
  Abstract

The paper describes a study that explores the relationship
between program slicing and code understanding gained
while debugging. The study consisted of an experiment
that compared the program understanding abilities of two
classes of debuggers: those who slice while debugging and
those who do not. For debugging purposes, a slice can be
thought of as a minimal subprogram of the original code
that contains the program faults. Those who only examine
statements within a slice for correctness are considered
slicers; all others are considered non-slicers. Using
accuracy of reconstruction as a measure of
understanding; it was determined that slicers have a better
understanding of the code after debugging.

Keywords: Program slicing,  reverse engineering,
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1. Introduction

Debugging code comprises a significant portion of the
software development and maintenance process. Yet no
“best” method for debugging programs is known. How-
ever, the experiment described in this paper indicates that
debuggers who use slicing while debugging have a better
understanding of the code at the end of the debugging pro-
cess than those who do not use slicing.

Debugging is the task of identifying faults in code. A
goal of the debugger, the person who debugs the code, is
to localize the fault area of the code and, at the same time,
to develop an understanding of the program so that an ade-
quate correction can be made. Working toward this goal is
a labor-intense and time-consuming activity. As a result it
is critical to identify debugging strategies that lead to
quick reduction of the code fault area coupled with
increased understanding.

Above, and throughout the paper, we use the term fault
as defined in the IEEE Standard Glossary of Software
Engineering Terminology [2]. The glossary distinguishes
between a program error, fault and failure. A mistake in

the human thought process made during the construction
of a program is called an error. Evidence of errors comes
through program failures, typically incorrect output val-
ues, unexpected program termination, or nonterminating
execution. It is often the case that the root cause of a fail-
ure can be traced to a small area of a program. If so, that
area is said to contain a fault. It is important to note that
sometimes program failures are indications of global prob-
lems such as mistaken assumptions or inappropriate archi-
tectural decisions. In such cases, it is misleading to assume
that editing a small area of the program will prove suffi-
cient to correct an error.

At the start of debugging, the code fault area can be
anywhere in a program. It is the task of the person who
debugs the code to reduce this range as much as possible.
Unfortunately, no one method of code reduction is favored
universally by people who debug programs. Rather differ-
ent people prefer different methods. However, a large
number of experts use a code reduction method called pro-
gram slicing while debugging [8].

The concept of slicing was developed by Mark Weiser
in the early 1980’s [7]. Slicing is based on a program’s
flow of data. Formally a slice of code with respect to a
statement Si and variable xj consists of exactly those
statements of the code that might affect the value of xj at
statement Si. Figure 2 shows three slices taken from the
buggy C++ program shown in Figure 1.

For emphasis in Figure 2 below statements that are not
contained in all three slices are bolded.

If the variable xj in the output statement Si contains
an incorrect value, then the slice on xj at Si will contain
the program fault causing the incorrect output value. This
is true because a slice on variable xj with respect to state-
ment Si contains all statements that might affect the value
of xj at Si, and program failures are indications of pro-
gram faults. This makes slices based on statements that are
outputting incorrect values especially helpful in debug-
ging. For example, in the buggy program of Figure 1, once
one determines that exactly one output value is incorrect
and that that value is being output in statement #41, the
code fault area of the program can be reduced to the slice
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(1) //  This program processes a list of integers input interactively during the
(2) //  program run.  Count the number of non-negative integers in the
(3) //  list, and find the maximum and minimum negative integer in the list.

(4) #include <iostream.h>

(5) int main ()
(6) {
(7) int current_value;
(8) int current_maximum;
(9) int current_minimum;
(10) int non_negative_count;
(11) int lcv;
(12) int size;
(13) int integer_array[100];

(14) size = 0;
(15) cout  << “Input an integer or -999999 to stop\n”;
(16) cin >> current_value;
(17) while (current_value != -999999)
(18) {
(19)    integer_array[size] = current_value;
(20)    size++;
(21)    cout << “Input an integer or -999999 to stop\n”;
(22)    cin >> current_value;
(23) }
(24) current_minimum = 0;
(25) current_maximum = 0;
(26) non_negative_count = 0;
(27) for (lcv = 0; lcv < size, lcv++)
(28) {
(29)    if   (integer_array[lcv] < 0)
(30) {
(31)   if  (integer_array[lcv] < current_minimum)
(32)       current_minimum = integer_array[lcv];
(33)   if  (integer_array[lcv] > current_maximum)
(34)       current_maximum = integer_array[lcv];
(35) }
(36)    else
(37) non_negative_count++;
(38) }
(39) cout  << endl  <<endl  <<endl;
(40) cout  << “The number of non-negative numbers in the list was “

<< non_negative_count << endl;
(41) cout   << “The maximum negative number in the list was “

<< current_maximum << endl;
(42) cout  << “The minimum negative number in the list was “

<< current_minimum << endl;
(43) }

Figure 1. A buggy C++ program  (fault area: line 25)



on current_maximum at statement #41 (the second
slice of Figure 2). This decreases the size of the program
fault area by ten statements or 25%.

