processes should
compose by conjunction� We also have a runtime component Synch that combines
modules Pres� Dialog� and Appl into a single component whose actions are observ�
able by the Obs function� Figure � shows the constraints on the behavior of these
entities� Let p � P� d � D� and a � A� Then the code generated from these

MODEL�COMPOSITION PROBLEM ��

�p � P � �d � D � �a � A�

Obs�Synch�CP �p�� CD�d�� CA�a���

� Tr�AP �p� k AD�d� k AA�a��

Figure 	� Module�composition correctness�

models is correct if and only if� for any observable behavior �� � is a legal trace in
the conjunction of the models� This equation de�nes the conditions necessary for
correct module composition without assuming any model�speci�c interpretation of
these actions� It serves� therefore� as a speci�cation of design requirements� In the
next section� we present an implementation that satis�es these requirements�

�� Module�composition runtime architecture

We now turn to the designs of the run�time synchronization module and model�
speci�c compilers of Figure �� The essential design problem is how to make the
generated modules compose while retaining the independence of the model�speci�c
compilers� The conditions of Figure � impose constraints on these designs� For�
tunately� these constraints do not require model�speci�c knowledge �e�g�� graphical
concepts in the presentation model or data layout in the application model�� Thus�
module�composition logic can be separated from the model�speci�c functionality
within a module� This separation is the key to making model�based synthesis inde�
pendent without sacri�cing the correctness of module integration� The Master�

mind runtime library contains ecient primitive classes that enable independent
module synthesis and correct composition by conjunction� This library provides
a great deal of generality and �exibility for code generation� In this paper� we
describe only those aspects of the library that are relevant for supporting inde�
pendent synthesis� First� we introduce the mechanism for composing generated
modules �Section ����� We then describe how this mechanism implements con�
junction without sacri�cing the independence of model synthesis �Section ���� and
demonstrate its operation through an example �Section �����

���� Design structures to support conjunction

To facilitate the independence of model synthesis� we designed a mechanism that
enables a module to compose with other modules without directly referencing them�
As Figure � suggests� generated modules compose through the aid of a special syn�
chronization component� called Synch� We designed the Synch interface to simplify
the generation of modules� This section describes the interface and the process of
model compilation and integration�
Figure 	 illustrates the interface between the generated modules and the Synch

component� Modules contain Action objects that link �explicitly refer to� Gate

�� STIREWALT AND RUGABER

Action Action Action Action Action Action

Gate Gate Gate

... ...

...

...

Synch

Dialog PresAppl

Figure
� Structural depiction of composition according to Synch	Pres� Dialog� Appl
�

objects in the Synch component� As the names suggest� an Action object rei�es
a Lotos action� and a Gate object rei�es a Lotos gate� At runtime� Actions
implement a unit of observable behavior in a module� and Gates implement the
synchronization of Actions by conjunction� The mathematical connection between
Lotos actions and gates is rei�ed using explicit links between Action and Gate

objects� These links constitute the mechanism for composing generated modules
with the Synch component� A module �plugs in� to the architecture by linking its
Action objects to appropriate Gate objects in the Synch component� The dashed
lines in Figure 	 illustrate some �of many possible� links�

This architecture enables model synthesis to be treated separately from module
integration� similar to the way compilation is treated separately from linking in
traditional programming� This separation allows a module to be synthesized from
a single model� independent of the synthesis of the other models� During synthesis�
model�based compilers independently generate modules� Any behavior that must
be observed by other modules must be packaged into an instance of the class Action�
When emitting the code that creates this instance� the compiler also writes out the
name of the associated gate to an auxiliary �le� Consequently the output of a
model compiler is a module and an auxiliary �le listing the names of dependent
gates� During module integration� a module integrator reads in these auxiliary
�les� creates the Synch component� and combines it with the generated modules to
produce an executable image�

Going back to our running example� consider the compilation of the presentation
model for the Print�Save dialog box �Figure ��� As the model is processed� the
compiler emits Action objects that interface directly with UI toolkit widgets� After
compilation� the Pres module will contain an Action for each widget in the dialog
box� For example� there will be a distinct Action object paired with the OK and
CANCEL buttons� each of the radio buttons� and Filename text�entry widget�
To integrate the Pres module with the other modules� each of these Actions must
link to Gate objects in the Synch component�

Note that when the Actions are being emitted� the corresponding Gate object
will not yet exist� as the Gate is created by the module integrator� Thus� the link
between an Action and its corresponding Gate cannot be established at compile
time� Instead� an Action object is instantiated with the name of the gate over

