
 Abstract

Software evolution is the most costly and time
consuming software development activity. Yet software
engineering research is predominantly concerned with
initial development. MORALE is a development method
specifically designed for evolving software. It features an
inquiry-based approach to eliciting change requirements,
a reverse engineering technique for extracting
architectural information from existing code, an approach
to impact assessment that determines the extent to which
the existing system’s architectural components can be
reused in the evolved version, a reflective approach to
actually performing the evolution, and a specific technique
for dealing with the difficulties that arise when evolving
user interfaces. MORALE is described in the context of
making a specific change to an existing system: adding
user-configurable viewers to version 2.4 of the Mosaic
web browser. Issues that arise are discussed and the Esprit
de Corps tool suite is described.
Keywords: software evolution, software architecture,
scenarios, reverse engineering, program visualization, user
interface migration, adaptive design

1. Introduction

1.1 MORALE
The MORALE project addresses the problem of

designing and evolving complex software systems. The
MORALE acronym summarizes its goals:

• Mission ORiented: We want the legacy system enhance-
ment process to be driven by the mission to be accom-
plished rather than by purely technical criteria.

• Architectural: The most time consuming and costly
alterations to software are those that distort architecture,
by which we mean its structure and behavior. We want
to provide a mechanism for predicting the impact of

1. Point of Contact: Spencer Rugaber, College of Computing,
Georgia Institute of Technology, Atlanta, Georgia, USA,
(404) 894-8450, (f) (404) 894-9442, spencer@cc.gatech.edu.

architectural changes so that the risks of making those
changes can be ascertained early in the evolution pro-
cess.

• Legacy Evolution: We are concerned with the evolution
of legacy systems. We want to provide a cost effective
way of analyzing existing software, and once analyzed,
extracting those parts of it which can be used in the new
version.

MORALE addresses these goals by integrating sev-
eral innovative technologies.

• A mission-directed requirements determination process
that, through a systematic process of inquiry and refine-
ment, turns mission-oriented goals into specifications of
the desired behaviors of architectural components.

• An architectural assessment process that can ascertain
the impact of new requirements on an existing system’s
architecture. Our interest here is in the analysis of archi-
tectural descriptions in order to determine how well
they satisfy both functional and non-functional changes
to requirements.

• A reverse engineering process for extracting architec-
tural information from an existing system. Beyond the
traditional structural analyses provided by commercial
and research tools, MORALE extracts behavior infor-
mation derived from dynamic analysis of the message
flow among architectural components.

• A software adaptation process that suggests how to go
about making the changes designated by the analyses
described in the previous three bullets.

• A tailored approach to the specific case of user interface
evolution.

1.2 Research Context
This paper describes the MORALE project in the con-

text of a specific software evolution scenario, the enhance-
ment of the Mosaic web browser, version 2.4, with a new
feature: user-configurable viewers. This feature was on the
“wish-list” of features to be added to version 2.4 by the
designers of Mosaic.

1.3 Approach
There is an unexpected symmetry between require-

ments analysis and reverse engineering that can be
exploited to improve the process of mission-driven system

MORALE
Mission Oriented Architectural Legacy Evolution

Gregory Abowd, Ashok Goel, Dean F. Jerding, Michael McCracken, Melody Moore, J. William
Murdock, Colin Potts, Spencer Rugaber1, and Linda Wills

Georgia Institute of Technology

evolution. Effective system evolution requires understand-
ing both the way an existing system accomplishes its tasks
and also the mission-oriented rationale for any changes
that drive the evolution. The appropriate level at which to
integrate these two sources of knowledge is the architec-
tural. Understanding the higher level structuring, or archi-
tecture, of an existing system aids in predicting the impact
of change that is mandated by new mission-oriented
requirements. We use requirements analysis techniques to
suggest what concepts are most useful in understanding
how an existing system works and how it should be
evolved. We use reverse engineering techniques to extract
high level architecture, using both static and dynamic anal-
yses. The MORALE suite of techniques and tools har-
nesses this symmetry by growing a common model of the
architecture for multiple versions of a system or system
family. The common model is a basis for assessing the
effects of proposed changes and the extent to which legacy
code can be reused.

