
The Interleaving Problem in Program Understanding

Spencer Rugaber, Kurt Stirewalt, and Linda M . Wills
College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{spencer, kurt, linda}@cc.gatech.edu

PROGRAM
I B L E

UNDERSTANDING
T v
Abstract

One of the factors that can make a program dificult
to understand is that code responsible for accomplish-
ing more than one purpose may be woven together in
a single section. W e call this interleaving, and it may
arise either intentionally - for example, in optimizing
a program, a programmer may use some intermediate
result for several purposes - or unintentionally, due
to patches, quick fixes, or other hasty maintenance
practices. To understand this phenomenon, we have
looked at a variety of interleaving instances in actual
programs and have distilled characteristic features. I f
the characterization proves to be robust then at wzll
enable the design of tools for detection of interleav-
ings and the extraction of the individual strands of
computation.'

1 Introduction and Motivation
Sometimes the relations between the various

sections make up a maze of interwoven threads
that only detailed analysis can unravel.

- David and Mendel in The B a c h Reader.

A program is an expression of its designers' efforts
to accomplish some purpose. One aspect of under-
standing a program is to recreate that purpose. A
particularly vexing difficulty in understanding a pro-
gram is that a contiguous textual area of code can
often contain fragments intended to accomplish mul-
tiple, seemingly unrelated purposes. The code frag-
ments responsible for each of the purposes typically

'This paper discusses a number of examples of interleav-
ing which we are making available on the World Wide Web
at URL http / /www cc gatech edu/reverse/interleaving html. We
hope these will provide a set of challenges to other researchers
interested in this problem, and we welcome additions to the set.

are delocalized and overlap rather than being com-
posed in a simple linear sequence. We refer to these
code fragments as being interleaved.

A trivial example is a single loop responsible for
computing both the maximum element of a vector
and its position. A less trivial example is a program
intended to write a report that summarizes data ex-
tracted from sorted input records. The program has
two purposes: computing the summary data and man-
aging the construction of the report (headers, page
breaks, page counts, etc.) In an object-oriented pro-
gram, these two purposes might well be realized by
two separate objects. In traditional code, however,
the implementations of these functions are often in-
terleaved, and understanding the code is significantly
complicated.

We use the term plan to denote a description or
representation of a computational structure that the
designers have proposed as a way of achieving some
purpose or goal in a program.' Plans can occur a t
any level of abstraction from architectural overviews
to code. Interleaving expresses the merging of two
or more distinct plans within some contiguous textual
area of a program.

For
example, it may be more efficient to compute two re-
lated values in one place than to do so separately. Or
interleaving may be the result of inadequate software
maintenance, such as adding a feature locally to an
existing routine rather than undertaking a thorough
redesign. Or interleaving may arise as a natural by-
product of expressing separate but related plans in
a linear, textual medium. For example, accessors and
constructors for manipulating data structures are typ-

Interleaving may arise for efficiency reasons.

2This definition is distilled from definitions in [15, 21 , 251.
Note that a plan is not necessarily stereotypical or used repeat-
edly; it may be novel or idiosyncratic. Following [21, 251, we
reserve the term cliche' for a plan that represents a standard,
stereotypical form.

0-8186-7111-4/95 $4.00 0 1995 IEEE
166

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

mailto:linda}@cc.gatech.edu

ically interleaved throughout programs written in tra-
ditional programming languages due to their procedu-
ral, rather than object-oriented structure. Regardless
of why interleaving is introduced, it severely compli-
cates understanding a program. This makes it difficult
to perform tasks such as extracting reusable compo-
nents, localizing the effects of maintenance changes,
and migrating to object-oriented languages.

There are several reasons why interleaving is a
source of difficulties. The first has to do with delo-
calization. Because two or more design purposes are
implemented in a single segment of code, each individ-
ual code fragment responsible for a separate purpose
is more spread out than it would be if it were en-
capsulated. Another reason why interleaving presents
a problem is that it may be the result of poorly
thought out maintenance activities, where the origi-
nal, highly coherent structure of the system has de-
graded as “patches” and “quick fixes” are introduced.
Finally, there may be occasions where interleaving is
intentionally introduced, such as for purposes of op-
timization. But expressing intricate optimizations in
a clean and well-documented fashion is not typically
done. For all of these reasons, our ability to compre-
hend code containing interleaved fragments is com-
promised. Hopefully, we can have more success by
isolating the separate concerns, understanding them
individually, and only then seeing how they relate.

We are characterizing the types of interleaving that
typically occur in programs in order to develop tech-
niques for detecting and extracting interleaved, but
logically cohesive plans. This paper describes our ex-
ploration, which has been based primarily on an ex-
amination of existing code from three sources:

A Cobol database report writing system from the
US Army (IMCSRS) , which summarizes informa-
tion provided as monthly updates to a master file
of equipment maintenance information.

A library of mathematical software (SPICELIB),
written in Fortran by programmers at the Jet
Propulsion Laboratory (JPL) for analyzing data
sent back from space missions. The software per-
forms calculations in the domain of solar system
geometry.

A program for finding the roots of functions
(ZEROIN), presented and analyzed in [l] and [22].