Knowing which output statements produce correct val-
ues can also help in fault-area reduction. A program dice,
first defined by Weiser and Lyle [9], is a slice on one set of
program variables at a statement minus a slice on a second
disjoint set of variables at the same statement. If one is
willing to assume correct output implies correct code1,
slicing a program on incorrect output variables and then
dicing on correct output variables can reduce the program
fault area even more than slicing on incorrect output vari-
ables alone does. In the above example, slicing on
current_maximum and then dicing on
{current_min, positive_count} gives a pro-
gram fault area of five statements, {8,25,33,34,41}. This is
a decrease in size of 87.5% from the original fault area.

Slicing and dicing provide a useful fault localization
method. But do they also lend themselves to increased
understanding of program code? The purpose of the
exploratory study described in this paper is to show that a
strong relationship exists between debugging with slicing
and program understanding.

Since the concept of slicing was first formalized in the
early 1980’s, it has been the focus of much research. How-
ever, the emphasis of this research has been tool building
and the issues and problems related to this activity. Appli-
cations of slicing and the advantages of using slicing have
been largely neglected. This becomes unmistakably evi-
dent when one reviews any of the reference lists on slicing.
(Note: Several of these lists can be accessed through the
Algorithmic and Automatic Debugging Home Page [1].)

For example, a total of only three of the 111 articles
appearing in the bibliography of slicing maintained by
Krinke [4] are concerned with issues of slicing applica-
tions or the advantages of using slicing. The same is true
for the reference list of slicing articles maintained by Lyle
[5]. Here applications and advantages again contains only
the same three references. One of these references is to
Weiser’s dissertation [6]. One documents with empirical
data that experts slice when debugging [8]. The third
shows, using empirical data, that dicing when debugging
saves time [9].

Clearly issues related to applications of slicing and the
advantages of using slicing are an important piece in the
overall slicing picture. Despite this, the amount of research
devoted to these areas is small. Further investigation in
these areas is needed to lend better understanding to the
overall picture.

Below we explore the relationship between slicing
while debugging and code understanding. We find that
debuggers who use slicing have a better understanding of
the program code after debugging than those who did not
use slicing.

2. Experimental method

An experiment was conducted to test the hypothesis
that slicing while debugging increases program under-
standing. For the experiment, subjects were first asked to
debug a program, recording as they went the program
statements they examined for correctness. As a follow-up
activity, subjects were asked to construct from the program
code the minimal subprogram that produced the incorrect
output. Besides the statement list generated during debug-
ging and the subprogram constructed in the follow-up
task, start and stop times were recorded for both the
debugging and reconstruction activities of the experiment.
The experiment data was used to investigate the hypothe-
sis that program debuggers who slice while debugging
code gain better understanding of the program code than

1. There are exceptions to this assumption. For example, if an
assignment statement contains the expression a+b where it
should contain a*b, no program failure will occur if the code is
tested with the value 2 assigned to both a and b. However, it is
hoped that debuggers base their conclusions that a statement
produces correct output on comprehensive suites of tests rather
than on single tests, which makes the above type of exception
less likely to happen.

Slice Statements, by number, in slice

Slice on Statement: #40
Variable: non_negative_count

4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22
23,26,27,28,29, 36,37,38,39,40,43

Slice on Statement: #41
Variable: current_maximum

4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,22,23
25,27,28,29,30,33,34,35,38,39,41,43

Slice on Statement: #42
Variable: current_minimum

4,5,6,7,9,11,12,13,14,15,16,17,18,19,20,21,22,23
24,27,28,29,30,31,32,35,38,39,42,43

Figure 2: Three static slices from the buggy code of Figure 1



those program debuggers who do not slice during debug-
ging.

2.1 Subjects

The subjects were seventeen senior computer science
majors at a small liberal-arts college in the Southeastern
United States. Each volunteered for the experiment. At the
time of the experiment all subjects had completed at least
three computer science courses whose major emphasis
was programming. All had programmed using Pascal in
these courses. Also at the time of the experiment, each
subject had completed between three and seven other com-
puter science courses. None of the subjects had been
exposed to the concepts of slicing or dicing. All partici-
pants received extra credit in a senior seminar course for
their participation in the experiment.

2.2 Procedures

Each subject participated in a single, one-on-one ses-
sion with the experimenter. There were no time limits
imposed on any part of the experiment. The sessions ran
anywhere from forty minutes to two and a half hours. The
experimenter was available to the subject throughout the
entire session. Each session consisted of three phases:

Phase I: Each subject began by reading the experiment
instructions. The experimenter then reviewed orally with
the subject the instructions and answered any questions the
subject had regarding the instructions. Next subjects were
given the task of debugging a practice program, recording
the statements they examined for correctness. While prac-
ticing, subjects were encouraged to ask the experimenter
regarding any experiment procedures that were unclear to
them. Also, the experimenter randomly prompted subjects
to be sure they were making a complete record of their
debugging activities.

Phase II: Subjects were given the task of debugging a
short program, recording as they went the statements they
examined for correctness. Before they began debugging,
subjects were given a sample input data file and shown
both the output generated and the output expected when
the program ran using the input data file. Subjects were not
told how many or what type of faults the program con-
tained. Each subject was provided a quiet space in which
to work. This space included access to a familiar, on-line
environment for Pascal programming.

Phase III: The program debugged in Phase II produced
sixteen output values. For phase III, subjects were given
the task of constructing from the Phase II program a sub-
program that calculated and printed only the two output
values of the Phase II program that were incorrect. Sub-
jects were not expected to write-out the code for the sub-
program, but rather were given the option of circling,
underlining, or highlighting statements on a hardcopy list-
ing of the experiment program code. Although experiment
instructions read during Phase I informed the subjects
there would be a follow-up task to the debugging task,
they were not informed what this task would be until
Phase III of the experiment began.

At the end of a subject’s session, the subject was urged
not to discuss the experiment materials or tasks with the
other subjects.

2.3 Materials

For maximum control of slice sizes and intersections,
the programs used in this experiment were written by the
experimenter. The application domain of the program was
chosen because it required minimal background knowl-
edge.

Because all subjects had prior experience coding in
Pascal, experiment programs were written in Pascal. Sub-
jects did not have access to the program before their ses-
sions. Two programs were used in the experiment, a
practice program and the experiment program. Both pro-
grams were written in structured, indented style with no
documentation but with descriptive variable names. Nei-
ther program contained any subprograms. The practice
program was a short, 25-line program that calculated the
average and standard deviation of a list of integers read
from a file. The fault area of the program could be reduced
to the single statement:

sum := sum + lcv;

with possible correction:

    sum := sum + list[lcv];

The statement was embedded in a single for loop.

The experiment program was about 200 lines of Pascal
that calculated a number of descriptive metrics on a file of
text read by the program. These metrics included: count-
ing blanks and non-blank characters, vowels, double
blanks, double vowels, words, lines, blank lines, the maxi-
mum length word, the minimum length word, the maxi-
mum number of words per line, the minimum number of
words per line, the maximum number of words per sen-
tence and the minimum number of words per sentence.
The fault area of this program could be reduced to the sin-
gle statement:

Phase I: Training and practice

Phase II: Program debugging

Phase III: Subprogram construction



persentence := 0;

with possible correction:

persentence := 1;

The statement was embedded in the fourth of four nested
if statements.

To facilitate statement referencing, hardcopy listings of
the program code with a line number attached to each
statement were given to the subjects.

In addition to the listings of the two program codes,
materials provided the subjects included:

Phase I:
1. Experiment instructions.
2. A copy of the mathematical formulas for average and

standard deviation.

Phase II:
1. Access to the school’s VAX system. The system has a

platform for compiling, linking, and running Pascal
programs. All subjects were familiar with this envi-
ronment.

2. A hardcopy listing of an input file that could be used
by the experiment program.

3. A print-out of the output produced by running the
experiment program with the text file described in 2)
as input.

4. A print-out of the correct output that should be pro-
duced by running the experiment program with the
text file of 2).

5. A file containing the experiment program.
6. A file containing a copy of the text file of 2)

Phase III:
1. A new listing of the experiment program.

2.4 Hypothesis and Variables

The experiment on debugging and slicing tested the
hypothesis: Slicers have a better understanding of pro-
gram code after debugging than do non-slicers.

The independent variable was whether the subject was
a slicer or a non-slicer. Slicers were determined from the
data collected in Phase II of the experiment. All debuggers
who stayed within the slice of the incorrect output variable
were considered slicers; everyone else was considered a
non-slicer.

The dependent variable in the experiment was under-
standing. Understanding was measured by the accuracy of
program reconstruction during Phase III of the experi-
ment.

2.5 Data analysis

Phase II: Due to the small sample sizes of the slicer and
non-slicer groups and the moderately skewed distribution

of the test variables in Phase II, non-parametric statistical
analyses were appropriate for comparing data collected
from this phase of the experiment. The Mann-Whitney test
was chosen.