MORALE analysis can naturally be broken up into
three activities, one each for requirements analysis, archi-
tectural extraction, and change impact analysis. The rela-
tionships between these activities and the artifacts relied
upon and produced are depicted in the data flow diagram
shown in Figure 1:. The initial inputs to evolution are the
existing system in the form of legacy source code and test
data and a statement of the new requirements that the sys-
tem must meet in the form of mission-oriented goals.
Requirements analysis uses the mission-oriented state-
ment to suggest concepts of importance in the overall
structuring of the system; that is, it provides a suggested
taxonomy for an initial architectural description of the sys-
tem. Requirements analysis also provides a collection of
scenarios that represent a complete description of the new
system requirements. These will serve as the basis for the
architectural impact analysis. Architectural assessment
predicts the impact a set of scenarios will have on an archi-
tecture. Reverse engineering provides techniques for
assuring that the architectural representation, the basis for
the impact analysis, is an accurate reflection of the actual
system under scrutiny. The three pieces work together to

predict the extent to which the architecture of the old sys-
tem can be adapted to meet the new requirements.

Besides this assessment, MORALE produces several
other artifacts in planning system evolution: a list of candi-
date code components from the old version that may be
reused in the new version and the ability to enhance
impact analysis by considering requirements on the old
version of a system that must still be supported in the new
system (a sort of regression suite for architectural evalua-
tion). The entire MORALE suite of techniques provides a
historical record in the form of an evolutionary design
journal, incorporating items such as system goals and
problems, traceability information between requirements
and code, design alternatives and rationale. The result of
the MORALE analysis process is the development of
instantiated architectural components together with a
record of design decisions and the mission-oriented goals
that were met or traded off to develop the new system.

2. The MORALE Software Evolution Method

2.1 Mission Oriented Requirements Analysis
The first step in evolving an existing system is under-

standing the proposed change in the context of the sys-
tem’s current goals and behavior. MORALE includes a
technique using scenarios [16] and structured inquiry [15]
for eliciting such information, called ScenIC. ScenIC takes
as input both human responses to the questions it suggests
and a set of actors, system and environment components
capable of accomplishing various subgoals. It produces as
output a set of operational requirements and a network of
rationale describing both the reason why certain actions
take place and the situations (scenarios) when they might
take place.

ScenIC consists of three concurrent activities: expres-
sion, discussion, and refinement. Expression constructs
three artifacts: (1) a teleological network model of ratio-
nale including system goals, actions, actors, and obstacles,
(2) a set of scenarios (action/actor pair sequences), and (3)
a set of operational requirements specifying those actions

New Mission
Requirements

Architectural
Impact Analysis

Reuse
Candidates List

Legacy Source
 and Test Data

Requirements
Analysis

Architectural
Assessment

Reverse
Engineering

Figure 1: MORALE inputs, activities and outputs

Evolutionary

Requirements
Validation Report

Design Journal

initial architecture
mappings

actual architecture

that are the responsibility of system components, the goals
these actions accomplish, their preconditions, and their
effects.

The second ScenIC activity is discussion. ScenIC dis-
cussions are driven by a set of standard questions, such as
why is this action performed?, what are the subgoals of
this goal?, what obstacles can prevent the accomplishment
of this a goal?, how can the obstacle be prevented from
happening?, and what secondary goals come into play if
the obstacle occurs? The questions are elaborated in terms
of scenarios that can serve both to rationalize system
behavior and elicit further requirements from customers or
designers. There is a rich set of heuristics for generating
scenarios from the teleological model.

The third ScenIC activity is refinement, which is the
incremental process of making the artifacts more detailed,
precise, correct, and complete. In particular, refinement
generates subgoals from goals, alternative allocations of
actions to actors, elaborated goals that take account of
obstacles that had previously been ignored, and episodes,
scenario fragments that illustrate the accomplishment of
goals or the occurrence of obstacles.

To make these steps more tangible, consider the situa-
tion where Mosaic is being extended to add user-config-
urable viewers. An initial set of actors include the browser,
the user, and the server. An initial scenario includes end
user actions specifying a URL and requesting access,
server actions of accessing the page and formatting a
response, and browser actions of receiving the resulting
page and displaying it. ScenIC helps the designer to under-
stand the reasons behind current behaviors (i.e. the ascrip-
tion of goals to actors) and to consider alternative
allocations and any obstacles that may need to be handled.
The resulting information is generated and expressed
resulting in operational requirements and a semantic net-
work.

During the ScenIC analysis of Mosaic, the action of
interpreting an incoming page arises. An obvious obstacle
is the browser not being able to display pages of that for-
mat. Questions are posed leading to alternative ways of
mitigating the difficulty, such as saving the file to disk,
converting to a default format such as text, or asking the
user to specify a viewer for displaying the data. It is the
latter possibility that pertains to the Mosaic enhancement
being considered. Elaboration of this situation leads to
scenarios that can be used by the SAAM architectural
evaluation technique described in subsection C. Figure 2
shows an illustrative fragment of a scenario, a portion of
the teleological model created in this design episode, and
the new operational requirement that results.