MODEL�COMPOSITION PROBLEM ��

void enable();

void disable();

Action {abstract}

ModuleSource

void register(Appl*);
void unregister(Appl*);

DialAppGate

void register(Pres*);
void unregister(Pres*);

PresDialGate

Gate {abstract}

void confirm(Listener*);

void synchronize();

PresDialAppGate

void unregister(Dial*);

void register(Dial*);

DialGate

void execute();

Command {abstract}Listener {abstract}

void listen();

void ignore();

generalization
(disjoint subclasses)

generalization
(overlapping subclasses)

Legend

synchronizes

ActionRole {abstract}

Figure �� Detailed design of action and gate classes�

which it must synchronize� At runtime� the Action uses this name to locate the
corresponding Gate� Because the module integrator creates a Gate for each named
gate� the Action object can assume that the gate will exist at runtime� This design
greatly simpli�es model compilation� The presentation�model compiler need not
concern itself with locating an object in another component� Rather� the compiler
simply creates a module using Action objects and writes out the names of gates to
an auxiliary �le�

���� Behavior of the design structures

The synthesis of oneMastermind model can proceed independently of the synthe�
sis of other models because the generated modules only refer to each other indirectly�
through Gate objects� The Gate objects are responsible for determining when a syn�
chronization should occur and dispatching control the associated Action objects in
an appropriate order once the synchronization constraints are satis�ed� Conse�
quently� Action objects need not be concerned with these issues� Rather� Actions
are concerned with implementing model�speci�c functionality� This separation is
crucial to supporting the independence of model synthesis�
Figure
 describes the design of classes Action and Gate� Class Gate is designed to

internalize information about the modules whose actions are required to synchronize
at the gate� Henceforth� we shall refer to this information as the synchronization
constraint of a Gate� The rules of conjunction �Figure �� establish a small number
of possible variations of this constraint� At runtime� a Gate determine whether or
not to synchronize by checking whether or not this constraint is satis�ed� To make
this determination� a Gate must infer the location �module� of each Action that
wishes to synchronize over the Gate� We call this process of inference tabulation�

�� STIREWALT AND RUGABER

Tabulation occurs when an Action announces its readiness to synchronize� Such
announcements are made by an Action registering itself with its Gate� an Action

registers itself by passing itself to an invocation of the register operation on its Gate�
When a Gate determines that its constraint is satis�ed� it invokes the synchronize
operation� which dispatches control to the registered Actions so that they may
execute�

For a Gate to tabulate the modules that request activity� the Gate must be able
to infer the module of every Action that registers� This means that an Action

must know the module in which it exists� Class Action has a subclass� called
ModuleSource� which further specializes into three subclasses� Pres� Dial�and Appl

�not shown in the �gure�� The concrete class of every Action must inherit from one
of these three subclasses� We implemented tabulation by specializing the register
operation so that it dispatches based on these subclasses� The subclasses of Gate
contain module variations of the register function� These subclasses embody each
of the three possible synchronization constraints that arise in Mastermind� The
constraint associated with class PresDialGate requires Pres and Dial actions to be
present at the Gate� Similarly� the constraint associated with class DialApplGate
requires Dial and Appl actions to be present at the Gate� and the constraint associ�
ated with class PresDialogApplGate requires all actions from all three modules to be
present at the Gate� These are the only three types of synchronization constraints
required of Mastermind�generated user interfaces�

The next issue concerns dispatching control to registered actions once a Gate�s
synchronization constraint is satis�ed� Mastermind supports two di�erent action�
control mechanisms �generalized by ActionRole�� One mechanism is a generic inter�
face for executing a model�speci�c operation �class Command�� The other mechanism
is a generic interface for reactively observing an asynchronous event� such as a user
interaction with a graphical widget �class Listener�� What happens when a Gate�s
synchronization constraint is satis�ed depends upon the control mechanisms used
by the registered Actions� For example� if two Commands are waiting at a Gate� and
they satisfy the synchronization constraint for the Gate� then the execute method
for both Commands are invoked� If� instead� one of these actions is a Listener and
the other is a Command� then the Command is not invoked until the Listener receives
an event� Because Listeners are reactive� they need to be able to announce the
reception of an event to the Gate� This is accomplished by invoking the confirm

operation on the Gate�

A module requests the performance of an Action by invoking the operation enable�
Enabling causes an Action to register itself with its Gate� Our design abstracts
the logic for requesting the performance of an Action into the enable and disable

methods� which correctly cooperate with the corresponding Gate irrespective of the
particular synchronization constraints� Thus� the logic can be completely encap�
sulated in the abstract class Action� which a model�compiler writer need never
modify� Moreover� model�compiler writers can package model�speci�c functionality
using one of two quite di�erent control policies� Command and Listener� One con�
sequence of this design is that the module integrator must determine the type of
Gate to emit� This is a simple task� however� given the information written to the

