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PROGRAM 
I B L E  
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T v 
Abstract 

One of the factors that can make a program dificult  
to understand is that code responsible for  accomplish- 
ing more than one purpose may be woven together in 
a single section. W e  call this interleaving, and it may 
arise either intentionally - for  example, in optimizing 
a program, a programmer may use some intermediate 
result for several purposes - or unintentionally, due 
to  patches, quick fixes, or other hasty maintenance 
practices. To understand this phenomenon, we have 
looked at a variety of interleaving instances in  actual 
programs and have distilled characteristic features. I f  
the characterization proves to be robust then at wzll 
enable the design of tools for  detection of interleav- 
ings and the extraction of the individual strands of 
computation.' 

1 Introduction and Motivation 
Sometimes the relations between the various 

sections make up a maze of interwoven threads 
that  only detailed analysis can unravel. 

- David and Mendel in The B a c h  Reader.  

A program is an expression of its designers' efforts 
to accomplish some purpose. One aspect of under- 
standing a program is to  recreate that purpose. A 
particularly vexing difficulty in understanding a pro- 
gram is that a contiguous textual area of code can 
often contain fragments intended to accomplish mul- 
tiple, seemingly unrelated purposes. The code frag- 
ments responsible for each of the purposes typically 

'This paper discusses a number of examples of interleav- 
ing which we are making available on the World Wide Web 
at URL http / /www cc gatech edu/reverse/interleaving html. We 
hope these will provide a set of challenges to other researchers 
interested in this problem, and we welcome additions to  the set. 

are delocalized and overlap rather than being com- 
posed in a simple linear sequence. We refer to these 
code fragments as being interleaved. 

A trivial example is a single loop responsible for 
computing both the maximum element of a vector 
and its position. A less trivial example is a program 
intended to write a report that summarizes data  ex- 
tracted from sorted input records. The program has 
two purposes: computing the summary data  and man- 
aging the construction of the report (headers, page 
breaks, page counts, etc.) In an object-oriented pro- 
gram, these two purposes might well be realized by 
two separate objects. In traditional code, however, 
the implementations of these functions are often in- 
terleaved, and understanding the code is significantly 
complicated. 

We use the term plan to denote a description or 
representation of a computational structure that the 
designers have proposed as a way of achieving some 
purpose or goal in a program.' Plans can occur a t  
any level of abstraction from architectural overviews 
to code. Interleaving expresses the merging of two 
or more distinct plans within some contiguous textual 
area of a program. 

For 
example, it may be more efficient to compute two re- 
lated values in one place than to do so separately. Or 
interleaving may be the result of inadequate software 
maintenance, such as adding a feature locally to an 
existing routine rather than undertaking a thorough 
redesign. Or interleaving may arise as a natural by- 
product of expressing separate but related plans in 
a linear, textual medium. For example, accessors and 
constructors for manipulating data structures are typ- 

Interleaving may arise for efficiency reasons. 

2This definition is distilled from definitions in [15, 21 ,  251. 
Note that  a plan is not necessarily stereotypical or used repeat- 
edly; it may be novel or idiosyncratic. Following [21, 251, we 
reserve the term cliche' for a plan that  represents a standard, 
stereotypical form. 
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ically interleaved throughout programs written in tra- 
ditional programming languages due to their procedu- 
ral, rather than object-oriented structure. Regardless 
of why interleaving is introduced, it severely compli- 
cates understanding a program. This makes it difficult 
to perform tasks such as extracting reusable compo- 
nents, localizing the effects of maintenance changes, 
and migrating to object-oriented languages. 

There are several reasons why interleaving is a 
source of difficulties. The first has to  do with delo- 
calization. Because two or more design purposes are 
implemented in a single segment of code, each individ- 
ual code fragment responsible for a separate purpose 
is more spread out than it would be if it were en- 
capsulated. Another reason why interleaving presents 
a problem is that  it may be the result of poorly 
thought out maintenance activities, where the origi- 
nal, highly coherent structure of the system has de- 
graded as “patches” and “quick fixes” are introduced. 
Finally, there may be occasions where interleaving is 
intentionally introduced, such as for purposes of op- 
timization. But expressing intricate optimizations in 
a clean and well-documented fashion is not typically 
done. For all of these reasons, our ability to compre- 
hend code containing interleaved fragments is com- 
promised. Hopefully, we can have more success by 
isolating the separate concerns, understanding them 
individually, and only then seeing how they relate. 

We are characterizing the types of interleaving that  
typically occur in programs in order to  develop tech- 
niques for detecting and extracting interleaved, but 
logically cohesive plans. This paper describes our ex- 
ploration, which has been based primarily on an ex- 
amination of existing code from three sources: 

A Cobol database report writing system from the 
US Army ( IMCSRS) , which summarizes informa- 
tion provided as monthly updates to a master file 
of equipment maintenance information. 