2.2 Architecture Extraction
There are many unexploited resources that an existing

version of a software system can provide to the developers
of a new version.

• There is the source code itself. The difficulty here is
deciding exactly which pieces are directly usable,
which can be readily adapted, and which are either no
longer needed or not worth the trouble. Less obvious is
that the existing system can provide requirements for

the new version. The new version is expected to repro-
duce most of the old version’s behavior, adding new
features or modifying parts of the old version. Hence,
the old version can serve to augment and validate the
requirement provided for the new version.

• Old versions of a system can also provide developers
data about what worked and what didn’t, particularly
concerning architectural design decisions. If a particu-
lar aspect of the architecture has over time been proven
brittle as evidenced by a history of structural alterations,
then there is evidence that that architectural approach is
not flexible enough to adapt to the kind of changes that
this product family confronts.

• Old versions can also act as laboratories, providing a
test environment for developers to learn more about
how a system intended to solve a particular class of
problems actually works. This includes information
about what components are exercised and in what com-
bination when confronted with particular classes of
requests from users.

• Finally, in some cases other artifacts such as regression
tests, source code control histories, and design docu-
mentation can provide insight into the relationship
between original intent and actual use.

These resources are typically not very well exploited
when constructing a new version of a system, and one of
MORALE’s primary contributions is to remedy this situa-
tion. Doing so requires understanding the existing version
in ways that go beyond current reverse engineering tech-
nology. In particular, the MORALE architectural extrac-
tion process proceeds as follows.

• An analyst is confronted with the task of preparing a
plan for evolving an existing version of a system to sat-
isfy new mission requirements. The analyst has a draft
of the new requirements, access to the source code of
the existing system, and possibly unreliable documenta-
tion, test sets, etc.

• The new requirements are expressed in terms of usage
scenarios. The scenarios describe how the architectural
elements of the new version interact to accomplish its
mission.

• Using an appropriate scenario, significant event types
are identified and the source code of the existing ver-
sion instrumented to report those events. Test data is
generated and the code executed. Raw event trace data
is obtained.

• Using a visualization tool, the analyst peruses the event
trace data. During this analysis, low-level events are
abstracted up to design-level behavior by identifying
and understanding recurring sequences of events. Addi-
tionally, tool features are provided to help an analyst
locate and focus on particular aspects of the system’s
behavior and to compare expected and observed behav-
ior.

• The abstract results are fed back to the architectural ana-
lyst who refines and augments the architectural descrip-
tion with new architectural elements and with
behavioral descriptions of element interactions. The
process is iterated to increase the accuracy of the
description.

This process results in several useful pieces of infor-
mation. First, there is a description of the actual architec-
ture of the existing version as it responds in a set of
situations known to be relevant to the new version. This
description includes both architectural elements and
behavioral interactions. We can determine the differences
between the architecture of the existing system and the
proposed architecture of the new system. The differences
can then be used to judge the amount of effort required to
evolve the old architecture to its new form. Likewise, the
differences can be used to suggest software components
suitable for reuse.

The approach described above makes use of existing
program understanding technology, including the follow-
ing:

• Ability to produce an initial approximation of system
architectural elements and their interactions using, for
example, structure charts or cross-reference informa-
tion;

• Ability to visualize event data [10];
• Ability to infer abstractions [5];

Our contributions extend this work in the following
ways:

• Use of dynamic analysis, rather than purely static struc-
tural analysis;

• Detection of different types of architectural abstractions
(e.g., protocols).

As an example, imagine that a maintainer has been
charged with modifying the behavior of the Mosaic 2.4
web browser to allow for user-configurable viewers. Given
that the design documents are unavailable, the visualiza-

Actor Action

User Request
page

Browser Resolve ref

Browser Request URL

Server Supply page

Browser Display
page

User View page

Scenario of current behavior

Discussion
Q: What if the browser
can’t display this form
of page?

Refinement:
(1) Ascribe goals to Browser & record obstacle
(2) Realize goals by new Browser/User actions
(3) Specify new actions

User KNOWS page-contents
 Browser KNOWS contents-are-displayable
 Either {Browser KNOWS page-is-html}
 Or {Browser KNOWS has-add-on}

Original

BUT strange-format-possible

Goals

Obstacle

Browser KNOWS has-add-on
BUT strange-format-possible
 Browser KNOWS helper-format-assocn

Fragment of teleological model showing
original goals and obstacle

User [Associate (helper, format)]
Browser [Store(helper, format)]
Browser [Retrieve(format)]
Browser [Delegate-display(page, helper)]

Obstacle &
defensive goals

New actions

Fragment of teleological
model showing obstacle
and defensive actions

Displaying pages
The Browser shall
display the page either
by ... or by calling
the viewer associated
with the format in the
viewer association table
...

