
Page 1 of 7

Creating a Research Infrastructure for Reengineering

Spencer Rugaber and Linda M. Wills
Georgia Institute of Technology

{spencer@cc, linda@ee}.gatech.edu

I. State of Reengineering Research
The research area concerned with software re-engineering is maturing. There are several regu-

larly scheduled conferences [22][23][26], several government funding initiatives have recently
begun in the area [7][8], special issues of technical journals have been devoted to the topic
[1][16][25], and, most importantly, there is recognition in the software industry of the complexity
and pervasiveness of the reengineering problem. In response to this maturity, several efforts are
underway that reflect on the research area itself: a best practices guide is being edited by the Soft-
ware Engineering Institute, a tool list has been constructed [28], terminological convergence is
underway [5], and case studies are being collected by the Software Technology Support Center,
Hill Air Force Base. Furthermore, panel sessions at conferences have considered research issues
and future directions [6][27][31]. This position paper considers the maturation process and pro-
poses some steps that we can take to make further progress.

A. Obstacles to Achieving Impact
Despite all of the activity described above, reengineering research has had notably little effect

on actual software reengineering practice. Most of the published papers in the field present tech-
niques supported by prototype tools; few of which have actually been used on real projects. The
typical software developer on such a project is still using code reading and test runs as the primary
ways of learning about an existing system and an editor and compiler as the primary ways of
changing it. We see several reasons for the research area’s lack of impact.

1. Difficulty of communicating value: The foremost reason why research results have not made
a significant difference to practice is the difficulty the research community has had in communi-
cating the role of reengineering in the software lifecycle. Whereas it is now well-understood that
software maintenance is a dominant cost factor, the reengineering alternative to continued mainte-
nance, if it is considered at all, is thought of as an expensive, time consuming detour from the
clear path to the next maintenance release. We have not effectively communicated the long term
benefits made possible by taking the detour.

2. Difficulty of assessing value: Of course, a major reason why we have difficulty communicat-
ing the value of reengineering is that we have difficulty measuring its costs and benefits in the first
place. Although several cost models have been proposed [2][4][20], there has been little valida-
tion, and there are certainly no generally accepted decision procedures for planning reengineering
efforts. If we cannot effectively predict reengineering costs and benefits, we cannot expect a man-
ager to be willing to invest the significant resources required to completely analyze and restruc-
ture a system. And without a clear understanding of costs and benefits, there can be no effective
decision procedure to help a manager judge alternatives such as starting over, reengineering, con-
tinuing maintenance, or abandoning a product.

3. No validated reengineering process: Another difficulty confronting the maintenance manager
is that there is no accepted reengineering process. Straightforward questions like the following do
not have agreed upon answers: how much up-front time to spend on program comprehension

Creating a Research Infrastructure for Reengineering

Page 2 of 7

before recoding begins, what form of representation should the results of the comprehension take,
how does testing a reengineered system differ from testing one under maintenance or one built
from scratch. Because the individual steps are not well-understood, it is difficult for the manager
to measure progress, further increasing project risk.

4. Technical difficulties: There are also stumbling blocks at the technical level. The diversity of
programming languages, compilers, and hardware platforms compounds the difficulty in effecting
tool penetration throughout the marketplace. Furthermore, information useful to research tools
and produced by commercial compilers is not accessible through published interfaces, thereby
forcing tool developers to divert energy better spent on exploring new techniques. Even well-
understood technical ideas, such as program slicing [31], have not penetrated the commercial
market due to the difference in scale between a research tool and a commercial product.

In summary, we need to have a clearer understanding of what our area’s goals are, how those
goals relate to customers’ needs, how we can more effectively satisfy those needs than we have in
the past, and how we can communicate what we have done to practitioners and management.

II. A Research Infrastructure
There are some steps that we as a community can take to address these issues and to leverage

our efforts. Some of these are already underway, some are understood but need to be imple-
mented, and some are themselves research questions that need to be examined. All of them need
contributions from the research community.

A. Taxonomy
One fairly mature effort is the IEEE Reverse Engineering Taxonomy project. Initiated by

Elliot Chikofsky and James Cross, this effort has resulted in a published description [5] of our
field’s terminology. This document is now the de facto source of definitions and should serve as a
basis for extensions and elaborations as the field matures.