The goal of the paper is to characterize the inter-
leaving problem, relating it to existing concepts in the
literature, such as delocalized plans [15], coupling [29],
and redistribution of intermediate results [8, 91. The

paper presents and categorizes examples of types of
interleaving to begin to map out the space of inter-
leaving situations. It also describes how the decision
to introduce interleaving into a program interacts with
other design decisions. It then discusses implications
for detection and extraction techniques and the types
of representations needed to facilitate them.

2 Characterizing Interleaving
Interleaving can be characterized by the delocalzza-

tzon of the code for the individual plans involved, the
sharzng of some resource, and the implementation of
multiple, d e p e n d e n t plans in the program’s overall
purpose.

To illustrate these primary characteristics, we fo-
cus on an example subroutine from SPICELIB. Since the
program contains 113 source lines of code, the full text
of the program is given in the appendix. Shorter, rep-
resentative excerpts will be presented and discussed in
the main body of the paper.

The program, called NPEDLN, computes the nearest
point (PNEAR) on an ellipsoid to a specified line. It
also computes the shortest distance (DIST) from the
ellipsoid to the line. The ellipsoid is specified by the
length of its three semi-axes (A, B, and C), which are
oriented with the 2, y, and z coordinate axes. The line
is specified by a point (LINEPT) and a direction vector

The algorithm used to compute the nearest point
checks whether the line intersects the ellipsoid (the
“intercept case”) and, if so, computes the intersection
point. Otherwise (the “non-intercept case”) it per-
forms a more complex computation to find the line
segment connecting the ellipsoid and the given line
that is orthogonal to both a t its endpoints; the end-
points of the computed line segment form the closest
pair of points.

2.1 Delocalization

(LINEDR).

Keep related words together. The position of the
words in a sentence is the principal means of

showing their relationship. Confusion and
ambiguity result when words are badly placed.
- Strunk and White in The Elements of Style.

NPEDLN has a primary goal of computing the nearest
point on an ellipsoid to a specified line. I1 also has
an orthogonal goal of ensuring that the computations
involved have stable numerical behavior. A standard
trick in numerical programming for achieving stability
is to scale the data involved in a computation and then
unscale the results The code responsible for doing this
in NPEDLN is scattered throughout the program’s text.
It is highlighted in the excerpt shown in Figure 1.

167

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

SUBROUTINE NPEDLN(A, B, C, LINEPT, LINEDR,
PNEAR, DIST)

CALL UNORM (LINEDR. UDIR, MAG) _ _ _ [error checks1
SCALE = MAX (DABS(A), DABSCB), DABS(C))
SCLA = A I SCALE
SCLB = B I SCALE
SCLC = C / SCALE

CALL VMINUS (UDIR, OPPDIR)
CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,

CALL SURFPT (SCLPT, OPPDIR,SCLA, SCLB,
SCLC,PT(l,l), FOUND(1))

SCLC, PT(1,2), FOUND(2))
. . _ [checking for intersection of the

line with the ellipsoid]
IF (FOUND(1)) THEN

...
RETURN

END IF
. . . [handling the non-intercept case1
CALL VSCL (SCALE, PNEAR, PNEXR)
DIST = SCALE DIST

RETURN
END

Figure 1: Portions of the NPEDLN Fortran pro-
gram. Shaded regions highlight the lines of
code responsible for scaling and unscaling.

The delocalized nature of this “scale-unscale” plan
makes it difficult to gather together all the pieces in-
volved for consistent maintenance. It also gets in the
way of understanding the rest of the code, since it
provides distracting details that must be filtered out.
Delocalization is one of the key characteristics of in-
terleaving: one or more components of a plan are spa-
tially separated from other components by the compo-
nents of other plans with which they are interleaved.
Letovsky and Soloway’s cognitive study [15] shows the
deleterious effects of delocalization on comprehension
and maintenance.

The “scale-unscale” pattern is a simple exam-
ple of a more general delocalized plan, (“transform-
untransform”) which is frequently interleaved with
computations in SPICELIB. The general form, which
we refer to as reformulation wrappers, is used to trans-
form one problem into another that is simpler to solve,
and then to transfer the solution back to the original
situation. Some examples of reformulation wrappers
in SPICELIB are: reducing a three-dimensional geome-
try problem to a two-dimensional one and mapping an
ellipsoid to the unit sphere to make it easier to solve
three-dimensional intersection problems.

Delocalization may occur for a variety of differ-
ent reasons. One is that there may be an inherently

non-local relationship between the components of the
plan, as is the case with reformulation wrappers, which
makes the spatial separation necessary. Another rea-
son is that the intermediate results of part of a plan
may be shared with another plan, causing the plans
to overlap and their steps to be shutfled together; the
steps of one plan separate those of the other. For ex-
ample, in Figure 1, part of the scale plan (computing
the scaling factor) is separated from the rest of the
plan (dividing by the scaling factor) in all scalings,
except the scaling of A . This allows the scaling factor
to be computed once and the result reused. (The role
of sharing in interleaving is discussed more extensively
in Section 2.2.)

Realizing that a reformulation wrapper or some
other delocalized plan is interleaved with a particular
computation can help prevent severe comprehension
failures during maintenance [15]. It can also help de-
tect when the delocalized plan is incomplete, as it was
in an earlier version of our example subroutine whose
modification history includes the following correction:

C- SPICELIB Version 1.2.0, 25-808-1992 (HJB)

C Bug fix: in the intercept case, PHEAR is now
C properly re-scaled prior to output. Formerly,

C it was returned without having been re-scaled.