Revised reqt. (fragment)

Figure 2: Illustration of ScenIC being applied to the addition of a functional requirement
Exploring a scenario results in a question that is answered by refining the teleological model
and specifying a new functional requirement.

tion tool can be used to analyze the behavior of the exist-
ing system for that particular usage scenario.

The first step is to perform a static analysis of the sys-
tem by compiling it using the Solaris C compiler, which
when certain compilation flags are set provides access to
the static analysis data the compiler generated during the
compilation process. The source code is then instrumented
and new source generated. Next, an execution trace is gen-
erated by executing the instrumented code in a fashion
prescribed by the usage scenario; i.e. by following some
URL links, especially those which invoke external view-
ers. These traces are then analyzed to identify the behavior
of Mosaic that involves following a link and deciding how
to display the resulting page. The result is an understand-
ing of how the current version of the system reacts when
confronted with a situation similar to the one the enhanced
version will be asked to handle. The understanding takes
the form of a description of the components involved and
the interactions they use to communicate.

2.3 Change Impact Assessment at the Archi-
tectural Level

It is desirable to assess the impact that a new set of
mission requirements will have on the architecture of the
existing system. A particular method for doing a scenario-
based architectural analysis is SAAM (Software Architec-
ture Analysis Method). SAAM was originally developed
to enable scenario-based comparison of competing archi-
tectural solutions [6, 1, 13, 12, 13], but we are using it
within MORALE to help designers predict the impact that
a set of changes, in the form of scenarios, will have on an
existing system as it evolves to meet new requirements.

Figure 3 shows the steps of SAAM and the depen-
dency relationships between those stages. The steps of
SAAM, and the products of each, are:

1. Describe candidate architecture. The candidate
architecture or architectures should be described in a
syntactic architectural notation that is well-under-
stood by the parties involved in the analysis.

2. Develop scenarios. Develop task scenarios that illus-
trate the kinds of activities the system must support
and the kinds of changes which it is anticipated will
be made to the system over time. Scenarios are either
direct (supportable by the current version) or indirect

(anticipated for the new version). In developing these
scenarios, it is important to capture all important uses
of a system. Thus scenarios will represent tasks rele-
vant to different roles such as: end user/customer,
marketing, system administrator, maintainer, and
developer.

3. Perform scenario evaluations. For each indirect task
scenario, list the changes to the architecture that are
necessary for it to support the scenario and estimate
the cost of performing the change. A modification to
the architecture means that either a new component or
connection is introduced or an existing component or
connection requires a change in its specification. By
the end of this stage, there should be a summary table
which lists all scenarios. For each indirect scenario
the impact, or set of changes, that scenario has on the
architecture should be described. A tabular summary
is especially useful when comparing alternative archi-
tectural candidates because it provides an easy way to
determine which architecture better supports a collec-
tion of scenarios.

4. Reveal scenario interaction. Different indirect sce-
narios may necessitate changes to the same compo-
nents or connections. In such a case we say that the
scenarios interact in that component on connector.
Determining scenario interaction is a process of iden-
tifying scenarios that affect a common set of compo-
nents. Scenario interaction measures the extent to
which the architecture supports an appropriate separa-
tion of concerns. For each component determine the
scenarios which affect it. SAAM favors the architec-
ture with the fewest scenario conflicts.

5. Overall evaluation. Finally, weight each scenario and
the scenario interactions in terms of their relative
importance and use that weighting to determine an
overall ranking. This is a subjective process, involving
all of the stake-holders in the system. The weighting
chosen will reflect the relative importance of the qual-
ity factors that the scenarios manifest.

The Mosaic client/server architecture: The Mosaic 2.4
browser is part of the World Wide Web distributed hyper-
media system, an organization of clients and servers that
share a common set of communication protocols and
markup languages. Servers make Internet resources avail-
able to a community of clients that speak a common proto-
col. The software architecture for this client/server system,

Figure 3: Activities and dependencies in SAAM’s scenario-based analysis

scenario development

individual scenario evaluation

or

and

iterate
architecture description

assess scenario interaction

overall evaluation

modified as explained below to support the new scenario
requirement of user-configurable external viewers, is
shown in Figure 4.

WWW clients provide a graphical User Interface
Manager that captures user requests for information
retrieval in the form of a Uniform Resource Locator
(URL) and passes the information to the Access Manager.
The Access Manager determines if the requested URL
exists in cache and also interprets history-based naviga-
tion, e.g. ‘back’. If the file is cached, it is retrieved from
the Cache Manager and passed to the Presentation Man-
ager for display to either the User Interface or an external
viewer. If the file is not cached, the Protocol Manager
determines the type of request and invokes the appropriate
protocol suite to service the request. This protocol is used
by the client Stream Manager for communicating the
request to the server. User configurability of external view-
ers is to be provided by allowing the Presentation Manager
to consult a static View Control configuration file that
maps document types to external viewers. The area of the
Mosaic client that is boxed by a gray square indicates the
location in the architecture that is the subject of changes
from this new requirement.

2.4 Adaptive Design
A common problem in evolutionary design of soft-

ware systems is incremental addition of new functional-
ities. In this class of problems, an operational software
system delivers a set F(old) of functions f(1),...,f(n-1), but
subsequently a new set, F(new), containing an additional
function, f(n), is desired. The specific problem of adding

user-specified external viewers to Mosaic 2.4 is an
instance of this class of problems. Often the additional
function, f(n) in F(new), is similar and related to some
function f(i) in F(old). For example, while Mosaic 2.4
enables external viewing of Postscript files using a utility
program such as Ghostview, an end user may wish to view
other types of files, such as PDF files using the Acrobat
Reader, where the new functionality is similar to the one
already delivered. The design issue in this class of prob-
lems becomes the adaptation of the current structure of the
software system, S(old), that delivered F(old), into a modi-
fied structure, S(new), for delivering F(new).

The MESA (Model-Based Evolution of Software
Agents) methodology addresses this class of problems in
evolutionary design. It uses a Structure-Behavior-Function
(SBF) model [9] [19] of the software system. Figure 5
illustrates the organization of the SBF model of the portion
of Mosaic responsible for external viewing of Postscript
files. The model describes the architecture of the system in
terms of its task-method structure and knowledge sources.
Tasks (e.g., Display-Interpreted-File) constitute the build-
ing blocks of the system’s architecture. Methods (e.g.,
External-Display) decompose a task into subtasks, which,
in turn, are recursively decomposed into smaller and sim-
pler subtasks. The leaf tasks (e.g., Access-Display-Pro-
gram) are directly accomplished by procedures that use
domain knowledge and get encoded in the program. A task
is characterized as a transformation from an input infor-
mation-state to an output information-state. It is specified
by the type(s) of information it consumes as input and pro-
duces as output, and specific relations that hold true
among the task’s inputs and outputs. In Mosaic, a task

Mosaic Client

WWW Server

UI

Protocol

CGI Path

Stream

HTTP

Access

Cache

Figure 4: The revised Mosaic architecture

Presentation
Manager

Manager

Manager

Manager

Manager

Manager

 Data

Function Control
Data

()
()

Components Connections

Stream
Manager

Server

Resolver

File

list
Access

System

External
Viewer Control

View

HTTP
protocol

such as Display-Interpreted-File actually is a family of
tasks, whose members differ from each other only in spe-
cifics of the information they take as input and give as out-
put. but not in the relations between the input and output
information. A method is characterized as a partially-
ordered sequence of information-states and information-
state transitions that compose tasks at one level into a task
at the next higher level in the task structure. It specifies the
data and control dependencies between the tasks at the
lower level. Again, in Mosaic, a method such as External-
Display really is a family of methods, whose members dif-
fer from each other only in specifics of the information in
the state transitions, but not in the data/control dependen-
cies among the lower-level tasks. The SBF language pro-
vides primitives for specifying the functional semantics of
tasks (including the leaf tasks), the compositional seman-
tics of methods, and also the causal (data/control) seman-
tics of the interdependencies among tasks, methods, and
domain knowledge.

The SBF model of a software system enables multiple
strategies for modifying S(old) to obtain S(new). Here we
outline one strategy that we will call within-problem-anal-

ogy: (1) The function f(i) in F(old) that most closely
matches the additional function f(n) in F(new) is identi-
fied. In the example of viewing PDF files, this may result
in the identification of viewing Postscript files as the clos-
est match. The representation of the functions in the SBF
language enables this matching. (2) The components and
the behaviors responsible for achievement of f(i) are local-
ized and identified. In our running example, the compo-
nents of Access-Display-Program, Execute-Display-
Program, and Library-of-Display-Programs are identified,
along with the behavior of External-Display that composes
the functions of these components into the function Dis-
play-Interpreted-File for Postscript files. The functional,
compositional and causal semantics of the SBF model
enable this localization and identification. (3) The identi-
fied components and behaviors are abstracted into a
Generic Teleological Mechanism (GTM) [4] by removing
all structural information specific to display of Postscript
files. For example, in the GTM, the components Access-
Display-Program and Execute-Display-Program are speci-
fied only by their functions, and the functional specifica-
tions refers only to types of information they take as input

Execute-
Display-
Program

External-
Display

Access-
Display-
Program

Internal-
Display

Display-
Interpretted-

File

Interpret-
File-Label

Display-
File-Method

Display-
File-Task

ghostview

xv

movieplayer

S

B

F

B

F

Library-of-
Display-

Programs

Figure 5: A partial SBF model of a Mosaic 2.4.

Rectangular boxes indicate tasks while rounded boxes indicate methods. Knowledge
sources are contained within dotted lines. Thick lines between boxes represent the avail-
ability of methods to accomplish a task; thin lines represent a method's composition of
subtasks; Horizontal arrows indicate ordering of subtasks within a method.

and give as output, not to the specifics of information rele-
vant to Postscript files. A GTM thus specifies a functional,
compositional and causal design pattern. The SBF lan-
guage provides the vocabulary for representing GTMs. (4)
The abstracted GTM is instantiated in the context of the
additional function f(n). In our example, the GTM for
external viewers is instantiated in the context of viewing
PDF files. This instantiation results in the placement of a
new display program (the Acrobat Reader, specified as
part of f(n)) in the Library-of-Display-Programs and the
introduction of a new method for viewing PDF files in the
family of External-Display methods. The SBF model
focuses the GTM instantiation. In addition, the original
SBF model is now revised to reflect the modified structure
for the software system.

2.5 Evolution of User Interfaces
Since it has been estimated that half or more of the

code for an interactive system is devoted to implementing
the user interface [20], modifying or enhancing the user
interface can be a significant part of the software evolution
effort. Rewriting the user interface is a tedious and time-
consuming task that is usually accomplished by hand.

 The Model Oriented Reengineering Process for
Human-Computer Interface (MORPH) [14] provides a
framework for deriving abstract models of user interfaces
from legacy applications and support for modifying and
refining the models in order to maintain the user interface
from the model level rather than from the specific imple-
mentation level. Figure 6 shows the three steps of the
MORPH process.

Detecting the user interface model from legacy code:

MORPH performs this program understanding step
by applying a set of rules which identify syntactic patterns
that implement basic user interface tasks as defined by
Foley et al. [8]. The rules are used to build a model of the
interface by generating an abstract representation of the
task mapped to the code from which it was derived.
Attributes of the interface task, based on the declarative
models described in [7], can also be detected in order to
provide information that can be used later to choose an

appropriate specific implementation (for example, a row of
push-buttons vs. a cascade menu for a selection task).

Representing the user interface model: MORPH uses a
knowledge representation language to store the user inter-
face tasks discovered in the detection step. An abstract
concept hierarchy is implemented in the knowledge base,
and as user interface tasks are detected, they are defined in
terms of the abstract concepts. Once the representation is
complete, the designer can evolve the user interface by
changing the model.

Transforming the model: The knowledge representation
allows MORPH to use inferencing to map the abstract user
interface model to the most appropriate components of a
specific toolkit implementation. For example, a text num-
ber field in a character oriented application might map to a
slider in a graphical user interface. The description of the
text number field (a “quantify” basic user interface task) in
the model allows the MORPH inferencing mechanism to
choose the closest match in a particular user interface tool-
kit (such as Motif or Java AWT).

In our scenario, the Mosaic 2.4 browser user interface
needs enhancement to add user-specified viewers. Cur-
rently, if an unknown file type is encountered, Mosaic tries
to determine if it contains text. If so, it simply defaults to
text and tries to display the file. Otherwise, the user is
asked to save the file to disk. We need to add a new dialog
that allows the user to select between four choices: saving
the file, taking the default (displaying it as text), configur-
ing an external viewer, or canceling. The save option
brings up an existing save dialog. The default option sim-
ply closes the dialog box and displays the file as text. The
cancel option closes the dialog box and does not display
the file. When the configure-external-viewer option is
chosen, a new window displaying an editable text version
of the mailcap file is displayed, in order for the user to add
the new type.

MORPH tools are used to derive a model of the cur-
rent Mosaic interface using static and dynamic analysis.
To add the new dialog, a selection task having four alterna-

Figure 6: The MORPH Reengineering Process for User Interfaces

New

Abstract
Model

Restructured
Model

Transformation

Generation
(Forward
 Engineering)

Detection

Representation Representation

Human Analyst
Input

Interactive
system
code

User
Interface

tives is added into the appropriate place in the model. The
text task is added in as an associated action for the selec-
tion task alternative, along with the save and default
option alternatives. At that point, inferencing can be used
to identify the appropriate Motif widget to implement the
selection and task in the code—perhaps a row of push-but-
tons. From this information, the code can be generated
using a GUI builder application, and the user interface
enhancement is complete. Since MORPH maintains the
mapping between user interface task and the code that
implements it, calls to the application functionality can be
added as well.

3. Tool Support

The processes described in Section II can be auto-
mated in various ways. The MORALE project is develop-
ing a collection of tools, called the Esprit de Corps Suite.
Currently, the tools provide support to the individual pro-
cesses. Eventually, we intend to integrate them into a com-
prehensive software evolution support environment.

3.1 ScenIC View
ScenIC View is a planned collection of tools to man-

age the expression, discussion and refinement of teleologi-
cal models, scenarios, and requirements, and the
discussion of any of these artifacts. One existing compo-
nent, GBRAT, is a tabular editor/viewer for goals and their
relationships [3]. Support for discussion will resemble the
EColabor Inquiry Cycle discussion tool [20].

3.2 ISVis
ISVis (Interaction Scenario Visualizer) [10] is a tool

that supports software engineering tasks requiring
dynamic program understanding. The tool uses static anal-
ysis data to instrument a subject system, so that when run,
program execution traces are generated. These traces are
read by ISVis, and views of the actors and interactions in
the traces are presented to the user. Features allow the fil-
tering and abstraction of information, including global
overviews of scenarios containing hundreds of thousands
of interactions, facilities to find recurring sequences of
interaction in scenarios, grouping of interactions into
higher-level scenarios, grouping of low-level actors into
higher-level components, and saving and restoring of anal-
ysis sessions.

3.3 SIRRINE
SIRRINE (Self-Improving Reflective Redesigner

Integrating Noteworthy Experience) is a tool under devel-
opment for instantiating the MESA methodology. The
knowledge-based tool is a shell that provides both the SBF
language for representing the architecture of software sys-
tems such as Mosaic 2.4, and methods such as within-
domain analogy for addressing problems of evolutionary
design.

3.4 MORPH Tools
MORPH tools are under development to automate the

extraction of user interface models from legacy code.
MORPH uses a rule base that implements syntactic pattern
recognition and builds a knowledge-based representation
of the user interface. The interface model can then be
transformed into specific windowing toolkit implementa-
tions. The MORPH rule base is implemented in the Refine
[17] language, and the knowledge representation language
for the abstract model is CLASSIC [18].

3.5 SAAMTool
The SAAM process for impact analysis can involve

many scenarios affecting a large number of architectural
components. A tool for compiling all of the SAAM analy-
sis has been developed by researchers at University of
Waterloo and the Software Engineering Institute. We are
currently modifying this SAAM tool to integrate it within
the larger MORALE tool suite and method.

4. Issues Raised and Current Status

MORALE is currently a collection of related tech-
niques and tools that need to be more tightly integrated.
The resolution of several issues will further this objective.
The first is the concept of scenarios. ScenIC, SAAM, and
ISVis each currently have their own idea of what a sce-
nario is. These ideas differ in granularity and formality.
For example, a SAAM scenario is informal and expressed
in terms of architectural constructs. For ISvis, scenarios
correspond to sequences of actual system-level events
such as subprogram calls and returns. For ScenIC, a sce-
nario is expressed in terms of goals, actors, actions, and
obstacles. We see nothing incompatible in these views, but
a more precise description must be formulated.

Another issue that our work with MORALE has
raised is how to describe architecture. There is currently
much work in the research community in the area of
Architectural Description Languages (ADLs). For exam-
ple, SBF is a derivative of the FR architectural description
language [2]. We need to ascertain MORALE’s needs in
the ADL area and determine the extent to which SBF satis-
fies them.

A third issue relates to design rationale. There is
much debate on what this terms means, but for MORALE,
the concept certainly includes ScenIC’s goals, actors,
actions, and obstacles, SAAM’s component interactions
and cost weightings, the actual system behavior as
abstracted by ISVis, MESA’s task-method structure and
knowledge sources, and the abstract user interaction
model derived by MORPH. We need a better understand-
ing of how these relate and what, if any, aspects of ratio-
nale we have overlooked. As far as tools are concerned,
Esprit de Corps is currently only loosely integrated. We
need to develop a common data model to support interop-
eration and a unified user interface.

Acknowledgments

Effort sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-
96-2-0229. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory, or the U.S. Govern-
ment.