A library of mathematical software (SPICELIB), 
written in Fortran by programmers at the Jet  
Propulsion Laboratory ( JPL) for analyzing data  
sent back from space missions. The software per- 
forms calculations in the domain of solar system 
geometry. 

A program for finding the roots of functions 
(ZEROIN), presented and analyzed in [l] and [22]. 

The goal of the paper is to characterize the inter- 
leaving problem, relating it to  existing concepts in the 
literature, such as delocalized plans [15], coupling [29], 
and redistribution of intermediate results [8, 91. The 

paper presents and categorizes examples of types of 
interleaving to begin to map out the space of inter- 
leaving situations. It also describes how the decision 
to introduce interleaving into a program interacts with 
other design decisions. It then discusses implications 
for detection and extraction techniques and the types 
of representations needed to facilitate them. 

2 Characterizing Interleaving 
Interleaving can be characterized by the delocalzza- 

tzon of the code for the individual plans involved, the 
sharzng of some resource, and the implementation of 
multiple, d e p e n d e n t  plans in the program’s overall 
purpose. 

To illustrate these primary characteristics, we fo- 
cus on an example subroutine from SPICELIB. Since the 
program contains 113 source lines of code, the full text 
of the program is given in the appendix. Shorter, rep- 
resentative excerpts will be presented and discussed in 
the main body of the paper. 

The program, called NPEDLN, computes the nearest 
point (PNEAR) on an ellipsoid to a specified line. It 
also computes the shortest distance (DIST) from the 
ellipsoid to the line. The ellipsoid is specified by the 
length of its three semi-axes (A, B, and C), which are 
oriented with the 2, y, and z coordinate axes. The line 
is specified by a point (LINEPT) and a direction vector 

The algorithm used to compute the nearest point 
checks whether the line intersects the ellipsoid (the 
“intercept case”) and, if so, computes the intersection 
point. Otherwise (the “non-intercept case”) it per- 
forms a more complex computation to find the line 
segment connecting the ellipsoid and the given line 
that is orthogonal to both a t  its endpoints; the end- 
points of the computed line segment form the closest 
pair of points. 

2.1 Delocalization 

( LINEDR). 

Keep related words together. The position of the 
words in a sentence is the principal means of 

showing their relationship. Confusion and 
ambiguity result when words are badly placed. 
- Strunk and White in The Elements of Style. 

NPEDLN has a primary goal of computing the nearest 
point on an ellipsoid to a specified line. I1 also has 
an orthogonal goal of ensuring that the computations 
involved have stable numerical behavior. A standard 
trick in numerical programming for achieving stability 
is to  scale the data  involved in a computation and then 
unscale the results The code responsible for doing this 
in NPEDLN is scattered throughout the program’s text. 
It is highlighted in the excerpt shown in Figure 1. 
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SUBROUTINE NPEDLN(A, B, C, LINEPT, LINEDR, 
PNEAR, DIST) 

CALL UNORM ( LINEDR. UDIR, MAG ) _ _ _  [error checks1 
SCALE = MAX ( DABS(A), DABSCB), DABS(C) ) 
SCLA = A I SCALE 
SCLB = B I SCALE 
SCLC = C / SCALE 

CALL VMINUS ( UDIR, OPPDIR ) 
CALL SURFPT ( SCLPT, UDIR, SCLA, SCLB, 

CALL SURFPT ( SCLPT, OPPDIR,SCLA, SCLB, 
SCLC,PT(l,l), FOUND(1) ) 

SCLC, PT(1,2), FOUND(2)) 
. . _  [checking for intersection of the 

line with the ellipsoid] 
IF ( FOUND(1) ) THEN 

... 
RETURN 

END IF 
. . .  [handling the non-intercept case1 
CALL VSCL ( SCALE, PNEAR, PNEXR ) 
DIST = SCALE DIST 

RETURN 
END 

Figure 1: Portions of the NPEDLN Fortran pro- 
gram. Shaded regions highlight the lines of 
code responsible for scaling and unscaling. 

The delocalized nature of this “scale-unscale” plan 
makes it difficult to gather together all the pieces in- 
volved for consistent maintenance. It also gets in the 
way of understanding the rest of the code, since it 
provides distracting details that must be filtered out. 
Delocalization is one of the key characteristics of in- 
terleaving: one or more components of a plan are spa- 
tially separated from other components by the compo- 
nents of other plans with which they are interleaved. 
Letovsky and Soloway’s cognitive study [15] shows the 
deleterious effects of delocalization on comprehension 
and maintenance. 

The “scale-unscale” pattern is a simple exam- 
ple of a more general delocalized plan, (“transform- 
untransform” ) which is frequently interleaved with 
computations in SPICELIB. The general form, which 
we refer to  as reformulation wrappers, is used to trans- 
form one problem into another that is simpler to solve, 
and then to  transfer the solution back to the original 
situation. Some examples of reformulation wrappers 
in SPICELIB are: reducing a three-dimensional geome- 
try problem to a two-dimensional one and mapping an 
ellipsoid to the unit sphere to  make it easier to  solve 
three-dimensional intersection problems. 

Delocalization may occur for a variety of differ- 
ent reasons. One is that there may be an inherently 

non-local relationship between the components of the 
plan, as is the case with reformulation wrappers, which 
makes the spatial separation necessary. Another rea- 
son is that the intermediate results of part of a plan 
may be shared with another plan, causing the plans 
to overlap and their steps to be shutfled together; the 
steps of one plan separate those of the other. For ex- 
ample, in Figure 1, part of the scale plan (computing 
the scaling factor) is separated from the rest of the 
plan (dividing by the scaling factor) in all scalings, 
except the scaling of A .  This allows the scaling factor 
to be computed once and the result reused. (The role 
of sharing in interleaving is discussed more extensively 
in Section 2.2.) 

Realizing that a reformulation wrapper or some 
other delocalized plan is interleaved with a particular 
computation can help prevent severe comprehension 
failures during maintenance [15]. It can also help de- 
tect when the delocalized plan is incomplete, as it was 
in an earlier version of our example subroutine whose 
modification history includes the following correction: 

C- SPICELIB Version 1.2.0, 25-808-1992 (HJB) 

C Bug fix: in the intercept case, PHEAR is now 
C properly re-scaled prior to output. Formerly, 

C it was returned without having been re-scaled. 

2.2 Resource Sharing 
The complexity of multifunctioning elements can 
sometimes turn data graphics into visual puzzles, 

crypto-graphical mysteries for the viewer to decode. 
- Edward Tufte in The Visual Display of 

Quantitative Information. 

In addition to computing the nearest point on the 
ellipsoid to the h e ,  NPEDLN computes the shortest dis- 
tance between the line and the ellipsoid. This addi- 
tional output (DIST) is convenient to construct, based 
on intermediate results obtained while computing the 
primary output (PNEAR). This is illustrated in Figure 
2.  The shaded portions of the code shown are shared 
between the two computations for PNEAR and DIST. 
(The computation of DIST using VDIST is actually the 
last computation performed by the subroutine NPELPT, 
which NPEDLN calls; we have pulled this computation 
out of NPELPT for clarity of presentation.) 

The sharing of some resource is characteristic of 
intentional interleaving. When interleaving is intro- 
duced into a program, there is normally some implicit 
relationship between the interleaved plans, motivat- 
ing the designer to choose to interleave them. In this 
case, interleaved plans share some common resource 
- intermediate data  results. Their implementations 
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SUBROUTINE NPEDLN (A, B, C, LINEPT, 
LINEDR, PNEAR, DIST) 

. . .  
[ F i r s t  100 lines of NPEDLIV] 
... 
CALL NPELPT ( PRJPT, PRJEL, PRJNPT ) \ 

IFOUND ) 
IFOUND ) THEN 

. . . [error handling] I I i  END IF 

j Shared 

; ,  

Figure 2: Portions of NPEDLN, highlighting two 
overlapping computations. 

overlap in that a single structural element contributes 
to multiple goals. 

The sharing of the results of some subcomputation 
in the implementation of two distinct higher level op- 
erations is termed redistribution of intermediate re- 
sults by Hall [8, g]. More specifically, redistribu- 
tion is a class of function sharing optimizations which 
are implemented simply by tapping into the dataflow 
from some value producer and feeding it to an addi- 
tional target consumer, essentially introducing fanout 
in dataflow. Redistribution covers a wide range of 
common types of function sharing optimizations, in- 
cluding common subexpression elimination and gener- 
alized loop fusion, Hall developed an automated tech- 
nique for redistributing results for use in optimizing 
code generated from general-purpose reusable software 
components. We are interested in “undoing” these 
types of optimizations, and we can use the redistribu- 
tion concept to capture forms of interleaving in which 
the resources shared are data values. 

The commonality between interleaved plans might 
be in the form of other shared resources besides da ta  
entities, such as control structures, lexical module 
structures, and names. 

Control Coupling. Control conditions may be re- 
distributed just as data  values are. The use of control 
flags allows control conditions to be determined once 
but used to  affect execution at  more than one loca- 
tion in the program. In NPEDLN, for example, SURFPT 
is called to  compute the intersection of the line with 
the ellipsoid. This routine returns a control flag FOUND, 
indicating whether or not the intersection exists. This 
flag is then used outside of SURFPT to control whether 

the intercept or non-intercept case is to be handled as 
is shown below. 

CALL SURFPT ( SCLPT, UDIR, SCLA, SCLB, 
SCLC, PT(I,I), FOUBD(1) ) 

CALL SURFPT ( SCLPT, OPPDIR, SCLA, SCLB, 
SCLC, PT(1,2), FOUBD(2) ) 

DO 50001 
. I = l , 2  

IF ( FOUBD(1) ) THEB 
. . . 
RETURB 

[handling the intercept case] 

EBD IF 
50001 COBTIBUE 
C 
C intersect the ellipsoid. 

Getting here means the line doesn’t 

. . . 
RETURB 
END 

[handling the non-intercept case] 

The use of control flags is a special form of con- 
trol coupling: “any connection between two modules 
that communicates elements of control 1291 ,’, typically 
in the form of function codes, flags, or switches [16]. 
This sharing of control information between two mod- 
ules increases the complexity of the code, complicating 
comprehension and maintenance. 

Another form of resource 
sharing occurs when the lexical structure of a mod- 
ule is shared among several related functional compo- 
nents. The entire contents of a module may be lexi- 
cally included in another or there may be partial over- 
lap of modules. This is called content couplzng [29] - 
“some or all of the contents of one module are included 
in the contents of another” - and often manifests it- 
self in the form of a multiple-entry module. Content 
coupling makes it difficult to  independently modify or 
maintain the individual functions. 

Content coupling. 

Name Sharing. A simple form of sharing is the 
use of the same variable name for two different pur- 
poses. This can lead to  incorrect assumptions about 
the relationship between subcomputations within a 
program. 

In general, the difficulty that resource sharing in- 
troduces is that it causes ambiguity in interpreting the 
purpose of program pieces. This can lead to incorrect 
assumptions about what effect changes will have, since 
the maintainer might be focusing on only one of the 
actual uses of the resource (variable, value, control 
flag, da ta  structure slot, etc.). 
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SUBROUTINE NPEDLN (A, B, C, LINEPT, 
LINEDR, PNEAR, DIST) 

CALL SETMSG('D1r. is zero vector. ) 
[error siqnalinql 

~ E T ~ J R I ~  
ELSE IF ( , A .LE. O.D3 1 

.OR.( B .LE. O.DO 

.OR. C .LE. O.DO ; )  THEN 
CALL S F : ' 3 1 S G L  S e l 7 1 - a X e R : A = 4 . B = 9 , C = 4 . '  
. . . [error s i g n a l i n g :  
RETURN 

END IF 
. . . [ s c a l i n g 1  
IF ( ( SCLA"'2 .LE. 0.3c ; 

, .OX.( SCLB**Z .LE. O.DO ) 
. .OR. ( SCLC"*Z .LE. O.DO I ,  THEN 

CALL SETMSG('T00 small:A=#,B=#,C=#.') 

. [scaling1 _ _ _  [handling the intercept caseJ 

CALL SETMSG ('Cand ellipse not found.') 

. . .  

Figure 3: Portions of NPEDLN, highlighting code 
responsible for checking preconditions. 

2.3 Independence 
... You know they're going to  get together ..., but 

it's fun to  watch how they keep missing ... It's 

emotionally satisfying because you get that  

cathartic moment a t  the end ... It's intellectually 

satisfying because the plot's always twisting in on 

itself. - Susan Seidelman, director, on romantic 

comedy in American Cznema. 

While interleaving is introduced to take advantage 
of commonalities, the flip side of the coin is that  the 
interleaved plans each have a distinct purpose. One 
implication of this is that  the decision to interleave the 
plans can, in principle, always be undone. This usually 
requires copying of common code to eliminate resource 
sharing, resulting in an equivalent, but possibly less 
efficient, program. 

The NPEDLN program, for instance, computes the 
nearest point on an ellipsoid to a specified line. It 
also checks a set of preconditions which must be true 
for the computation to be carried out correctly: the 
line must not be a zero vector, the ellipsoid's semi-axes 
must have positive length and must be large enough 
to be scalable, and the ellipsoid must not be too flat or 
needle-shaped. Figure 3 shows an excerpt of NPEDLN, 
highlighting the precondition checking code. 

In principle, all these checks can be performed be- 

forehand, pulling them out of the midst of the primary 
computation and having them preface it.  This would 
require duplicating almost the entire program, since 
the precondition checking makes heavy use of inter- 
mediate results computed throughout the program. 

Although interleaving is necessary for efficiency, 
it obscures the independence of the components in- 
volved. Ironically, this hinders activities for making 
the code more efficient and reusable in the long run, 
such as parallelization and objectivization of the code. 

3 Implications for Representation, De- 
tection, and Extraction 

We have identified the characteristics of interleav- 
ing that make it troublesome in understanding pro- 
grams. We can now consider the implications of what 
we have learned from our empirical study. In par- 
ticular, we are interested in understanding how the 
decision to interleave interacts with other design deci- 
sions; what types of program representations will fa- 
cilitate the detection of interleaving decisions and the 
extraction of interleaved components; and how can in- 
terleaved components be automatically detected and 
extracted from code? 

3.1 Interactions with Other Decisions 
Intentional interleaving is one of several ways in 

which design decisions are elaborated in code [22]. 
More familiar examples include the decomposition of 
a complex concept into its constituents (aggregation), 
the processing of a general problem in terms of various 
individual cases (specialization), the elaboration of a 
generic concept as a more concrete artifact (instanti- 
ation), and the modeling of one structure in terms of 
another (representation). The converse of interleaving 
is encapsulation, where a designer intentionally delin- 
eates several distinct design elements behind some sort 
of barrier, such as provided by the PACKAGE mechanism 
in Ada. 

The history of the design of a program can be 
viewed as a network of artifacts [a] where a connec- 
tion between two artifacts indicates that  one of them 
is the refinement of the other that  results from one of 
the kinds of design decisions listed above. In this view, 
interleaving is indicated by a network node with inputs 
from two o r  more other nodes. It may well be the 
case, however, that  by tracing further back in the his- 
tory some common ancestor of the two inputs can be 
found. For example, NPEDLN uses a control flag to indi- 
cate whether to handle the intercept or non-intercept 
case. In looking at  the code for the subprogram, we 
see only instances of interleaved code fragments. In 
reviewing the design history, however, we may find 
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that what is more fundamental is that  a decision has 
been made to specialize the code into these two cases, 
that  the flag distinguishes the two cases, and the in- 
terleaving is really just a manifestation of the higher 
level specialization decision. 

In the case of the loop that is being used to com- 
pute both the maximum element in a vector and its 
index, there may have been an aggregation decision in 
the design history that justifies why both values are 
needed and only later an interleaving optimization to 
save some loop overhead. 

In instances where a more fundamental decision has 
provoked a later interleaving, not only is the rationale 
connecting the two decisions usually lost, but we end 
up viewing the code in delocalized form when we really 
would like to see a factored version. 

We postulate that  interleaving often co-occurs with 
certain other design decisions. If further empirical 
study confirms this, then interleaving removal could 
be seen as enabling the reversal of other decisions or, 
dually, that  certain design decisions enable interleav- 
ing by providing opportunities for resource sharing. 
3.2 Requirements for Representations 

Three key characteristics of interleaving are: delo- 
calization, resource sharing, and independence. Delo- 
calization results from having to serialize the compo- 
nents of two or more separate plans. This total order- 
ing is necessary due to the lack of support for concur- 
rency in most high level programming languages. It 
follows then that in order to undo delocalization a rep- 
resentation must impose a partial rather than a total 
execution ordering on the components of plans. 

The partial execution ordering requirement sug- 
gests that  some form of graphical representation is 
appropriate. Graph representations naturally express 
a partial execution ordering via implicit concurrency 
and explicit transfer of control and data.  Since there 
are a number of such representations to choose from, 
we narrow the search space by noting that:  

independent plans must be localized as much as 
possible, with no explicit ordering between them, 

sharing must be detectable (shared resources 
should explicitly flow from one plan to another); 
similarly if two plans p l ,  p z  both share a resource 
provided by a plan p3 then p l  and p2 should ap- 
pear in the graph as siblings with a common an- 
cestor p 3 ) ,  and 

the representation must support multiple views of 
the program as the interaction of plans at various 
levels of abstraction, since interleaving may occur 
at any level of abstraction. 

An existing formalism that meets these criteria is 
Rich’s Plan Calculus [19, 201, which was developed and 
used in the Programmer’s Apprentice [all project. A 
plan in the Plan Calculus is encoded as a graphical 
depiction of the plan’s structural parts and the con- 
straints (e.g., data  and control flow connections) be- 
tween them. This diagrammatic notation is comple- 
mented with an axiomatized description of the plan 
which defines its formal semantics. This allows us to 
develop correctness preserving transformations to ex- 
tract interleaved plans. The Plan Calculus also pro- 
vides a mechanism, called overlays, for representing 
correspondences and relationships between pairs of 
plans (e.g., implementation and optimization relation- 
ships). This enables the viewing of plans at multiple 
levels of abstraction. Overlays also support a very 
general notion of plan composition which takes into 
account resource sharing at all levels of abstraction by 
allowing overlapping points of view. 

3.3 Support for Detection and Extraction 
Do not be afraid to seize whatever you have written 

and cut it to ribbons; it can always be restored to 
its original condition in the morning, if that course 

seems best. - Strunk & White in Elements of Style. 

In order to develop tools for detecting and extract- 
ing interleaving, it is helpful to consider how interleav- 
ing manifests itself in source code. There are three 
useful, orthogonal dimensions. These form a possible 
design space of solutions to the interleaving problem 
and can help relate existing techniques that might be 
applicable. One dimension is the scope of the inter- 
leaving, which can range from intraprocedural to in- 
terprocedural to object to architectural. 

Another dimension is the structural mechanasm for 
providing interleaving, which may be naming, con- 
trol, data,  or protocol (i.e., global constraints, such as 
maintaining stack discipline or synchronization mech- 
anisms for cooperating processes). For example, the 
use of control flags is a control-based mechanism for 
interleaving with interprocedural scope. The com- 
mon iteration construct involved in loop fusion is an- 
other control-based mechanism, but the interleaving 
has intraprocedural scope. Reformulation wrappers 
use a protocol mechanism, usually at the intraproce- 
dural level, but they can have interprocedural scope. 
Multiple-inheritance is an example of a data-centered 
interleaving mechanism with object scope. 

The third dimension is the famalaarzty of the plans 
interleaved: are they clichks (i.e., stereotypical, fre- 
quently used plans) or are they unfamiliar plans (i.e., 
novel, idiosyncratic, or not used repeatedly)? 
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When what is interleaved is familiar (i.e., a clichg), 
clichC recognition (e.g., [ l o ,  12, 13, 14, 18, 281) is a use- 
ful detection m e c h a n i ~ m . ~  In fact, most recognition 
systems deal explicitly with the recognition of clichCs 
that are interleaved in specific ways with unrecogniz- 
able code or other clichCs. One of the key features of 
GRASPR [as], for instance, is its ability to deal with de- 
localization and redistribution-type function sharing 
optimizations. 

KBEmacs [21, 261 uses a simple, special-purpose 
recognition strategy to segment loops within pro- 
grams. This is based on detecting coarse patterns of 
data  and control flow a t  the procedural level that  are 
indicative of common ways of constructing, augment- 
ing, and interleaving iterative computations. For ex- 
ample, KBEmacs looks for minimal sections of a loop 
body which have data  flow feeding back only to them- 
selves. This decomposition enables a powerful form of 
abstraction, called temporal abstraction, which views 
iterative computations as compositions of operations 
on sequences of values. The recognition and tempo- 
ral abstraction of iteration clichCs is similarly used in 
GRASPR to enable it to deal with generalized loop fusion 
forms of interleaving (loop fusion is viewed as redistri- 
bution of sequences of values and treated as any other 
redistribution optimization) [28]. 

Existing clichC recognition systems tend to deal 
with interleaving involving data and control mech- 
anisms. Domain-based clustering, as explored by 
DM-TAU in the DESIRE system [3], focuses on naming 
mechanisms, by keying in on the patterns of linguistic 
idioms used in the program, which suggest the mani- 
festations of domain concepts. 

When unfamiliar plans are interleaved, other, non- 
recognition-based methods of delineation are needed. 
For example, slicing [27, 171 is a widely-used tech- 
nique for localizing functional components by trac- 
ing through data  dependencies within the procedu- 
ral scope. Cluster analysis [ 3 ,  11, 23, 241 is used to 
group related sections of code, based on the detec- 
tion of shared uses of global data ,  control paths, and 
names. However, clustering techniques can only pro- 
vide limited assistance by roughly delineating possible 
locations of functionally cohesive components. An- 
other technique, called “potpourri module detection” 
[ 5 ] ,  detects modules that provide more than one in- 
dependent service by looking for multiple proper sub- 
graphs in an entity-to-entity interconnection graph. 

Recognition as  a program understanding technique deals 
with clichks, not plans in general. Only clichkd plans can be 
recognized, since recognition implies noticing something that  is 
familiar. 

These graphs show dependencies among global entities 
within a single module. Presumably, the independent 
services reflect separate plans in the code. 

Research into automating da ta  encapsulation has 
recently provided mechanisms for hypothesizing pos- 
sible locations of data  plans a t  the object scope. For 
example, Bowdidge and Griswold [4] use an extended 
data  flow graph representation, called a star diagram, 
to help human users see all the uses of a particular 
data  structure and to detect frequently occurring com- 
putations that are good candidates for abstract func- 
tions. Techniques have also been developed within 
the RE2 project [6, 71, for identifying candidate ab- 
stract data  types and their associated modules, based 
on the call graph and dominance relations. Further 
research is required to develop techniques for extract- 
ing objects from pieces of data  that have not already 
been aggregated in programmer-defined data  struc- 
tures. For example, detecting multiple pieces of data  
that are always used together might suggest candi- 
dates for data  aggregation (its for example, in NPEDLN, 
where the input parameters A, B, and C are used as a 
tuple representing an ellipsoid, and the outputs PNEAR 
and DIST represent a pair of results related by inter- 
leaved, highly overlapping plans). 

Interleaving a t  the scope of objects and architec- 
tures and/or involving global protocol mechanisms is 
not yet well understood. Consequently, few mecha- 
nisms for detection and extraction currently exist in 
these areas. We believe that more and more knowledge 
of the domain will be required to detect interleaving 
as the scope becomes more global in nature. Also, a 
key open issue is to what extent techniques for detect- 
ing and extracting interleaved plans must rely on the 
familiarity of the plans involved; how far can we go 
with non-recognition-based techniques? 

4 Conclusion 
This paper characterizes interleaving, a particularly 

troublesome feature of programs which makes them 
difficult to understand. We offer the following defini- 
tion: 

Interleavzng expresses the merging of two or 
more distinct plans within some contiguous 
textual area of a program. Interleaving can 
be characterized by the delocalzratzon of the 
code for the individual plans involved, the 
sharzng of some resource, and the implemen- 
tation of multiple, independent plans in the 
program’s overall purpose. 

Whether this characterization is robust is an issue 
We plan to  study the for future empirical studies. 
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frequency of occurrence of the various types of inter- 
leaving we have identified in our example programs. 
This may lead to better complexity metrics €or deter- 
mining the maintainability and comprehensibility of 
programs. Ultimately, designing tools for detection 
and extraction will be the true test of the usefulness 
of this characterization. 
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5 Appendix: NPEDLN 
C$ Nearest point on ellipsoid to line. 
SUBROUTINE NPEDLN(A,B,C,LINEPT,LINEDR,PNEAR,DIST) 
INTEGER 
PARAMETER 
INTEGER 
PARAHETER 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISIOB 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISIOB 
LOGICAL 
DOUBLE PRECISIOB 
DOUBLE PRECISIOB 
DOUBLE PRECISIOB 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISIOB 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 
DOUBLE PRECISION 

UBEL 
( UBEL = 9 ) 

( UBPL = 4 ) 
UBPL 

A 
B 
C 
LIHEPT ( 3 ) 
LINEDR ( 3 ) 

PNEAR ( 3 ) 
DIST 
RETURN 
CANDPL ( UBPL ) 

CAND ( UBEL ) 

OPPOIR ( 3 ) 

PRJPL ( UBPL ) 
HAG 
NORMAL (3  

PRJEL ( UBEL ) 

PRJPT (3  ) 

PRJNPT ( 3 ) 

PT ( 3, 2 ) 

SCALE 
SCLA 
SCLB 
SCLC 
SCLPT ( 3 ) 

DOUBLE PRECISION UDIR ( 3 ) 
INTEGER I 
LOGICAL FOUND ( 2 ) 

LOGICAL IFOUBD 
LOGICAL XFOUBD 
IF ( RETURN 0 ) THEN 

RETURN 
ELSE 

CALL CHKIN ( ’NPEDLN’ ) 
END IF 
CALL UNORH ( LINEDR, UDIR, HAG ) 
IF ( MAG .EQ. 0 ) THEN 

CALL SETHSG(’Direction is zero vector.’) 
CALL SIGERR(’SPICE(ZEROVECT0R)’ ) 

CALL CHKOUT(’NPEDLN’ ) 

RETURN 
ELSE IF ( (  A .LE. O.DO ) 

.OR. ( B .LE. O.DO ) 

.OR. ( C .LE. O.DO ) ) THEN 
CALL SETHSG (’Semi-axes: A=#,B=#,C=#.’) 
CALL ERRDP ( ’ # ’ ,  A ) 

CALL ERRDP (’It’, B ) 

CALL ERRDP ( ’ # ’ ,  C ) 

CALL SIGERR (’SPICE(INVALIDAXISLENGTH)’) 
CALL CHKOUT (’NPEDLN’ ) 

RETURN 
EBD IF 

C Scale the semi-axes lengths for better numerical 
C behavior. If squaring any of the scaled lengths 
C causes it to underflow to zero, signal an error. 
C Otherwise scale the point on the input line too. 
SCALE = MAX ( DABS(A), DABS(B), DABS(C) ) 

SCLA = A / SCALE 
SCLB = B / SCALE 
SCLC = C / SCALE 
IF ( (  SCLA**2 .LE. O.DO ) 

.OR. ( SCLB**2 .LE. O.DO ) 

.OR. ( SCLC**2 .LE. O.DO ) ) THEN 
CALL SETMSG (’Axis too small: A=#,B=#,C=#.’) 
CALL ERRDP (I#’, A ) 

CALL ERRDP ( ’ # ’ ,  B ) 

CALL ERRDP (’#I, C ) 

CALL SIGERR (’SPICE(DEGENERATECASE)’ ) 

CALL CHKOUT (’NPEDLN’ ) 

RETURN 
END IF 
SCLPT(1) = LINEPT(1) / SCALE 
SCLPT(2) = LINEPT(2) / SCALE 
SCLPT(3) = LINEPT(3) / SCALE 

C Hand off the intersection case to SURFPT. 
C SURFPT determines whether rays intersect a body, 
C so we treat the line as a pair of rays. 
CALL VMINUS(UDIR, OPPDIR) 
CALL SURFPTCSCLPT, UDIR, SCLA, SCLB, 

SCLC, PT(I,I), FOUND(1)) 
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CALL SURFPT(SCLPT, OPPDIR, SCLA, SCLB, 
SCLC, PT(I,2), FOUND(2)) 

DO 50001 
. I = 1 , 2  

IF ( FOUND(1) ) THEB 
DIST = O.ODO 
CALL VEQU ( PT(l,I), PNEAR ) 

CALL CHKOUT ( ’HPEDLN’ ) 

RETURN 

CALL VSCL ( SCALE, PNEAR, PBEAR ) 

END IF 
50001 CONTINUE 
C Getting here means the line doesn’t intersect 
C the ellipsoid. Find the candidate ellipse CAND. 
C NORMAL is a normal vector to the plane 
C containing the candidate ellipse. Mathematically 
C the ellipse must exist; it’s the intersection of 
C an ellipsoid centered at the origin and a plane 
C containing the origin. Only numerical problems 
C can prevent the intersection from being found. 
NORMAL(1) = UDIR(1) / SCLA**2 
NORMAL(2) = UDIR(2) / SCLB**2 
NORMAL(3) = UDIR(3) / SCLC**2 

CALL INEDPL (SCLA,SCLB,SCLC,CANDPL,CAND,XFOUND) 
CALL BVC2PL ( NORMAL, O.DO, CANDPL ) 

IF ( .NOT. XFOUBD ) THEN 
CALL SETMSG ( ’Candidate ellipse not found.’) 
CALL SIGERR ( ’SPICE(DEGENERATECASE)’ ) 

CALL CHKOUT ( ’BPEDLB’ ) 

RETURN 
END IF 

C Project the candidate ellipse onto a plane 
C orthogonal to the line. We’ll call the plane 
C PRJPL and the projected ellipse PRJEL. 
CALL NVC2PL ( UDIR, O.DO, PRJPL ) 

CALL PJELPL ( CABD, PRJPL, PRJEL ) 

C Find the point on the line lying in the project- 
C ion plane, and then find the near point PRJNPT 
C on the projected ellipse. 
C point on the line lying in the projection plane. 
C The distance between PRJPT and PRJNPT is DIST. 

Here PRJPT is the 

CALL VPRJP ( SCLPT, PRJPL, PRJPT ) 

CALL NPELPT ( PRJPT, PRJEL, PRJBPT ) 
DIST = VDIST ( PRJNPT, PRJPT ) 

C Find the near point PNEAR on the ellipsoid by 
C taking the inverse orthogonal projection of 
C PRJNPT; this is the point on the candidate 
C ellipse that projects to PRJNPT. The output 
C DIST was computed in step 3 and needs onlly to be 
C re-scaled. The inverse projection of PBEAR ought 
C to exist, but may not be calculable due to nu- 
C merical problems (this can only happen when the 
C ellipsoid is extremely flat or needle-shaped). 
CALL VPRJPI(PRJNPT,PRJPL, CANDPL, PNEAR, IFOUND) 
IF ( .NOT. IFOUND ) THEN 

CALL SETMSG (’Inverse projection not found.’) 
CALL SIGERR (’SPICE(DEGENERATECASE)’ ) 

CALL CHKOUT (’NPEDLN’ ) 

RETURN 
END IF 

C Undo the scaling. 
CALL VSCL ( SCALE, PBEAR, PNEAR ) 

DIST = SCALE * DIST 
CALL CHKOUT ( ’NPEDLN’ ) 
RETURN 
END 

c ................................................ 
C Descriptions of subroutines called by NPEDLN: 
C CHKIB 
C UBORM 
C SETMSG 
C SIGERR 
C CHKOUT 
C ERRDP 
C VMINUS 
C SURFPT 
C VEQU 
c VSCL 
C NVC2PL 
C INEDPL 
C PJELPL 
C VPRJP 
C NPELPT 
C VPRJPI 
n 

Module Check In (error handling). 
Normalize double precision 3-vector. 
Set Long Error Message. 
Signal Error Condition. 
Module Check Out (error handling). 
Insert DP lumber into Error Message Text. 
Negate a double precision 3-D vector. 
Find intersection of vector H/ ellipsoid. 
Make one DP 3-D vector equal to another. 
Vector scaling, 3 dimensions. 
Make plane from normal and constant. 
Intersection of ellipsoid and plane. 
Project ellipse onto plane, orthogonally. 
Project a vector onto plane orthogonally. 
Find nearest point on ellipse to point. 
Vector projection onto plane, inverted. 

C A  
C B  
c c  
C LINEPT 
C LINEDR 
C PNEAR 
C DIST 
C UBEL 
C UBPL 
C PT 
C CABD 
C CANDPL 
C NORMAL 
C UDIR 
C MAG 
C OPPDIR 
C PRJPL 
C 
C PRJEL 
C 
C PRJPT 
C PRJNBT 
C 
C SCALE 

Length of semi-axis in the x direction. 
Length of semi-axis in the y direction. 
Length of semi-axis in the z direction. 
Point on input line. 
Direction vector of input line. 
Nearest point on ellipsoid to line. 
Distance of ellipsoid from line. 
Upper bound of array containing ellipse. 
Upper bound of array containing plane. 
Intersection point of line & ellipsoid. 
Candidate ellipse. 
Plane containing candidate ellipse. 
Normal to the candidate plane CAIDPL. 
Unitized line direction vector. 
Magnitude of line direction vector. 
Vector in direction opposite to UDIR. 
Projection plane, which the candidate 
ellipse is projected onto to yield PRJEL. 
Projection of the candidate ellipse 
CABD onto the projection plane PRJEL. 
Projection of line point. 
Nearest point on projected ellipse to 
projection of line point. 
Scaling factor. 
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