B. Common portable and interoperable intermediate representations
Because there have been numerous efforts within the larger computer science community to

establish standard forms for intermediate representations (IRs), we currently suffer from an over
abundance of representations. To name a few, not necessarily equivalent forms, we have IDL (two
varieties) [15] [18], IRIS [13], DIANA [11], and generic Abstract Syntax Trees (ASTs). Although
they are intended for slightly different purposes, it is not clear that their special features compen-
sate for the resulting reduction in interoperability. Thus, we are left with the unpleasant choice of
somehow deciding on one or finding a way to facilitate interoperation.

C. Vendor requirements
If we can agree on a plan for IR convergence, then we can ask compiler and tool vendors to

cooperate. One preliminary step would be to convince them to publish application programmer
interfaces (APIs) or intermediate file formats for their IRs. Researchers could then take advantage
of commercial progress in dealing with industrial scale issues, thereby freeing energy for explor-
ing research questions.

Creating a Research Infrastructure for Reengineering

Page 3 of 7

D. Reengineering resources
The advent of the World Wide Web has encouraged individual research groups to construct

home pages containing references to resources related to the field of reengineering. Such pages
list conferences, vendor and tool descriptions, and bibliographies describing relevant literature.
Many of these pages are accessible from the IEEE Committee on Reverse Engineering’s web site
[12], which includes a resource repository. The advantages of the World Wide Web for supporting
the research area include its eclecticism, its dynamic nature, and its cross linking. Disadvantages
include the possibility of being out of date, redundancy, and lack of quality control.

E. Reengineering task descriptions
As another condition of maturity, the field of reengineering must define itself. This includes

not only resolving the remaining naming and terminology issues, but also composing a systematic
description of when and how reengineering activities can contribute to the software development
process. Such a description must take the form of a list of specific reengineering activities or
tasks, including a definition of the activities, a description of their inputs and outputs, their costs
and benefits, and any other collected wisdom the field can offer to practitioners. There are several
benefits to such a list. These include communicating to practitioners situations with which we
might be able to help, the initial steps to a process model, and the sanity checks engendered by
such reflections.

F. Graduated series of milestones/challenges
Another step we can take is to define a series of specific research challenges to strive for, sim-

ilar to the Grand Challenges in High-Performance Computing and Communications [17] and the
goal of satisfying the Turing Test [29] in Artificial Intelligence. We need tangible targets ranging
from what we are within sight of now (for example, an industrial strength slicer for the C lan-
guage), to medium-term challenges (such as measurable diagnostic assistance in finding the loca-
tion of bugs, given failing test data), to true understanding (such as domain-specific program
documentation generators).

G. Standard Data Sets/Benchmarks
Coordinated and measurable progress in our field depends critically on establishing standard

data sets and benchmarking tasks that can be used to quantitatively evaluate and compare reengi-
neering tools and techniques. This will help to guide and validate research efforts in the field,
analogous to the use of the SPECmark suite for computer performance evaluation [10]. To start,
we need to collect information about publicly accessible software systems, including their associ-
ated documentation, modification history, test cases, and other available information. The stan-
dardization of these data sets, in conjunction with efforts to establish clear reengineering task
descriptions, will provide the basis for benchmarking task scenarios representative of important,
common reengineering challenges. This will be instrumental in evaluating and communicating
the value of our work.

H. Repository
The rapid growth in the field of reverse engineering over the past few years has generated a

wealth of tools, techniques, methodologies, publications, and other resources. To enable sharing
of resources and to avoid unnecessary duplication of effort, it is important to collect and synthe-

Creating a Research Infrastructure for Reengineering

Page 4 of 7

size our products. Such products include the following:

1. Data sets - specific source code and test data using which researchers can compare results.

2. Scripts and other code - such as Refine language programs for specific analyses.

3. Libraries of cliches and transformation rules - in support of program recognition and tran-
formational analysis.

4. Grammars - machine processable programming language grammars.

5. Experiments - descriptions of repeatable program comprehension experiments and the materi-
als to replicate them, such as described by [14] and [24].

6. Case studies - a systematic collection of case studies, uniformly documented so as to provide
guidance to development managers, such as those performed by [9]. This would serve as a first
step to a cost model, such as Cocomo [4], and for a reengineering decision procedure.

7. Public domain utilities - research tools and basic utilities (such as parsers visualization tools,
analyzers, graph layout and editing facilities), including documentation supporting automatic
applicability qualification.

8. Literature references - up-to-date references and literature in our field such as texts, hand-
books, and papers.

There are many difficulties, including technical, legal, logistical, and even theoretical issues
that make constructing this repository difficult. For example, for the repository to be truly useful,
it should be systematically documented and indexed—which requires a substantial effort. But we
do not think that the problems are insurmountable, and the value of such a repository, both to
practitioners and to researchers, warrants pursuing the possibility.

III. Infrastructure Implementation

A. Committee on Reverse Engineering
Many of the discussions leading to this paper have taken place in the context of the Commit-

tee on Reverse Engineering (CORE) of the IEEE Computer Society's Technical Council on Soft-
ware Engineering. Since the taxonomy project was begun under the aegis of CORE and the IEEE
Computer Society sponsors (in part) the conferences mentioned earlier, CORE represents an
appropriate organizing vehicle for implementing this proposal. CORE has created a web site [12],
where a repository has been established to collect reengineering resources, the taxonomy of termi-
nology, pointers to relevant conferences and literature, and the many products of our research. In
addition, for several years, CORE has published a newsletter [19] that facilitates communication
in our area and helps form ties to related areas.

B. Volunteers
The effort described in Section II is ambitious, and it will take considerable time to realize.

Moreover, the implementation will be entirely voluntary. We suggest that an initial step is for indi-
viduals to volunteer to organize the various components by presenting an organizational plan
including a time and effort estimate, resources required, issues to be resolved, etc. On-line discus-
sion would raise awareness and hopefully stimulate a synthesis.

Creating a Research Infrastructure for Reengineering

Page 5 of 7

C. Outreach
Unfortunately, even an outpouring of volunteer effort from the reengineering research com-

munity will not suffice to implement the proposal. We need external input from at least three other
research and industrial areas.

1. Test and evaluation. The test and evaluation research area has been concerned for some time
with questions similar to ours, such as common representations and tool repositories. In fact, there
are more areas in which we overlap with them than in which we differ. As a separate but related
effort, we suggest discussion aimed at moving our communities closer together.

2. Compilers. Of course, successfully implementing this proposal depends on support from the
compiler community, both its researchers and the industry itself. Not only are they concerned with
many of the same questions, but access to the intermediate results of currently available commer-
cial and research tools can mitigate redundant effort.

3. Domain analysis. The area of domain analysis [21] promises to play an important role in
reengineering in the future. Comprehensive reengineering of a software application requires
extensive knowledge of the application’s domain. While little technology currently exists to sup-
port these efforts, we should remain aware of what is going on in this newly formed area and
attempt to communicate our needs to them.

D. Advisory board
Just as success for the reengineering research community requires active communication with

our customers, so must successful implementation of this proposal involve wide participation. We
propose the establishment of an advisory board to which we would report progress and from
which we would solicit advice and contacts. Among the participants would be the following.

1. Industrial practitioners / customers - an enlightened software development middle manager,
whose expertise and contacts would facilitate beta testing of our technology.

2. Government funding agents - members of the Department of Defense, NSF, ONR, and other
government funding agencies would be invaluable, particularly since they are supporting much of
the research in the area.

3. IEEE representative - a member of CORE to facilitate repository logistics and provide other
organizational access would be of value.

4. Academic / industrial researcher.

5. Tool vendors (reengineering, compiling).

6. Consultant - as many reengineering efforts are guided by advice from external consultants, it
would be useful to have one as a member of the board.

IV. Summary
We have proposed several steps which we believe would encourage maturation of the research

efforts in the area of software reengineering. These include increased interaction with industry,
the development of a repository of research artifacts, and convergence of intermediate representa-
tions. The paper is a proposal which requires considerable discussion and consensus before it can
be realized. We encourage your thoughts and your participation.

Creating a Research Infrastructure for Reengineering

Page 6 of 7

V. References
[1] “Special Issue on Reverse Engineering.” Automated Software Engineering, 3(1-2), 1996.

[2] Lowell Jay Arthur. Software Evolution. John Wiley & Sons, 1988.

[3] “A Bibliography on Reengineering.” http://www.informatik.uni-stuttgart.de/ifi/ps/reengi-
neering/reengineering.html.

[4] Barry W. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[5] Elliot J. Chikofsky and James H. Cross II. “Reverse Engineering and Design Recovery: A
Taxonomy.” IEEE Software, 7(1):13-17, January 1990.

[6] James H. Cross II and Spencer Rugaber. “Speaker Cites Standard Data Sets as a Major
Challenge Facing Software Reverse Engineering Researchers.” Computer, IEEE Computer
Society, 26(11):83-84, November 1993.

[7] “Dear Colleague Letter.” National Science Foundation solicitation for Evolutionary Design
of Complex Software initiative. http://www.cise.nsf.gov/cise/ccr/SEDearColleague1.html.

[8] “Evolutionary Design of Complex Software.” DARPA Program. http://www.ito.darpa.mil/
ResearchAreas/EDCS.html.

[9] P. Fiore, F. Lanubile, and G. Visaggio. “Analyzing Empirical Data from a Reverse Engi-
neering Project.” 2nd Working Conference on Reverse Engineering, Toronto, Ontario, Can-
ada, July 14-16 1995, 106-114.

[10] Ran Giladi and Niv Ahituv. “SPEC as a Performance Evaluation Measure.” IEEE Com-
puter, August 1995, pp. 33-42.

[11] G. Goos and W. A. Wulf. “Diana Reference Manual,” CMU-CS-81-101, Department of
Computer Science, Carnegie-Mellon University, 1981.

[12] “IEEE Computer Society, Technical Council on Software Engineering, “Committee on
Reverse Engineering” home page. http://www.tcse.org/revengr/.

[13] “The IRIS Toolset.” http://laser.cs.umass.edu/tools/iris.html.

[14] A. Lakhotia. “Understanding Someone Else’s Code: Analysis of Experiences.” Journal of
Systems and Software, Elsevier Science, Volume 23, December 1993, 269-175.

[15] David Alex Lamb. “IDL: Sharing Intermediate Representations.” ACM Transactions on
Programming Languages and Systems, July 1987, 9(3):297-318.

[16] “Maintenance, Reverse Engineering & Design Recovery,” Special Issue of IEEE Software,
7(1), January 1990.

[17] National Research Council. Computing The Future. National Academy Press, Washington,
D.C., 1994, (see also http://www.hpcc.gov/blue96).

[18] Object Management Group. “Common Object Request Broker Architecture and Specifica-
tion,” OMG Document Number 91.12.1.

Creating a Research Infrastructure for Reengineering

Page 7 of 7

[19] Mike Olsem, editor. “Reverse Engineering Newsletter.” Committee on Reverse Engineer-
ing, Technical Council on Software Engineering, IEEE Computer Society.
http://www.stsc.hill.afb.mil/~red/IEEE.html.

[20] Mike Olsem, Chris Sittenauer, John Clark, Alan Giles, and Dennis Barney. Software
Reengineering Assessment Handbook. Software Technology Support Center, Hill Air Force
Base.

[21] Ruben Prieto-Diaz and Guillermo Arango. Domain Analysis and Software Systems Model-
ing. IEEE Computer Society Press, Los Alamitos, California, 1991.

[22] Proceedings of the 1994 International Conference on Software Maintenance, Victoria, Brit-
ish Columbia, Canada, September 19-23, 1994.

[23] Proceedings of the 3rd Workshop on Program Comprehension, Washington, D.C., Novem-
ber 1994.

[24] Vaclav Rajlich, James Doran, and Reddi T. S. Gudla. “Layered Explanations of Software: A
Methodology for Program Comprehension.” Third Workshop on Program Comprehension,
IEEE Computer Society, November 14-15, 1994, Washington D. C., 46-52.

[25] “Reverse Engineering.” Special Issue of Communications of the ACM, 37(5), May 1994.

[26] Second Working Conference on Reverse Engineering, Toronto, Ontario, Canada, July 14-16
1995.

[27] P. G. Selfridge, R. C. Waters, and E. J. Chikofsky. “Challenges to the Field of Reverse Engi-
neering--A Position Paper.” Working Conference on Reverse Engineering, IEEE Computer
Society Press, Baltimore, Maryland, May 21-23, 1993, 144-150.

[28] Chris Sittenauer, Mike Olsem, and Daren Murdock. “Re-engineering Tools Report.” Soft-
ware Technology Support Center, Hill Air Force Base, May 1992.

[29] Alan Turing. “Computing Machinery and Intelligence.” Computers and Thought, E. Feigen-
baum and J. Feldman, editors, McGraw-Hill, 1-35, 1963.

[30] Mark Weiser. “Program Slicing.” Proceedings of the 5th International Conference on Soft-
ware Engineering, San Diego, California, March 9-12, 1981, IEEE Computer Society, pp.
439-449.

[31] Linda Wills and James H. Cross II “Recent Trends and Open Issues in Reverse Engineer-
ing.” Automated Software Engineering, 3(1-2), 1996.