References

[1] G. Abowd, R. Kazman, and J. Pitkow. “Analyzing Differ-
ences Between Internet Information System Software
Architectures.” Proceedings of ICC ‘96, Dallas, Texas, June
1996.

[2] D. Allemang. “Using Functional Models in Automatic
Debugging.” Expert, December, 1991, 13-18.

[3] Ana AntÓn, Eugene Liang and Roy Rodenstein. “A Web-
Based Requirements Analysis Tool.” Proceedings of the
Fifth Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET ICE’96), Stanford, Cal-
ifornia, June 19-21, 1996, 238-243, IEEE Computer Society
Press.

[4] Sambasiva Bhatta and Ashok Goel. “Learning Generic
Mechanisms from Experiences for Analogical Reasoning.”
Proceedings of the Fifteenth Annual Conference of the Cog-
nitive Science Society, Boulder, Colorado, July 1993, 237-
242, Lawrence Erlbaum, Hillsdale, New Jersey.

[5] Jonathan E. Cook and Alexander L. Wolf. “Toward Metrics
for Process Validation.” Proceedings Third International
Conference on the Software Process, Reston, Virginia,
October 10-11, 1994, 33-44.

[6] P. Clements, L. Bass, R. Kazman, G. Abowd. “Predicting
Software Quality by Architecture-Level Evaluation.” Pro-
ceedings of the International Conference on Software Qual-
ity, Austin, Texas, October 1995.

[7] Dennis deBaar, James D. Foley, and Kevin E. Mullet. “Cou-
pling Application Design and User Interface Design.” Pro-
ceedings of CHI `92, May 3-7, 1992.

[8] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics Principles and Prac-
tice, Second Edition, Addison-Wesley, 1990.

[9] Ashok Goel. “Model Revision: A Theory of Incremental
Model Learning.” Proceedings of the Eighth International
Conference on Machine Learning, Chicago, Illinois, June
1991, 605-609, Morgan Kaufmann.

[10] Dean Jerding, John T. Stasko, and Thomas Ball. “Visualizing
Interactions in Program Executions.” Proceedings of the
International Conference on Software Engineering, 1997,
to appear.

[11] R. Kazman, G. Abowd, L. Bass, and P. Clements. “Scenario-
based Analysis of Software Architecture.” IEEE Software.
13(6):47–56, November 1996.

[12] R. Kazman, L. Bass, G. Abowd, and S.M. Webb. “SAAM: A
Method for Analyzing the Properties Software Architec-
tures.” Proceedings of the 16th International Conference
on Software Engineering, Sorrento, Italy, May 1994, 81-
90.

[13] D. S. McCrickard and G. D. Abowd. “An Architectural Anal-
ysis of Graphical Debuggers.” Proceedings of the Interna-
tional Conference on Software Maintenance — ICSM’96.
Monterey, CA, November 1996.

[14] Melody Moore. “Rule-Based Detection for Reverse Engi-
neering User Interfaces.” Proceedings of the Third Working
Conference on Reverse Engineering, IEEE Computer Soci-
ety Press, Monterey, California, November 1996.

[15] Colin Potts, Kenji Takahashi, and Annie I. AntÓn. “Inquiry-
Based Requirements Analysis.” IEEE Software, 11(2): 21-
32, March, 1994.

[16] Colin Potts. “Using Schematic Scenarios to Understand User
Requirements.” Proceedings DIS’95: Symposium on
Designing Interactive Systems, Ann Arbor, Michigan,
August 23-25 1995, ACM.

[17] Reasoning Systems. “The Refine User’s Guide.” Reasoning
Systems Inc., 3260 Hillview Avenue, Palo Alto, CA 94304.

[18] Laurie Alperin Resnick et al. “CLASSIC Description and
Reference Manual for the Common LISP Implementation
Version 2.1.” AT&T Bell Labs, Murray Hill, New Jersey,
May 15, 1993.

[19] Eleni Stroulia and Ashok Goel. “A Model-Based Approach
to Reflective Learning.” Proceedings of the 1994 European
Conference on Machine Learning, Catania, Italy, April
1994, 287-306.

[20] J. Sutton, and Sprague, R. “A Survey of Business Applica-
tions.” Proceedings of the American Institute for Decision
Sciences 10th Annual Conference, Part II, Atlanta, Geor-
gia, 1978.

[21] Kenji Takahashi, C. Potts, V. Kumar, K. Ota and J. Smith.
“Hypermedia Support for Collaboration in Requirements
Analysis.” Proceedings of the Second International Con-
ference on Requirements Analysis (ICRE'96), Colorado
Springs, Colorado, April 15-18, 1996. 31-40. IEEE Com-
puter Society Press.