2.2 Resource Sharing
The complexity of multifunctioning elements can
sometimes turn data graphics into visual puzzles,

crypto-graphical mysteries for the viewer to decode.
- Edward Tufte in The Visual Display of

Quantitative Information.

In addition to computing the nearest point on the
ellipsoid to the h e , NPEDLN computes the shortest dis-
tance between the line and the ellipsoid. This addi-
tional output (DIST) is convenient to construct, based
on intermediate results obtained while computing the
primary output (PNEAR). This is illustrated in Figure
2. The shaded portions of the code shown are shared
between the two computations for PNEAR and DIST.
(The computation of DIST using VDIST is actually the
last computation performed by the subroutine NPELPT,
which NPEDLN calls; we have pulled this computation
out of NPELPT for clarity of presentation.)

The sharing of some resource is characteristic of
intentional interleaving. When interleaving is intro-
duced into a program, there is normally some implicit
relationship between the interleaved plans, motivat-
ing the designer to choose to interleave them. In this
case, interleaved plans share some common resource
- intermediate data results. Their implementations

168

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

SUBROUTINE NPEDLN (A, B, C, LINEPT,
LINEDR, PNEAR, DIST)

. . .
[F i r s t 100 lines of NPEDLIV]
...
CALL NPELPT (PRJPT, PRJEL, PRJNPT) \

IFOUND)
IFOUND) THEN

. . . [error handling] I I i END IF

j Shared

; ,

Figure 2: Portions of NPEDLN, highlighting two
overlapping computations.

overlap in that a single structural element contributes
to multiple goals.

The sharing of the results of some subcomputation
in the implementation of two distinct higher level op-
erations is termed redistribution of intermediate re-
sults by Hall [8, g]. More specifically, redistribu-
tion is a class of function sharing optimizations which
are implemented simply by tapping into the dataflow
from some value producer and feeding it to an addi-
tional target consumer, essentially introducing fanout
in dataflow. Redistribution covers a wide range of
common types of function sharing optimizations, in-
cluding common subexpression elimination and gener-
alized loop fusion, Hall developed an automated tech-
nique for redistributing results for use in optimizing
code generated from general-purpose reusable software
components. We are interested in “undoing” these
types of optimizations, and we can use the redistribu-
tion concept to capture forms of interleaving in which
the resources shared are data values.

The commonality between interleaved plans might
be in the form of other shared resources besides da ta
entities, such as control structures, lexical module
structures, and names.

Control Coupling. Control conditions may be re-
distributed just as data values are. The use of control
flags allows control conditions to be determined once
but used to affect execution at more than one loca-
tion in the program. In NPEDLN, for example, SURFPT
is called to compute the intersection of the line with
the ellipsoid. This routine returns a control flag FOUND,
indicating whether or not the intersection exists. This
flag is then used outside of SURFPT to control whether

the intercept or non-intercept case is to be handled as
is shown below.

CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
SCLC, PT(I,I), FOUBD(1))

CALL SURFPT (SCLPT, OPPDIR, SCLA, SCLB,
SCLC, PT(1,2), FOUBD(2))

DO 50001
. I = l , 2

IF (FOUBD(1)) THEB
. . .
RETURB

[handling the intercept case]

EBD IF
50001 COBTIBUE
C
C intersect the ellipsoid.

Getting here means the line doesn’t

. . .
RETURB
END

[handling the non-intercept case]

The use of control flags is a special form of con-
trol coupling: “any connection between two modules
that communicates elements of control 1291 ,’, typically
in the form of function codes, flags, or switches [16].
This sharing of control information between two mod-
ules increases the complexity of the code, complicating
comprehension and maintenance.

Another form of resource
sharing occurs when the lexical structure of a mod-
ule is shared among several related functional compo-
nents. The entire contents of a module may be lexi-
cally included in another or there may be partial over-
lap of modules. This is called content couplzng [29] -
“some or all of the contents of one module are included
in the contents of another” - and often manifests it-
self in the form of a multiple-entry module. Content
coupling makes it difficult to independently modify or
maintain the individual functions.

Content coupling.

Name Sharing. A simple form of sharing is the
use of the same variable name for two different pur-
poses. This can lead to incorrect assumptions about
the relationship between subcomputations within a
program.

In general, the difficulty that resource sharing in-
troduces is that it causes ambiguity in interpreting the
purpose of program pieces. This can lead to incorrect
assumptions about what effect changes will have, since
the maintainer might be focusing on only one of the
actual uses of the resource (variable, value, control
flag, da ta structure slot, etc.).

169

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

SUBROUTINE NPEDLN (A, B, C, LINEPT,
LINEDR, PNEAR, DIST)

CALL SETMSG('D1r. is zero vector.)
[error siqnalinql

~ E T ~ J R I ~
ELSE IF (, A .LE. O.D3 1

.OR.(B .LE. O.DO

.OR. C .LE. O.DO ;) THEN
CALL S F : ' 3 1 S G L S e l 7 1 - a X e R : A = 4 . B = 9 , C = 4 . '
. . . [error s i g n a l i n g :
RETURN

END IF
. . . [s c a l i n g 1
IF ((SCLA"'2 .LE. 0.3c ;

, .OX.(SCLB**Z .LE. O.DO)
. .OR. (SCLC"*Z .LE. O.DO I , THEN

CALL SETMSG('T00 small:A=#,B=#,C=#.')

. [scaling1 _ _ _ [handling the intercept caseJ

CALL SETMSG ('Cand ellipse not found.')

. . .

Figure 3: Portions of NPEDLN, highlighting code
responsible for checking preconditions.

2.3 Independence
... You know they're going to get together ..., but

it's fun to watch how they keep missing ... It's

emotionally satisfying because you get that

cathartic moment a t the end ... It's intellectually

satisfying because the plot's always twisting in on

itself. - Susan Seidelman, director, on romantic

comedy in American Cznema.

While interleaving is introduced to take advantage
of commonalities, the flip side of the coin is that the
interleaved plans each have a distinct purpose. One
implication of this is that the decision to interleave the
plans can, in principle, always be undone. This usually
requires copying of common code to eliminate resource
sharing, resulting in an equivalent, but possibly less
efficient, program.

The NPEDLN program, for instance, computes the
nearest point on an ellipsoid to a specified line. It
also checks a set of preconditions which must be true
for the computation to be carried out correctly: the
line must not be a zero vector, the ellipsoid's semi-axes
must have positive length and must be large enough
to be scalable, and the ellipsoid must not be too flat or
needle-shaped. Figure 3 shows an excerpt of NPEDLN,
highlighting the precondition checking code.

In principle, all these checks can be performed be-

forehand, pulling them out of the midst of the primary
computation and having them preface it. This would
require duplicating almost the entire program, since
the precondition checking makes heavy use of inter-
mediate results computed throughout the program.

Although interleaving is necessary for efficiency,
it obscures the independence of the components in-
volved. Ironically, this hinders activities for making
the code more efficient and reusable in the long run,
such as parallelization and objectivization of the code.

3 Implications for Representation, De-
tection, and Extraction

We have identified the characteristics of interleav-
ing that make it troublesome in understanding pro-
grams. We can now consider the implications of what
we have learned from our empirical study. In par-
ticular, we are interested in understanding how the
decision to interleave interacts with other design deci-
sions; what types of program representations will fa-
cilitate the detection of interleaving decisions and the
extraction of interleaved components; and how can in-
terleaved components be automatically detected and
extracted from code?

3.1 Interactions with Other Decisions
Intentional interleaving is one of several ways in

which design decisions are elaborated in code [22].
More familiar examples include the decomposition of
a complex concept into its constituents (aggregation),
the processing of a general problem in terms of various
individual cases (specialization), the elaboration of a
generic concept as a more concrete artifact (instanti-
ation), and the modeling of one structure in terms of
another (representation). The converse of interleaving
is encapsulation, where a designer intentionally delin-
eates several distinct design elements behind some sort
of barrier, such as provided by the PACKAGE mechanism
in Ada.

The history of the design of a program can be
viewed as a network of artifacts [a] where a connec-
tion between two artifacts indicates that one of them
is the refinement of the other that results from one of
the kinds of design decisions listed above. In this view,
interleaving is indicated by a network node with inputs
from two o r more other nodes. It may well be the
case, however, that by tracing further back in the his-
tory some common ancestor of the two inputs can be
found. For example, NPEDLN uses a control flag to indi-
cate whether to handle the intercept or non-intercept
case. In looking at the code for the subprogram, we
see only instances of interleaved code fragments. In
reviewing the design history, however, we may find

170

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

that what is more fundamental is that a decision has
been made to specialize the code into these two cases,
that the flag distinguishes the two cases, and the in-
terleaving is really just a manifestation of the higher
level specialization decision.

In the case of the loop that is being used to com-
pute both the maximum element in a vector and its
index, there may have been an aggregation decision in
the design history that justifies why both values are
needed and only later an interleaving optimization to
save some loop overhead.

In instances where a more fundamental decision has
provoked a later interleaving, not only is the rationale
connecting the two decisions usually lost, but we end
up viewing the code in delocalized form when we really
would like to see a factored version.

We postulate that interleaving often co-occurs with
certain other design decisions. If further empirical
study confirms this, then interleaving removal could
be seen as enabling the reversal of other decisions or,
dually, that certain design decisions enable interleav-
ing by providing opportunities for resource sharing.
3.2 Requirements for Representations

Three key characteristics of interleaving are: delo-
calization, resource sharing, and independence. Delo-
calization results from having to serialize the compo-
nents of two or more separate plans. This total order-
ing is necessary due to the lack of support for concur-
rency in most high level programming languages. It
follows then that in order to undo delocalization a rep-
resentation must impose a partial rather than a total
execution ordering on the components of plans.

The partial execution ordering requirement sug-
gests that some form of graphical representation is
appropriate. Graph representations naturally express
a partial execution ordering via implicit concurrency
and explicit transfer of control and data. Since there
are a number of such representations to choose from,
we narrow the search space by noting that:

independent plans must be localized as much as
possible, with no explicit ordering between them,

sharing must be detectable (shared resources
should explicitly flow from one plan to another);
similarly if two plans p l , p z both share a resource
provided by a plan p3 then p l and p2 should ap-
pear in the graph as siblings with a common an-
cestor p 3) , and

the representation must support multiple views of
the program as the interaction of plans at various
levels of abstraction, since interleaving may occur
at any level of abstraction.

An existing formalism that meets these criteria is
Rich’s Plan Calculus [19, 201, which was developed and
used in the Programmer’s Apprentice [all project. A
plan in the Plan Calculus is encoded as a graphical
depiction of the plan’s structural parts and the con-
straints (e.g., data and control flow connections) be-
tween them. This diagrammatic notation is comple-
mented with an axiomatized description of the plan
which defines its formal semantics. This allows us to
develop correctness preserving transformations to ex-
tract interleaved plans. The Plan Calculus also pro-
vides a mechanism, called overlays, for representing
correspondences and relationships between pairs of
plans (e.g., implementation and optimization relation-
ships). This enables the viewing of plans at multiple
levels of abstraction. Overlays also support a very
general notion of plan composition which takes into
account resource sharing at all levels of abstraction by
allowing overlapping points of view.

3.3 Support for Detection and Extraction
Do not be afraid to seize whatever you have written

and cut it to ribbons; it can always be restored to
its original condition in the morning, if that course

seems best. - Strunk & White in Elements of Style.

In order to develop tools for detecting and extract-
ing interleaving, it is helpful to consider how interleav-
ing manifests itself in source code. There are three
useful, orthogonal dimensions. These form a possible
design space of solutions to the interleaving problem
and can help relate existing techniques that might be
applicable. One dimension is the scope of the inter-
leaving, which can range from intraprocedural to in-
terprocedural to object to architectural.

Another dimension is the structural mechanasm for
providing interleaving, which may be naming, con-
trol, data, or protocol (i.e., global constraints, such as
maintaining stack discipline or synchronization mech-
anisms for cooperating processes). For example, the
use of control flags is a control-based mechanism for
interleaving with interprocedural scope. The com-
mon iteration construct involved in loop fusion is an-
other control-based mechanism, but the interleaving
has intraprocedural scope. Reformulation wrappers
use a protocol mechanism, usually at the intraproce-
dural level, but they can have interprocedural scope.
Multiple-inheritance is an example of a data-centered
interleaving mechanism with object scope.

The third dimension is the famalaarzty of the plans
interleaved: are they clichks (i.e., stereotypical, fre-
quently used plans) or are they unfamiliar plans (i.e.,
novel, idiosyncratic, or not used repeatedly)?

171

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

When what is interleaved is familiar (i.e., a clichg),
clichC recognition (e.g., [l o , 12, 13, 14, 18, 281) is a use-
ful detection m e c h a n i ~ m . ~ In fact, most recognition
systems deal explicitly with the recognition of clichCs
that are interleaved in specific ways with unrecogniz-
able code or other clichCs. One of the key features of
GRASPR [as], for instance, is its ability to deal with de-
localization and redistribution-type function sharing
optimizations.

KBEmacs [21, 261 uses a simple, special-purpose
recognition strategy to segment loops within pro-
grams. This is based on detecting coarse patterns of
data and control flow a t the procedural level that are
indicative of common ways of constructing, augment-
ing, and interleaving iterative computations. For ex-
ample, KBEmacs looks for minimal sections of a loop
body which have data flow feeding back only to them-
selves. This decomposition enables a powerful form of
abstraction, called temporal abstraction, which views
iterative computations as compositions of operations
on sequences of values. The recognition and tempo-
ral abstraction of iteration clichCs is similarly used in
GRASPR to enable it to deal with generalized loop fusion
forms of interleaving (loop fusion is viewed as redistri-
bution of sequences of values and treated as any other
redistribution optimization) [28].

Existing clichC recognition systems tend to deal
with interleaving involving data and control mech-
anisms. Domain-based clustering, as explored by
DM-TAU in the DESIRE system [3], focuses on naming
mechanisms, by keying in on the patterns of linguistic
idioms used in the program, which suggest the mani-
festations of domain concepts.

When unfamiliar plans are interleaved, other, non-
recognition-based methods of delineation are needed.
For example, slicing [27, 171 is a widely-used tech-
nique for localizing functional components by trac-
ing through data dependencies within the procedu-
ral scope. Cluster analysis [3 , 11, 23, 241 is used to
group related sections of code, based on the detec-
tion of shared uses of global data , control paths, and
names. However, clustering techniques can only pro-
vide limited assistance by roughly delineating possible
locations of functionally cohesive components. An-
other technique, called “potpourri module detection”
[5] , detects modules that provide more than one in-
dependent service by looking for multiple proper sub-
graphs in an entity-to-entity interconnection graph.

Recognition as a program understanding technique deals
with clichks, not plans in general. Only clichkd plans can be
recognized, since recognition implies noticing something that is
familiar.

These graphs show dependencies among global entities
within a single module. Presumably, the independent
services reflect separate plans in the code.