MODEL�COMPOSITION PROBLEM ��

widget->Start();

generalization

Legend

pointer to operation pseudocode

void listen();

void ignore();

Listener {abstract}

widget Am_Text_Input_Widget

void Do();

TextFieldAction

void listen();

void ignore();

widget->synchronizes->confirm();

widget->Stop();

Pres

Figure �� Example of use�

auxiliary �les by the model compilers� For example� the gate cancel that is used
in the Print�Save dialog is used in both the presentation model� where it observes
the pressing of the CANCEL button� and in the dialog model� where it observes
the completion of the dialog� Because modules compose by conjunction� the Gate

associated with cancel always synchronizes an action from the Pres module with an
action from the Dialog module� To implement this behavior� the module integrator
emits an instance of PresDialogGate� which is returned when the associated Actions

link to the named gate�

���� Example

We now demonstrate how these features work in the context of the Print�Save
dialog� Recall from Figure � the text entry �eld that allows a user to enter �le
name in which to save a document� In the dialog model �Figure ��� the entry of
the �le name is modeled as an atomic action over the gate kbd� To connect this
dialog action to the text entry widget that ultimately witnesses the action� we need
a presentation Action that knows how to attach to the text entry widget� and we
need a Gate object to represent the kbd gate�

Figure � illustrates how a reusable action that listens for text entry can be
created from the primitives introduced in Section ���� The presentation�model
compiler emits instances of this class to implement text�entry boxes� In the �g�
ure� we rendered the primitive classes in grey to distinguish them from new ob�
jects and classes that the model�compiler writer creates� The new class is called
TextFieldAction� It inherits from class Pres because its instances will be emitted
into the Pres module� It inherits from class Listener because it is concerned with
monitoring and controlling the text�input widget� The class is associated with an
Am Text Input Widget object by an association called widget� This object is prede�

�� STIREWALT AND RUGABER

�ned in the Amulet toolkit �	��� which the current version ofMastermind uses for
presentation support� The TextFieldAction controls the Amulet object by invoking
the Start and Stop operations on the object� which instruct the widget to enable
and disable keyboard input� The invocations of these methods form the implemen�
tation of listen and ignore respectively� We also need a way for the widget to
signal the Action object with the event� This is accomplished by overriding the Do
method of the widget to go �nd the Gate associated with the Action and invoke
the confirm operation on this Gate to signify the occurrence of the event� The Do

method can be thought of as a callback function that Amulet invokes to deliver an
keyboard event �in this case� the event is a keyboard return��

The example serves to illustrate the sequence of behaviors that are enacted by
the Mastermind library primitives� Suppose an object of class TextFieldAction
is registered at the Gate associated with kbd� If the synchronization constraint for
this Gate is satis�ed� the Gate invokes the listen method of the TextFieldAction�
This invocation in turn causes the Start method of the Am Text Input Widget to
be invoked� which enables user input at the widget� If the synchronization context
changes so that the constraint is no longer satis�ed�either because the Pres module
disables the TextFieldAction or because another module disables an Action that
is waiting at the Gate� then the Gate invokes the ignore operation� This causes
the TextFieldAction to invoke the Stop method of the Am Text Input Widget� which
disables text input� If� on the other hand� the user enters a string and hits the
return key� the Do method of the widget is invoked� This causes the invocation of
the confirm method on the Gate� and the Gate proceeds to execute any Commands

that are waiting�

���� Summary

Our design enables independent code generation because the Actions in a gener�
ated module are insulated from Actions in other modules by the gate objects� We
compose modules by creating Gate objects that embody the synchronization re�
quirements of the models and by linking Actions to their Gates� The independence
that is a�orded by this approach allows model�based code generators to apply deep
model�speci�c knowledge to the synthesis of code�

�� Results and status

We evaluated our solution to the model�composition problem with respect to power�
correctness� and eciency� Multi�paradigm actions have proved easy to specialize
to accommodate features from disparate implementation toolkits and architectures�
For example� we have specialized Actions to represent actions in� the Amulet object
system �	��� the C object system� and a special�purpose state�machine language�
Figure � summarizes the di�erent applications and results�

MODEL�COMPOSITION PROBLEM ��

���� Power

We were able to express user interfaces using our modeling notations in several
case studies� We tested the quality of user interfaces on two speci�c examples� the
Print�Save widget described in Section ��� and an airspace�and�runway executive
that supports an air�trac controller �ATC� �	��� The former demonstrates the
ability to generate common� highly reusable code for standard graphical user inter�
faces� The latter demonstrates the ability to support a complex application using
a direct�manipulation interface�
The ATC example testi�es to the power of our approach� When a �ight number is

keyed into a text�entry box� an airplane graphic� annotated with the �ight number�
appears in the airspace� As more planes come into the airspace� the controller keys
their �ight number into the text�entry box� When the controller decides to change
the position of a plane� she does so by dragging the airplane icon to a new location
on the screen� As soon as she presses and holds the mouse button� a feedback
object shaped like an airplane appears and follows the mouse to the new location�
When the mouse is released� the plane icon moves to the newly selected location�
The presentation model of the ATC example is quite rich� It speci�es gridding so

that airplane graphics are always uniformly placed within the lanes� and it speci�
�es feedback objects that present controllers information about the planes during
operation� In a real deployment� the locations of �ights change in response to asyn�
chronous application signals from special hardware monitors� In such a deployment�
these signals would be connected to Listener actions and would �t into the frame�
work without change� For more details on this case study and the Print�Save dialog�
see Stirewalt�s dissertation �	���

���� Correctness

In addition to being able to generate and manage powerful user interfaces� the com�
position of our modules is correct� Two aspects of our approach require justi�cation
on these grounds� First is the design of runtime action synchronization� Second
is the synthesis of runtime dialog components �members of the set D� from dialog
models�
This paper addresses the theoretical issues involved in the design of runtime

action synchronization� The Gate and Action classes are traceable re�nements of
the corresponding concepts in Lotos� In practice� we found this design to be quite
robust� One aspect of synchronization correctness� which we do not address in
this paper� is how to show that a model�speci�c specialization of Action does not
violate the delicate callback protocol that underlies the system� For example� say
that an Appl� which when modeled in Lotos observes a value x and o�ers a value
y� is to be implemented using a method invocation� The method should bind x to
its parameter and bind its return value to y� Since value o�erings are evaluated in
sequence� how can we be sure that the ordering of evaluation does not interfere with
the invocation of the method or vice versa� Currently� we check this by inspection�
but we are investigating ways of packaging this problem so that a model checker

�	 STIREWALT AND RUGABER

�e�g�� SPIN �	��� SMV �	��� can detect such anomalies� Stirewalt used the SMV
model checker to validate the inter�operation of Action and Gate objects �	���

As we mentioned earlier� the Mastermind Dialog model notation is a syntactic
sugaring for a subset of Lotos� This language is described in greater detail in �����
We implemented a prototype dialog model code generator whose correctness was
validated as described in Stirewalt �	��� This code generator compiles dialog models
without reference to other models�

���� E
ciency

We measured eciency empirically by applying our code generator on the ATC
example� We generated dialog modules and connected these with hand�coded pre�
sentation and application modules� On the examples we tried� we observed no
time delays between interactions� We quanti�ed these results by instrumenting the
source code to measure the use of computation resources and wall�clock time� The
maximum time taken during any interaction was ���
 seconds� This compares well
to the de facto HCI benchmark of response time� ��	 seconds� We believe that more
heavyweight� middle�ware solutions� such as implementing synchronization through
object�request brokers� are not competitive with these results�

���� Future work

We are currently completing a more robust dialog code generator� This new code
generator incorporates state�space reduction technology and will improve interac�
tion time� which in the prototype is a function of the depth of a dialog expression�
with interaction that executes in constant time�

�� Conclusions

How to generate code for a specialized modeling notation is a well understood
problem� Integrating code generated from multiple models is not� Integration is
much more complicated than merely linking compiled object modules� For models
to be declarative� they must assume that entities named in one model have behavior
that is elaborated in another model� Designers want to treat presentation� temporal
ordering� and e�ect separately because each aspect in isolation can be expressed in
a highly specialized language that would be less clear if it were required to express
the other aspects as well� For interactive systems� composition by conjunction is
essential to separating complex speci�cations into manageable pieces�

Unfortunately� programming languages like C and Java do not provide a con�
junction operator� Such an operator is dicult to implement correctly and e�
ciently� and� in fact� we did not try to implement it� Rather� by casting model
composition into a formal framework that includes conjunction� we are able to
express a correct solution and then re�ne the correct solution into an ecient de�

MODEL�COMPOSITION PROBLEM ��

sign� This is a key di�erence between our approach and middle�ware solutions that
implement object composition by general event registry and callback�
Our results contribute to the body of automated software engineering research in

two ways� First� our framework is a practical solution that helps to automate the
engineering of interactive systems� Second� our use of formal methods to identify
design constraints and the subsequent re�nement of these constraints into an object�
oriented design may serve as a model for other researchers trying to deal with model
composition in the context of code generation� The formality of the approach allows
us to minimize design constraints and is the key to arriving at a powerful� correct�
and ecient solution�

References

�� G� D� Abowd� Formal Aspects of Human�Computer Interaction� PhD thesis� University of
Oxford� �����

�� H� Alexander� Structuring dialogues using CSP� In M� Harrison and H� Thimbleby� editors�
Formal Methods in Human�Computer Interaction� Cambridge University Press� �����

�� L� Bass and J� Coutaz� Developing Software for the User Interface� SEI Series in Software
Engineering� Addison�Wesley� �����

�� T� Bolognesi and E� Brinksma� Introduction to the ISO speci�cation language Lotos� Com�
puter Network ISDN Systems� ������ �����

�� T� P� Browne et al� Using declarative descriptions to model user interfaces with Mastermind�
In F� Patern�o and P� Palanque� editors� Formal Methods in Human Computer Interaction�
Springer�Verlag� �����

�� P� Castells� P� Szekely� and E� Salcher� Declarative models of presentation� In IUI�
�

International Conference on Intelligent User Interfaces� pages �������� �����

�� J� Coutaz� PAC� an object�oriented model for dialog design� In Human Computer Interaction

� INTERACT�
� pages �������� �����

�� D� Harel� On visual formalisms� Communications of the ACM� ������ �����

�� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall International� �����

��� G� J� Holzmann� The model checker spin� IEEE Transactions on Software Engineering�
�������������� May �����

��� G� E� Krasner and S� T� Pope� A cookbook for using the model view controller user interface
paradigm in smalltalk� Journal of Object Oriented Programming� ����� �����

��� K� L� McMillan� Symbolic Model Checking� An Approach to the State Explosion Problem�
PhD thesis� Carnegie Mellon University� ����� CMU�CS��������

��� B� A� Myers et al� The Amulet environment� New models for e�ective user�interface software
development� IEEE Transactions on Software Engineering� ������ �����

��� B� A� Myers and M� B� Rosson� Survey on user interface programming� In SIGCHI���

Human Factors in Computing Systems� May �����

��� R� Neches et al� Knowledgeable development environments using shared design models� In
Intelligent Interfaces Workshop� pages ������ �����

��� P� Palanque� R� Bastide� and V� Seng�es� Validating interactive system design through the
veri�cation of formal task and system models� In Working Conference on Engineering for

Human Computer Interaction� �����

��� A� Puerta� The Mecano project� Comprehensive and integrated support for model�based
user interface development� In Computer�Aided Design of User Interfaces� �����

��� J� Rumbaugh et al� Object�Oriented Modeling and Design� Prentice�Hall� �����

��� R� E� K� Stirewalt� Automatic Generation of Interactive Systems from Declarative Models�
PhD thesis� Georgia Institute of Technology� �����

��� R� E� K� Stirewalt and S� Rugaber� Design and implementation of mdl� The mastermind
dialogue language� In preparation�

�� STIREWALT AND RUGABER

��� P� Szekely et al� Declarative models for user�interface construction tools� the Mastermind

approach� In Bass and Unger� editors� Engineering for Human�Computer Interaction� Chap�
man � Hall� �����

��� Pedro Szekely� Ping Luo� and Robert Neches� Beyond interface builders� Model�based inter�
face tools� In Bridges Between Worlds� Human Factors in Computing Systems� INTER�

CHI��� �����
��� S� Wilson et al� Beyond hacking� A model based approach to user interface design� In J� L�

Alty� D� Diaper� and S� Guest� editors� People and Computers VIII� Proceedings of the HCI

�� Conference� �����
��� P� Zave� A compositional approach to multiparadigm programming� IEEE Software� �����

September �����
��� P� Zave and M� Jackson� Conjunction as composition� ACM Transactions on Software

Engineering and Methodology� ������������� �����

