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Abstract� This paper presents a graph parsing approach to recognizing
common� stereotypical computational structures� called clich
es� in com�
puter programs� Recognition is a powerful technique for e�ciently recon�
structing useful design information from existing software� We use a �ow
graph formalism� which is closely related to hypergraph formalisms� to
represent programs and clich
es and we use attributed �ow graph parsing
to automate recognition� The formalism includes mechanisms for toler�
ating variations in programs due to structure sharing a common opti�
mization in which a structural component is used to play more than one
functional role�� The formalism has also been designed to capture aggre�
gation relationships on graph edges� which is used to encode aggregate
data structure clich
es and the abstract operations on them� A chart pars�
ing algorithm is used to solve the problem of determining which clich
es
in a given clich
e library are in a given program�

� Program Recognition

An experienced programmer can often reconstruct much of the hierarchy of a
program�s design by recognizing commonly used data structures and algorithms
in it and reasoning about how they typically implement higher�level abstractions�
We call these commonly used computational structures clich�es ����� Examples
of clich�es are algorithmic computations� such as list enumeration� binary search�
and event�driven simulation� and common data structures� such as priority queue
and hash table� Since clich�es have well�known properties and behaviors� the pro�
cess of recognizing clich�es� which we refer to as program recognition� provides an
e	cient means of reconstructing and understanding a program�s design� It by�
passes complex reasoning about how behaviors and properties arise from certain
combinations of language primitives�

Several researchers have shown the feasibility and usefulness of automating
recognition� most recently �
� ��� ��� ��� ��� �� ���� A primary motivation for
automating recognition is to facilitate tasks requiring program understanding�
such as maintaining� debugging� and reusing software�

We have developed an experimental recognition system� called GRASPR ��GRAph�
based System for Program Recognition�� ����� to automate program recognition�



Given a program and a library of clich�es� GRASPR �nds all instances of the clich�es
in a program� It can generate multiple views of a program as well as near�miss
recognitions of clich�es� It can also recognize clich�es in programs even if they are
surrounded by or interleaved with unfamiliar code�

The concept of programming clich�es is a pre�theoretic notion with no pre�
cise formalization� The clich�e library is a collection of standard� frequently used

algorithms and data structures� encoded in terms of their data and control �ow
constraints� Finding all instances of a clich�e in a program means �nding pro�
gram structures that satisfy these constraints� it does not mean recognizing any
arbitrary program structure that has the same functionality as the clich�e� For
example� GRASPR will recognize common implementations of hash tables that are
captured in the given library� not all possible program structures that can be
viewed as hash tables�
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Fig� �� GRASPR�s architecture�

GRASPR uses a graph parsing approach to automating program recognition�
shown in Figure �� It uses data and control �ow analysis to represent a program
as a restricted form of directed acyclic graph� called a �ow graph ��� ���� which
is annotated with attributes� Nodes in the �ow graph represent functions� ports
on nodes represent inputs and outputs of the functions� edges connect ports
and denote data�ow� and attributes capture additional information� such as
recursion� control �ow and data aggregation� The clich�e library is encoded as an
attributed graph grammar� whose rules impose constraints on the attributes of
�ow graphs matching the rules� right�hand sides� An example constraint is to
require that a node have the same �control environment� attribute as another
node �i�e�� the nodes �co�occur��� which means that the two nodes represent



operations that are performed under the same control conditions �e�g�� within
the same branch of a conditional��

The grammar rules capture implementation relationships between the clich�es�
Recognition is achieved by parsing the �ow graph representing the program in
accordance with the grammar� Attribute constraint checking and evaluation are
interleaved with the �ow graph parsing process� The control �ow attributes are
themselves represented and manipulated as graphs� since they encode a type of
structural information� this allows well�de�ned graph operations to be used in
attribute evaluation and constraint checking�
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Attribute Conditions: All nodes co-occur.