Research into automating da ta encapsulation has
recently provided mechanisms for hypothesizing pos-
sible locations of data plans a t the object scope. For
example, Bowdidge and Griswold [4] use an extended
data flow graph representation, called a star diagram,
to help human users see all the uses of a particular
data structure and to detect frequently occurring com-
putations that are good candidates for abstract func-
tions. Techniques have also been developed within
the RE2 project [6, 71, for identifying candidate ab-
stract data types and their associated modules, based
on the call graph and dominance relations. Further
research is required to develop techniques for extract-
ing objects from pieces of data that have not already
been aggregated in programmer-defined data struc-
tures. For example, detecting multiple pieces of data
that are always used together might suggest candi-
dates for data aggregation (its for example, in NPEDLN,
where the input parameters A, B, and C are used as a
tuple representing an ellipsoid, and the outputs PNEAR
and DIST represent a pair of results related by inter-
leaved, highly overlapping plans).

Interleaving a t the scope of objects and architec-
tures and/or involving global protocol mechanisms is
not yet well understood. Consequently, few mecha-
nisms for detection and extraction currently exist in
these areas. We believe that more and more knowledge
of the domain will be required to detect interleaving
as the scope becomes more global in nature. Also, a
key open issue is to what extent techniques for detect-
ing and extracting interleaved plans must rely on the
familiarity of the plans involved; how far can we go
with non-recognition-based techniques?

4 Conclusion
This paper characterizes interleaving, a particularly

troublesome feature of programs which makes them
difficult to understand. We offer the following defini-
tion:

Interleavzng expresses the merging of two or
more distinct plans within some contiguous
textual area of a program. Interleaving can
be characterized by the delocalzratzon of the
code for the individual plans involved, the
sharzng of some resource, and the implemen-
tation of multiple, independent plans in the
program’s overall purpose.

Whether this characterization is robust is an issue
We plan to study the for future empirical studies.

172

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

frequency of occurrence of the various types of inter-
leaving we have identified in our example programs.
This may lead to better complexity metrics €or deter-
mining the maintainability and comprehensibility of
programs. Ultimately, designing tools for detection
and extraction will be the true test of the usefulness
of this characterization.

Acknowledgments
Support for this research has been provided by

ARPA under order number A870, contract number
NAG 2-890. We are grateful to JPL’s NAIF group for
enabling our study of their SPICELIB software. We
also benefited from insightful discussions with Michael
Lowry at Nasa Ames Research Center concerning this
study and interesting future directions. We would also
like to thank the reviewers for their helpful comments.

References
[l] V.R. Basili and H.D. Mills. Understanding and doc-

umenting programs. IEEE Trans. on Software Engi-
neering, 8(3):270-283, May 1982.

[2] I. Baxter. Design maintenance systems. Comm. of
the ACM, 35(4), April 1992.

[3] T. BiggerstafT, B. Mitbander, and D. Webster. Pro-
gram understanding and the concept assignment
problem. Comm. of the ACM, 37(5):72-83, May 1994.

[4] R. Bowdidge and W. Griswold. Automated support
for encapsulating abstract data types. In Proc. 2nd
ACM SIGSOFT Symp. on Foundations of Software
Engineering, pages 97-110, New Orleans, Dec. 1994.

[5] F. Calliss and B. Cornelius. Potpourri module detec-
tion. In IEEE Conf. on Software Maantenance - i990,
pages 46-51, San Diego, CA, November 1990. IEEE
Computer Society Press.

[6] G. Canfora, A. Cimitile, and M. Munro. A reverse
engineering method for identifying reusable abstract
data types. In Proc. of the First Working Confer-
ence on Reverse Engineering, pages 73-82, Baltimore,
Maryland, May 1993. IEEE Computer Society Press.

[7] A. Cimitile, M. Tortorella, and M. Munro. Program
comprehension through the identification of abstract
data types. In Proc. 3rd Workshop on Program Com-
prehension, pages 12-19, Washington, D.C., Novem-
ber 1994. IEEE Computer Society Press.

[SI R. Hall. Program improvement by automatic redistri-
bution of intermediate results. Technical Report 1251,
MIT Artificial Intelligence Lab., February 1990. PhD.

[9] R. Hall. Program improvement by automatic redis-
tribution of intermediate results: An overview. In
M. Lowry and R. McCartney, editors, Automating
Software Design. AAA1 Press, Menlo Park, CA, 1991.

Automatic control understanding for
natural programs. Technical Report AI 91-161, Uni-
versity of Texas at Austin, 1991. PhD thesis.

[lo] J. Hartman.

[l l] D. Hutchens and V. Basili. System structure analy-
sis: Clustering with data bindings. IEEE Trans. on
Software Engineering, 11(8), August 1985.

[12] W. L. Johnson. Intention-Based Diagnosis of Novice
Programming Errors. Morgan Kaufmann Publishers,
Inc., Los Altos, CA, 1986.

[13] W. Kozaczynski and J.Q. Ning. Automated program
understanding by concept recognition. Automated
Software Engineering, 1(1):61-78, March 1994.

[14] S. Letovsky. Plan analysis of programs. Research
Report 662, Yale University, December 1988. PhD.

[15] S. Letovsky and E. Soloway. Delocalized plans and
program comprehension. IEEE Software, 3(3) , 1986.

[16] G. Myers. Reliable Software through Composite De-
sign. Petrocelli Charter, 1975.

[17] J.Q. Ning, A. Engberts, and W. Kozaczynski. Auto-
mated support for legacy code understanding. Comm.
of the ACM, 37(5):50-57, May 1994.

[18] A. Quilici. A memory-based approach to recognizing
programming plans. Comm. of the ACM, 37(5):84-93,
May 1994.

[19] C. Rich. A formal representation for plans in the Pro-
grammer’s Apprentice. In Proc. 7th Int. Joint Conf.
Artificial Intelligence, pages 1044-1052, Vancouver,
British Columbia, Canada, August 1981.

[20] C. Rich. Inspection methods in programming. Techni-
cal Report 604, MIT Artificial Intelligence Lab., June
1981. PhD thesis.

[21] C. Rich and R. C. Waters. The Programmer’s ilp-
prentice. Addison-Wesley, Reading, MA and ACM
Press, Baltimore, MD, 1990.

[22] S. Rugaber, S. Ornburn, and R. LeBlanc. Recognizing
design decisions in programs. IEEE Software, 7(1):46-
54, January 1990.

[23] R. Schwanke. An intelligent tool for re-engineering
software modularity. In IEEE Conf. on Software
Maintenance - 1991, pages 83-92, 1991.

173

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

[24] R. Schwanke, R. Altucher, and M. Platoff. Discov-
ering, visualizing, and controlling software structure.
In Proc. 5th Int. Workshop on Software Specs. and
Design, pages 147-150, Pittsburgh, PA, 1989.

[25] P. Selfridge, R. Waters, and E. Chikofsky. Challenges
to the field of reverse engineering - A position pa-
per. In Proc. of the First Working Conference on Re-
verse Engineering, pages 144-150, Baltimore, Mary-
land, May 1993. IEEE Computer Society Press.

[26] R. C. Waters. A method for analyzing loop programs.
IEEE Trans. on Software Engineering, 5(3):237-247,
May 1979.

[27] M. Weiser. Program slicing. IEEE Truns. on Software
Engineering, 10:352-357, 1984.

[28] L. Wills. Automated program recognition by graph
parsing. Technical Report 1358, MIT Artificial Intel-
ligence Lab., July 1992. PhD Thesis.

[29] E. Yourdon and L. Constantine. Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. Prentice-Hall, 1979.

5 Appendix: NPEDLN
C$ Nearest point on ellipsoid to line.
SUBROUTINE NPEDLN(A,B,C,LINEPT,LINEDR,PNEAR,DIST)
INTEGER
PARAMETER
INTEGER
PARAHETER
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISIOB
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISIOB
LOGICAL
DOUBLE PRECISIOB
DOUBLE PRECISIOB
DOUBLE PRECISIOB
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISIOB
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

UBEL
(UBEL = 9)

(UBPL = 4)
UBPL

A
B
C
LIHEPT (3)
LINEDR (3)

PNEAR (3)
DIST
RETURN
CANDPL (UBPL)

CAND (UBEL)

OPPOIR (3)

PRJPL (UBPL)
HAG
NORMAL (3

PRJEL (UBEL)

PRJPT (3)

PRJNPT (3)

PT (3, 2)

SCALE
SCLA
SCLB
SCLC
SCLPT (3)

DOUBLE PRECISION UDIR (3)
INTEGER I
LOGICAL FOUND (2)

LOGICAL IFOUBD
LOGICAL XFOUBD
IF (RETURN 0) THEN

RETURN
ELSE

CALL CHKIN (’NPEDLN’)
END IF
CALL UNORH (LINEDR, UDIR, HAG)
IF (MAG .EQ. 0) THEN

CALL SETHSG(’Direction is zero vector.’)
CALL SIGERR(’SPICE(ZEROVECT0R)’)

CALL CHKOUT(’NPEDLN’)

RETURN
ELSE IF ((A .LE. O.DO)

.OR. (B .LE. O.DO)

.OR. (C .LE. O.DO)) THEN
CALL SETHSG (’Semi-axes: A=#,B=#,C=#.’)
CALL ERRDP (’ # ’ , A)

CALL ERRDP (’It’, B)

CALL ERRDP (’ # ’ , C)

CALL SIGERR (’SPICE(INVALIDAXISLENGTH)’)
CALL CHKOUT (’NPEDLN’)

RETURN
EBD IF

C Scale the semi-axes lengths for better numerical
C behavior. If squaring any of the scaled lengths
C causes it to underflow to zero, signal an error.
C Otherwise scale the point on the input line too.
SCALE = MAX (DABS(A), DABS(B), DABS(C))

SCLA = A / SCALE
SCLB = B / SCALE
SCLC = C / SCALE
IF ((SCLA**2 .LE. O.DO)

.OR. (SCLB**2 .LE. O.DO)

.OR. (SCLC**2 .LE. O.DO)) THEN
CALL SETMSG (’Axis too small: A=#,B=#,C=#.’)
CALL ERRDP (I#’, A)

CALL ERRDP (’ # ’ , B)

CALL ERRDP (’#I, C)

CALL SIGERR (’SPICE(DEGENERATECASE)’)

CALL CHKOUT (’NPEDLN’)

RETURN
END IF
SCLPT(1) = LINEPT(1) / SCALE
SCLPT(2) = LINEPT(2) / SCALE
SCLPT(3) = LINEPT(3) / SCALE

C Hand off the intersection case to SURFPT.
C SURFPT determines whether rays intersect a body,
C so we treat the line as a pair of rays.
CALL VMINUS(UDIR, OPPDIR)
CALL SURFPTCSCLPT, UDIR, SCLA, SCLB,

SCLC, PT(I,I), FOUND(1))