Attribute-Transfer Rules:

ce := ce(null-test)

success-ce := failure-ce(null-test)

failure-ce := success-ce(null-test)

Fig� �� A �ow graph grammar rule encoding the Equality�within�Epsilon clich
e�

Figure � shows an example of a �ow graph grammar rule encoding a simple
clich�e� testing whether two numbers are within some �epsilon� of each other�
The right�hand side is a typical �ow graph� The rule for Equality�within�Epsilon
constrains all the nodes that match its right�hand side to co�occur� The attribute�
transfer rules specify how to synthesize the left�hand side node attributes from
the attributes of the �ow graph matching the right�hand side� In this example�
the null�test is a terminal representing the primitive conditional test of a
boolean value� In addition to a control environment �ce�� it has a success�ce

�resp� failure�ce� attribute representing the control environment of operations
that are performed when the conditional test succeeds �resp� fails��

The control environment attribute of a node indicates under which condi�
tions the operation represented by the node is executed� relative to when other
operations in the program are executed� Control environments form a partial
order imposed by the control structure of the program �i�e�� its branches� itera�
tions� and recursive calls�� Other typical constraints on nodes are that they are
within the control environment of the success branch of a conditional test� or
that they are in the same control environment as a recursive function call� Simi�
lar constraints are also imposed on edges� restricting the control environments in
which they carry data�ow� �Attribute constraints and transfer rules are stated
informally in Fig� �� ���� gives a formal description of the attribute language��

Parsing yields a hierarchical description of a plausible design of the program
in the form of derivation trees specifying the clich�es found and their relationships
to each other� In general� GRASPR generates a forest of design trees for a given
program� These provide views of the program on multiple levels of abstraction�

Automating program recognition is di	cult due to the wide range of possible
variations among programs� An instance of a clich�e may appear in a wide variety
of forms in the text of a program� depending on the constructs or programming
language chosen to express their data and control �ow� The e�ort to encode



these variations in a clich�e library or to perform canonicalizing transformations
to the program text tends to limit the variability and complexity of the structures
that can be recognized� Also� delocalized clich�es pose a serious problem�

Our graph�based approach overcomes these problems by shifting the rep�
resentation of programs and clich�es from text to a �ow graph� GRASPR is able
to overcome many of the di	culties of syntactic variation and noncontiguous�
ness which hinder recognition� The �ow graph representation abstracts away the
syntactic features of the code� exposing the program�s algorithmic structure� It
concisely captures the data and control �ow of programs� while suppressing de�
tails of the language in which they are expressed� Also� many clich�es that are
delocalized in the program text are much more localized in the �ow graph rep�
resentation� The �ow graph formalism also provides a �rm� mathematical basis
for a well�de�ned� algorithmic recognition process that is more robust and easier
to analyze and evaluate than previous� more ad hoc approaches�

The next two sections of this paper describe �ow graphs and �ow graph gram�
mars more formally� This is followed by a formulation of the program recogni�
tion problem as �ow graph parsing� It focuses on how variations in programs and
clich�es due to structure sharing are handled� It also describes how aggregation re�
lationships are encoded and how variations in the way aggregate data structures
are organized and nested is handled� The chart �ow graph parser is then brie�y
described� followed by an evaluation of its e	ciency and of the expressiveness of
the �ow graph formalism for representing programs and clich�es�

� Flow Graphs

We formulate the program recognition problem in terms of solving a parsing
problem for �ow graphs� To do this� we are building upon the �ow graph for�
malisms of Brotsky ��� and Lutz ���� A �ow graph is an attributed� directed�
acyclic graph� whose nodes have ports � entry and exit points for edges� Flow
graphs have the following properties and restrictions�

�� Each node has a type which is taken from a vocabulary of node types�
�� Each node has two disjoint tuples of ports� called its inputs and outputs�

Each port has a type� taken from a vocabulary of port types� All nodes of
the same type have the same number and type of ports in their input and
output port tuples� The size of the input �resp� output� port tuple of a node
is called the input �resp� output� arity of the node�

�� A node�s inputs �or outputs� may be empty� in which case the node is called
a source �or sink� respectively��

�� Edges do not merely adjoin nodes� but rather edges adjoin ports on nodes�
�This is important in representing programs� where input and output ports
represent distinct inputs and outputs of functions�� All edges run from an
output port on one node to an input port on another node� The ports con�
nected by an edge must have the same port type�

� More than one edge may adjoin the same port� Edges entering the same
input �resp� output� port are called fan�in �resp� fan�out� edges�



�� Ports need not have edges adjoining them� Any input �or output� port in a
�ow graph that does not have an edge running into �or out of� it is called
an input �or output� of that graph�

�� Each �ow graph has a vocabulary of attributes� which is partitioned into
two disjoint sets of node attributes and edge attributes� Each attribute has
a �possibly in�nite� set of possible values�

Notions of �ow graphs and �ow diagrams have appeared frequently in the
literature for more than �� years� However� our speci�c type of �ow graph was
�rst de�ned by Brotsky ���� drawing upon the earlier work on web grammars

��� ��� ��� �
� ���� Wills ���� �� extended Brotsky�s de�nition so that �ow graphs
can include sinks and sources� fan�in and fan�out edges� and attributes�

Our �ow graph formalism is related to that of Lutz� which in turn is equiva�
lent to hypergraph formalisms with hyperedge replacement ���� More speci�cally�
Lutz�s ��owgraphs� are a special type of our �ow graph� �They derived from
research on plex languages ����� In addition to nodes� ports� and edges� they con�
tain tie�points� which are intermediate points through which ports are connected
to each other� Since each port is connected to exactly one tie�point� fan�in and
fan�out are not captured to the same level of granularity as is captured by our
�ow graphs� For example� they cannot express the situation in which an output
port p� fans out to input ports p� and p�� while output port p� is only connected
to p�� Hypergraphs are analogous to Lutz�s �owgraphs� nodes in a hypergraph
correspond to tie�points and hyperedges correspond to �owgraph nodes�

� Flow Graph Grammars

A �ow graph grammar is a set of rewriting rules �or productions�� each specifying
how a node in a �ow graph can be replaced by a particular sub��ow graph� �A
�ow graph H is a sub��ow graph of a �ow graph F if and only if H�s nodes are
a subset of F �s nodes� and H�s edges are the subset of F �s edges that connect
only those ports found on nodes of H��

In addition� the �ow graph grammar may be attributed� Each rule speci�es
how to compute attribute values from the attributes of nodes and edges in the
rule� Each rule also imposes constraints on the attributes of the rule�s nodes�
Every �ow graph in the language of an attributed grammar has attribute values
that satisfy the constraints of the rules generating the �ow graph�

More precisely� a �ow graph grammar G has four parts� two disjoint sets N
and T of node types� called non�terminals and terminals� respectively� a set P
of productions� and a set S of distinguished non�terminal types� called the start

types of G�
Each production in P consists of the following parts�

�� A �ow graph L� called the left�hand side� containing a single node having a
non�terminal type�

�� A �ow graph R� called the right�hand side� containing nodes of non�terminal
or terminal types�



�� A binary embedding relation C that speci�es the correspondence between
the ports of L and R�

�� A set of attribute conditions that impose constraints �in the form of relations�
on the attribute values of nodes and edges in R�

� A set of attribute transfer rules� each of which speci�es the value of an
attribute of L�s node in terms of the attributes of the nodes and edges in R�

��� Embedding Relation

A binary embedding relation C relates each left�hand side port to a tuple of
right�hand side and left�hand side port sets� where the position in the tuple is
signi�cant and the size of the tuple is � ��
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Fig� �� A grammar rule encoding a clich
ed operation on an aggregate data structure�
Attribute conditions and transfer rules are not shown��

For example� Figure � illustrates a graph grammar rule that encodes the
clich�e Fetch�Update� This is a common implementation of the clich�e Stack�
Pop in which the Stack is implemented as an Indexed�Sequence �which has two
parts� a base sequence and an integer index pointing to the �top� element��
Fetch�Update accesses the base sequence and increments the index� This is
encoded in the right�hand side of the rule for Fetch�Update� The embedding
relation speci�es how the inputs and outputs of the right�hand side are aggre�
gated to form the Indexed�Sequences that are the input and an output of the
Fetch�Update operation� The embedding relation is shown pictorially in the
rule by corresponding Greek letters� where each Greek letter denotes a set of
right� or left�hand side ports �e�g�� � denotes the set of ports f���� aref�g��

A left�hand side port li and a right�hand side port or another left�hand
side port pj are said to �correspond� if �li� tj� � C and pj is a member of
a set in the tuple tj � Intuitively� the nonsingleton sets denote fan�in or fan�
out of the right�hand side inputs and outputs� the tuples represent aggregation
relationships� When a left�hand side port l� corresponds with another left�hand
side port l�� the rule is said to contain a straight�through� These are used in
representing clich�ed operations in which some of the input data is not acted
upon� but passes directly to the output� as is the case with the base sequence



part of the Indexed�Sequence input and output of Fetch�Update� Further details
of how the embedding relation is restricted are given in �����

� Partial Program Recognition as Flow Graph Parsing

The subgraph parsing problem for �ow graphs is� Given a �ow graph F and a
context�free �ow graph grammar G� �nd all parses of all sub��ow graphs of F
that are in the language of G�

The program recognition problem of determining which clich�es in a given
library are in a given program �and their locations� is formulated as a subgraph
parsing problem� Given a �ow graph F representing the program�s data�ow and
a clich�e library encoded as a �ow graph grammar G� solve the subgraph parsing
problem on F and G� This formulates partial program recognition as well as
recognition of the program as a whole� A clich�e instance may be surrounded by
or interleaved with unfamiliar code� but if it is localized in a sub��ow graph of
the program�s �ow graph� it will be recognized by subgraph parsing�

To solve the subgraph parsing problem� GRASPR uses a graph parser which
has evolved from Earley�s string parsing algorithm �� and string chart parsing�
It incorporates four key improvements�

�� generalization of string parsing to �ow graph parsing �Brotsky ���� Lutz �����
�� generalization of the control strategy to allow �exibility in the rule�invocation

and search strategies used �Kay ����� Thompson ����� Lutz ���� Wills ������
�� extension of the grammar formalism to handle variation in graphs due to

structure�sharing �Lutz ���� Wills ��� ����� which is useful in dealing with
variation due to common function�sharing optimizations� and

�� extension of the grammar formalism to capture aggregation relationships
�Wills ����� between single inputs or outputs of a left�hand side node and a
tuple of inputs or outputs of a right�hand side sub��ow graph�

The fourth improvement is used to express the relationships between the
inputs and outputs of an abstract operation on aggregate data structures and
aggregates of the inputs and outputs of the lower�level operations that make
up its concrete implementation� This is used� for example� in encoding the
Fetch�Update clich�e shown in Figure ��

Other parsers have been developed which are related to our �rst two ex�
tensions described above� Bunke and Haller ��� and Peng� et al� ���� have both
developed a parser for plex grammars which are generalizations of Earley�s al�
gorithm similar to Brotsky�s� Wittenburg� et al� ���� give a uni�cation�based�
bottom�up chart parser which is similar to Lutz�s and our chart parser� Gram�
mar rules place a strict �total� ordering on the nodes in their right�hand sides�
This speci�es the order in which right�hand side nodes are matched �e�g�� match
the most salient node types �rst�� This creates fewer partial analyses� which is
advantageous in terms of e	ciency� but is a drawback in terms of generating
partial results when the graph contains unrecognizable sections�



E	cient parsers for control �ow graphs have also been developed and applied
to problems in global data�ow analysis ��� and program restructuring ����� These
parsers are able to take advantage of the fact that their reduction rules have the
�nite Church�Rosser property� which gives rise to a linear�time parsing process�
These parsers also aim for a single full parse of the entire control �ow graph�
GRASPR� on the other hand� �nds all recognizable subgraphs in order to deal with
programs that are not constructed completely of clich�es� This partial recognition
process is inherently more expensive� but more �exible in dealing with code that
contains novel or buggy structures�

��� Share�Equivalence

Following Lutz ���� we expand the language of a �ow graph grammar to include
all �ow graphs derivable not only from a start type of the �ow graph grammar�
but also from �ow graphs that are �share�equivalent� to a sentential form� of
the grammar� The notion of share�equivalence is used to deal with variation due
to structure�sharing� in a structure�sharing �ow graph� a node plays the role of
more than one node of the same type by generating output that fans out or by
receiving input that fans in�

Share�equivalence is de�ned in terms of a binary relation collapses �denoted
� � on �ow graphs� Flow graph F� collapses �ow graph F� if and only if there
are two nodes n� and n� of the same node type t in F�� having input arity I and
output arity O� such that all of these conditions hold�

�� Either one or both of the following are true�

�a� �i � ����I� the ith input port of n� is connected to the same set of output
ports as the ith input port of n��

�b� �j � ����O� the jth output port of n� is connected to the same set of
input ports as the jth output port of n��

�� F� can be created from F� by replacing n� and n� with a new node n� of
type t with the ith input �resp�� output� of n� connected to the union of the
ports connected to the ith inputs �resp�� outputs� of n� and n�� We call this
operation �zipping up� F�� and its inverse �unzipping��

�� The attribute values of n� and n� can be �combined�� This is done by apply�
ing an attribute combination function� which is de�ned for each attribute� to
the attribute values of n� and n�� The attribute combination functions may
be partial functions� If the function is not de�ned for n� and n��s attributes�
then the attribute values cannot be combined �and F� does not collapse F���

The re�exive� symmetric� transitive closure of collapses� ��� de�nes the
equivalence relation share�equivalent� The directly derives relation ��� between
�ow graphs is rede�ned as follows� A �ow graph F� directly derives another �ow

� A sentential form of a graph grammar is any �ow graph that is derivable from a start
type of the grammar by the application of zero or more productions of the grammar�



graph F� if and only if either F� can be produced by applying a grammar rule
to F�� F� � F�� or F� � F��

As in string grammars� the re�exive� transitive closure of �� is the derives

relation ����� The language of a �ow graph grammar G �denoted L�G�� is the
set of all �ow graphs� whose nodes are of terminal type and which can be derived
from a start type of G� Thus� the notion of a language of a �ow graph grammar
G has been extended to include �ow graphs that are generated by a series of not
only production rule applications but also zip�up and unzipping transformations�
Since a zip�up or unzipping step can happen anywhere in the derivation sequence�
the language of a graph grammar G in this extended formalism is a superset of
the set of �ow graphs share�equivalent to �ow graphs in the �core� language of
G in the unextended formalism�

Both generators and parsers for the language of a �ow graph grammar can
interleave zipping and unzipping transformation steps with their usual expan�
sion and reduction steps� The parser used by the program recognition system
reported here simulates the introduction of these transformations into its reduc�
tion sequence� as is described in Section ���

��� Aggregation�Equivalence

Grammar rules in our �ow graph formalismspecify how a non�terminal node can
be rewritten as a particular grouping of terminal and non�terminal nodes �in the
form of a �ow graph�� We now extend it to also specify how a single input or
output of a non�terminal node can correspond to an aggregation of the inputs or
outputs of a �ow graph to which the non�terminal node is rewritten� We de�ne
an additional� aggregation�equivalence relation to relate �ow graphs that di�er
only in how they aggregate port types� The language of the �ow graph grammar
now includes all �ow graphs aggregation�equivalent to �ow graphs derivable from
a start type of the grammar�

A simple way to capture the aggregation of port types into fewer� more
abstract port types is to use special Make and Spread nodes� A Make node rep�
resents an aggregate type constructor� the tuple of its input port types compose
its single output port type� A Spread node represents aggregate type selectors�
its input port type is decomposed into its tuple of output port types�

Aggregation�equivalence captures the equivalence between �ow graphs that
di�er solely in the way port types are aggregated within the graphs� i�e�� in the
order and nesting of aggregation �aggregation is commutative and associative�
and whether there is any aggregation at all�

We de�ne the re�exive� symmetric� transitive relation aggregation�equivalent

as follows� A �ow graph F� is aggregation�equivalent to another F� �denoted
F� �A F�� if and only if there exists a �ow graph F�� such that F� and F� can
each be transformed to a �ow graph isomorphic to F�� using a �possibly empty�
sequence of the following transformations� the permutation of part port tuples in
Spreads and Makes� the �attening of compositions of Spread �resp� Make� nodes
into a single Spread �resp� Make� node� the replacement of any composition
of corresponding Spread and Make pairs �in either order� with the equivalent



edges� and the removal of any Spread node whose input is an input of the �ow
graph or any Make node whose output is an output of the �ow graph� We call
the �rst type of transformation the permutation transformation� The rest of the
transformations are aggregation�removal transformations and their inverses are
called aggregation�introduction transformations�

A generator or parser for the language of a �ow graph grammar may perform
the permutation� aggregation�introduction and aggregation�removal transforma�
tions as steps in their derivation or reduction sequence� Because there are many
possible orderings in which to apply the transformations and because doing this
e	ciently involves an extension to the embedding relation of the graph grammar
formalism� it is important to discuss how such a recognizer is constructed�

One way a recognizer for the language can work� given an input �ow graph
F � is in two stages� The �rst would apply some sequence of the permutation�
aggregation�removal and aggregation�introduction transformations to F to pro�
duce a �ow graph F �� while the second would apply a recognizer for the core
language to F �� A �ow graph F would be recognized if a sequence of transforma�
tions is found which yields a new �ow graph F � that is accepted by a recognizer
for the core language� Unfortunately� the �rst stage could involve a great deal of
search to �nd the appropriate transformation sequence�

A more promising approach is to divide up the stages di�erently so that
no choices need to be made� In the �rst stage� only aggregation�removal trans�
formations that work �downward� by creating less�aggregated �ow graphs are
applied until a minimally�aggregated �ow graph is obtained� �Note that in the
minimally�aggregated �ow graph� there are residual Make and Spread nodes only
if there are terminal nodes that have aggregate port types�� Then in the second
stage� the aggregation�introduction and permutation transformations are inter�
leaved with the reduction actions of the recognizer for the core language� The
idea is that the grammar rules can provide guidance as to what to aggregate
and how to organize the aggregation so that the �ow graph will be recognizable
as a member of the core language� This approach is taken by our parser�

� Chart Parsing Algorithm

We have developed a chart parsing algorithm for solving the subgraph parsing
problem for �ow graphs� Chart parsers maintain a database� called a chart�
of partial and complete analyses of the input� The elements in the chart are
called items� �In string chart parsing� they are called �edges�� Lutz ��� calls
them �patches��� An item might be either complete or partial� Complete items
represent the recognition of some terminal or non�terminal in the grammar�
Partial items represent a partial recognition of a non�terminal�

The basic operation of a chart parser is to create new items by combining a
partial item with a complete one� This is called the fundamental event� If there is
a partial item that needs a non�terminal A at a particular location and if there
is a complete item for non�terminal A at that location� then the partial item
can be extended with the complete item� During extension� a copy of the partial



item is created and augmented� This results in a new item which is added to the
chart� Items are never removed from and duplicate items are never added to the
chart� This avoids redoing work and guarantees termination�

The parser continually generates items� conceptually in parallel� but to im�
plement the algorithm on a sequential machine� we use an agenda to queue up
the items to be added to the chart� As an item is pulled from the agenda and
added to the chart� it is paired with other items with which it can be combined�
If the item being added is a complete item� then it is paired with partial items
that need it� On the other hand� if the item added is a partial item� then it is
paired with any complete items for the non�terminals it needs�

The agenda makes it easy to control which things are added to the chart and
when they are added� This explicit control can be used to enforce a particular rule
invocation strategy or search strategy� In fact� the parser has several �control
knobs� that can be set to achieve a desired control strategy or to implement
various focusing heuristics ����� These include parameters like bottom�up or top�
down rule invocation� the criterion used to determine whether one item can
extend another� the ordering in which right�hand side nodes are matched� and
the ordering of attribute condition checking in general�

The chart parser also has chart monitors that trigger on opportunities to cre�
ate additional� new views of selected sub��ow graphs� These alternative views can
be used� for example� to canonicalize certain sub��ow graphs or �x and resume
unsuccessful matches� They can also be used as question�triggering patterns to
elicit advice from external agents� An important use of additional monitors is in
performing �zip�up� steps in parsing share�equivalent �ow graphs�

��� Recognizing Share�Equivalent Flow Graphs

A parser for a structure�sharing �ow graph grammar must interleave zipping
and unzipping transformation steps with the usual reduction steps� Our chart
parser simulates this introduction in two ways� First� the grammar is made to
maximally share by canonicalizing all right�hand sides and by allowing sub�
derivations to be shared� Second� the input graph is made to maximally share
by using a �zip�up� monitor� All items that represent nodes that are collapsible
are merged into a new item representing the result of the zip up�

��� Recognizing Aggregation�Equivalent Flow Graphs

Recall from Section ��� that a recognizer for the �ow graph grammar�s language
must interleave permutation� aggregation�introduction� and aggregation�removal
steps into the reduction sequence� During recognition� Spread and Make nodes
must be �inserted� whenever an isomorphic occurrence of a right�hand side is
reduced to a left�hand side non�terminal with aggregate ports� The Spread and
Make nodes serve to bundle up the edges surrounding the non�terminal node� The
recognition process must also �simplify� any composition of Makes and Spreads
that results from aggregation�introduction steps� These actions are simulated by
our �ow graph chart parser�



In particular� items keep track of where the right�hand side is found� using
a set of location pointers� which indicate which edges correspond to the inputs
and outputs of the right�hand side of the item�s rule� To represent the addition
of a Make or Spread� the location pointers are placed in tuples� which are nested
in tree structures� The nested tuples re�ect the organization of the aggregation
of the edges to which they refer� An element of the tuple can be either another
tuple or a set of location pointers� �A set of more than one location pointer
represents fan�in or fan�out�� When items are combined� their location pointers
are compared to see if they represent a Make�Spread composition that simpli�es
correctly� The corresponding parts of the tuples are compared� If both parts are
tuples� they are compared recursively� If both are sets� the sets must have a non�
empty intersection for the comparison to succeed� If one is a set and the other a
tuple� the comparison fails�

This is a brief description� a fuller account of how the parser deals with
structure�sharing and aggregation is given in ����� including how residual Spreads
and Makes are handled and how straight�throughs are matched�

� E�ciency

We are studying the graph parsing approach by experimenting with two real�
world simulator programs� written in Common Lisp by parallel processing re�
searchers ���� These programs are in the �� to ���� line range� The largest pro�
gram recognized by any other existing recognition system is a ����line database
program recognized by CPU����� All other systems work with �toy programs�
on the order of tens of lines�

We empirically and analytically studied the computational cost of GRASPR�s
parsing algorithm with respect to the simulator programs� GRASPR is performing
a constrained search for matches of clich�es � for each rule of the grammar� the
parser is searching for a way to match each right�hand side node to an instance
of the node�s type in the input graph� This is inherently exponential� In fact� the
subgraph parsing problem for �ow graphs is NP�complete ����� so it is unlikely
that there is a subgraph parsing algorithm that is not worst�case exponential�

However� in the practical application of graph parsing to recognizing com�

plete instances of clich�es� constraints are strong enough to prevent exponential
behavior in practice� The three key constraints that come into play are� �� con�
straints on node types� which correspond to function types and are highly varied�
reducing ambiguity� �� edge connection constraints� which represent data�ow de�
pendencies and tend to be sparse� so fewer pairs of incorrect matches between
nodes satisfy these constraints� and �� co�occurrence constraints� which are a
class of control �ow constraints that are especially powerful in reducing ambi�
guity in recognizing clich�ed operations on aggregate data structures�

As we increase the recognition power of GRASPR to make it generate more
partial recognitions of clich�es� we lose the advantage of strong constraint pruning�
What is most expensive for GRASPR to do is the task of near�miss recognition of
clich�es � recognizing all possible partial �as well as complete� instances of clich�es�



This task is useful in robustly dealing with buggy programs� learning new clich�es�
and eliciting advice� Fortunately� the complexity of near�miss recognition can be
controlled by using grammar indexing and �ow graph partitioning advice and
controlling the application order of constraints ���� ����

� Expressiveness

The �ow graph representation is able to suppress many common forms of pro�
gram variation which hinder recognition� In particular� the �ow graph formalism
and graph parser enable GRASPR to be robust under many types of variation� in�
cluding syntactic �e�g�� di�erences in binding or control constructs chosen and in
statement ordering�� organizational �e�g�� di�erences in procedural modulariza�
tion and data structure nesting�� and implementational variation �e�g�� di�erences
in algorithms chosen to achieve common abstract operations�� It is also robust
under variation due to delocalization� unfamiliar code� and common function�
sharing optimizations�

We have used �ow graph grammars to concisely encode algorithmic and data
aggregation clich�es whose constraints are primarily based on data and control
�ow� Our clich�e library contains a core set of general�purpose� �utility� clich�es�
along with a set of clich�es from the domain of sequential simulation� These were
acquired by manually extracting and generalizing commonly occurring patterns
in a corpus of example programs and by speaking with the designers of the
simulator programs to codify their experience with typical algorithms and data
structures in the simulation domain� We also gathered clich�es from textbooks
in general computer programming as well as the area of simulation� Clich�es in
our library include algorithmic computations� such as list enumeration� binary
search� instruction�fetch� decode� and execute and event�driven simulation� as
well as common data structures� such as priority queue and hash table� These
are encoded in approximately ��� graph grammar rules� The library�s coverage
is by no means absolute� However� it demonstrates the kinds of algorithms and
data structures that can be expressed within our graph grammar formalism�

GRASPR is able to recognize structured programs and clich�es containing con�
ditionals� loops with any number of exits� recursion� aggregate data structures�
and simple side e�ects due to variable assignments� With the exception of CPU
����� existing recognition systems cannot handle aggregate data structure clich�es
and a majority do not handle recursion� Side e�ects to mutable data structures
still present an open problem in program recognition� but see ���� for future
directions in interleaving data�ow analysis with the recognition of stereotypical
aliasing patterns�

� Future Directions

One reason we developed a parsing algorithm with �exible control is that we
wanted to complement our purely code�driven recognition with other design



recovery techniques based on information from other sources� such as comments�
identi�er names� documentation� speci�cations� and testing suites� The parser�s
�exibility allows GRASPR to accept advice and heuristic guidance from external
agents� In the future� such a hybrid system will allow us to explore the interactive
potential of the chart parser and extensions for incremental analysis to which the
chart parser lends itself� Another interesting future direction is the application
of GRASPR to multiple tasks that require program understanding� This will help
us determine which constraints various tasks place on the recognition process
and representational formalism and what new types of control strategies are
needed� Finally� our empirical studies have been limited to a few programs with
a clich�e library that co�evolved with GRASPR� More empirical studies are needed
to expand and re�ne the clich�e library� identify more classes of variation that
can be tolerated� re�ne our understanding of the parser�s performance in the
context of practical reverse engineering problems� and evaluate the ability of the
existing system to recognize clich�es in new programs�
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