174

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

CALL SURFPT(SCLPT, OPPDIR, SCLA, SCLB,
SCLC, PT(I,2), FOUND(2))

DO 50001
. I = 1 , 2

IF (FOUND(1)) THEB
DIST = O.ODO
CALL VEQU (PT(l,I), PNEAR)

CALL CHKOUT (’HPEDLN’)

RETURN

CALL VSCL (SCALE, PNEAR, PBEAR)

END IF
50001 CONTINUE
C Getting here means the line doesn’t intersect
C the ellipsoid. Find the candidate ellipse CAND.
C NORMAL is a normal vector to the plane
C containing the candidate ellipse. Mathematically
C the ellipse must exist; it’s the intersection of
C an ellipsoid centered at the origin and a plane
C containing the origin. Only numerical problems
C can prevent the intersection from being found.
NORMAL(1) = UDIR(1) / SCLA**2
NORMAL(2) = UDIR(2) / SCLB**2
NORMAL(3) = UDIR(3) / SCLC**2

CALL INEDPL (SCLA,SCLB,SCLC,CANDPL,CAND,XFOUND)
CALL BVC2PL (NORMAL, O.DO, CANDPL)

IF (.NOT. XFOUBD) THEN
CALL SETMSG (’Candidate ellipse not found.’)
CALL SIGERR (’SPICE(DEGENERATECASE)’)

CALL CHKOUT (’BPEDLB’)

RETURN
END IF

C Project the candidate ellipse onto a plane
C orthogonal to the line. We’ll call the plane
C PRJPL and the projected ellipse PRJEL.
CALL NVC2PL (UDIR, O.DO, PRJPL)

CALL PJELPL (CABD, PRJPL, PRJEL)

C Find the point on the line lying in the project-
C ion plane, and then find the near point PRJNPT
C on the projected ellipse.
C point on the line lying in the projection plane.
C The distance between PRJPT and PRJNPT is DIST.

Here PRJPT is the

CALL VPRJP (SCLPT, PRJPL, PRJPT)

CALL NPELPT (PRJPT, PRJEL, PRJBPT)
DIST = VDIST (PRJNPT, PRJPT)

C Find the near point PNEAR on the ellipsoid by
C taking the inverse orthogonal projection of
C PRJNPT; this is the point on the candidate
C ellipse that projects to PRJNPT. The output
C DIST was computed in step 3 and needs onlly to be
C re-scaled. The inverse projection of PBEAR ought
C to exist, but may not be calculable due to nu-
C merical problems (this can only happen when the
C ellipsoid is extremely flat or needle-shaped).
CALL VPRJPI(PRJNPT,PRJPL, CANDPL, PNEAR, IFOUND)
IF (.NOT. IFOUND) THEN

CALL SETMSG (’Inverse projection not found.’)
CALL SIGERR (’SPICE(DEGENERATECASE)’)

CALL CHKOUT (’NPEDLN’)

RETURN
END IF

C Undo the scaling.
CALL VSCL (SCALE, PBEAR, PNEAR)

DIST = SCALE * DIST
CALL CHKOUT (’NPEDLN’)
RETURN
END

c ..
C Descriptions of subroutines called by NPEDLN:
C CHKIB
C UBORM
C SETMSG
C SIGERR
C CHKOUT
C ERRDP
C VMINUS
C SURFPT
C VEQU
c VSCL
C NVC2PL
C INEDPL
C PJELPL
C VPRJP
C NPELPT
C VPRJPI
n

Module Check In (error handling).
Normalize double precision 3-vector.
Set Long Error Message.
Signal Error Condition.
Module Check Out (error handling).
Insert DP lumber into Error Message Text.
Negate a double precision 3-D vector.
Find intersection of vector H/ ellipsoid.
Make one DP 3-D vector equal to another.
Vector scaling, 3 dimensions.
Make plane from normal and constant.
Intersection of ellipsoid and plane.
Project ellipse onto plane, orthogonally.
Project a vector onto plane orthogonally.
Find nearest point on ellipse to point.
Vector projection onto plane, inverted.

C A
C B
c c
C LINEPT
C LINEDR
C PNEAR
C DIST
C UBEL
C UBPL
C PT
C CABD
C CANDPL
C NORMAL
C UDIR
C MAG
C OPPDIR
C PRJPL
C
C PRJEL
C
C PRJPT
C PRJNBT
C
C SCALE

Length of semi-axis in the x direction.
Length of semi-axis in the y direction.
Length of semi-axis in the z direction.
Point on input line.
Direction vector of input line.
Nearest point on ellipsoid to line.
Distance of ellipsoid from line.
Upper bound of array containing ellipse.
Upper bound of array containing plane.
Intersection point of line & ellipsoid.
Candidate ellipse.
Plane containing candidate ellipse.
Normal to the candidate plane CAIDPL.
Unitized line direction vector.
Magnitude of line direction vector.
Vector in direction opposite to UDIR.
Projection plane, which the candidate
ellipse is projected onto to yield PRJEL.
Projection of the candidate ellipse
CABD onto the projection plane PRJEL.
Projection of line point.
Nearest point on projected ellipse to
projection of line point.
Scaling factor.

175

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 07,2023 at 02:53:15 UTC from IEEE Xplore. Restrictions apply.