Phase III: In Phase III of the experiment, distributions of
the test variables was approximately normal, thus paramet-
ric statistical analyses were appropriate for comparing
data collected from this phase of the experiment. The two-
tailed t-test was chosen.

3. Results

During Phase II of the experiment subjects recorded the
statements they examined for correctness and their start
and stop times. Figure 3 shows the number of assignment
and conditional statements outside the faulty slice each
subject examined during debugging. Those subjects who
examined one or no statements outside the slice were clas-
sified as slicers. All others were classified as non-slicers.
Four of the subjects were found to be slicers while the
remaining thirteen subjects were found to be non-slicers.

Not surprisingly, slicers differed significantly from
non-slicers in the number of statements they examined
outside the faulty slice. One can also compare separately
the number of assignment statements and the number of
control statements each group looked at outside the slice.
Here too the differences were significant.

• On the average slicers examined zero statements outside
the slice while non-slicers examined twelve statements.
This is a statistically significant difference of p = .001.



• On the average slicers examined zero conditional state-
ments outside the slice while non-slicers examined
three conditional statements. This is a statistically sig-
nificant difference of p = .045.

• On the average slicers examined zero assignment state-
ments outside the slice while non-slicers examined nine
assignment statements. This is a statistically significant
difference of p = .001.

Slicers and non-slicers also differed significantly on the
number of statements they examined inside the faulty
slice. Surprisingly non-slicers examined more statements
of the faulty slice than did slicers.

• On the average slicers examined nine statements inside
the slice while non-slicers examined fourteen state-
ments. This is a statistically significant difference of p =
.0025.

The average time the slicers took to debug code was
significantly less than the time taken by non-slicers.

• On the average slicers took fifteen minutes to debug the
program while non-slicers took thirty-three minutes.
This is a statistically significant difference of p = .045.

During Phase III of the experiment each subject under-
lined or highlighted or circled those lines of the original
code that were needed to produce a subprogram that would
calculate the maximum and minimum words per sentence
of the text being analyzed in the faulty program of Phase
II. Figure 4 shows the number of statements each subject
did not include in the subprogram as well as the number of
extra statements included.

Slicers differed significantly from non-slicers in their
accuracy during the reconstruction task of the experiment.
Inaccuracy was based on both those statements that were
missing and those statements that were unnecessary.
Again we compare total statements and assignment and
control statements separately.

• On the average slicers erred on nine statements in con-
structing the subprogram while non-slicers erred on
twenty statements. This is a statistically significant dif-
ference of p = .02.

• On the average slicers erred on six assignment state-
ments in constructing the subprogram while non-slicers
erred on thirteen. This is a statistically significant differ-
ence of p = .03.

• On the average slicers erred on four control statements
in constructing the subprogram while non-slicers erred
on eight. This is a statistically significant difference of p
= .02.

Subjects who were more accurate in their reconstruc-
tions took more time to complete Phase III of the experi-
ment than those subjects who had a large number of
inaccuracies in their reconstructions.

• On the average slicers took twenty-four minutes to con-
struct the subprogram of Phase III while non-slicers on
the average took eleven minutes. This is not a statisti-
cally significant different (p = .16)

4. Discussion

The experiment tested the hypothesis that slicers have a
better understanding of program code after debugging than
non-slicers, where understanding was measured through
accuracy during reconstruction. The data gathered from
the experiment supports this hypothesis. After debugging a
program slicers were significantly more accurate in con-
structing a subprogram that isolated the faulty portion of
the program than non-slicers were. This leads us to con-
clude that a relationship between slicing while debugging
and program understanding exists.

The experiment did not investigate the question of cau-
sality. Further experimentation is needed before one can
decide if the relationship between slicing while debugging
and program understanding is caused by slicing or some
other influence. However, the fact that the non-slicers
examined significantly more of the faulty portion of the
code during debugging than slicers did yet still showed
significantly less understanding of the code at the conclu-
sion of the debugging process indicates that such an inves-
tigation would be of value.

At the onset of the experiment, it was believed that
reconstruction time could also be used to gauge under-
standing. Only after the data had been collected did it
become apparent that a raw measure of time is inadequate
in judging reconstruction time. A more meaningful time
measure accounts for the time it takes to correct the inac-
curacies made during reconstruction. The following for-
mula is one way of doing this.
  time = reconstruction_time +
     (# of extra_statements) *
        (time to remove a statement) +



     (# of missing_statements) *
        (time to add a statement)

There are several ways to estimate remove time and add
time. However, it is hard to defend any such estimate as
accurate. Unanswerable questions such as: did it take
equal time to analyze each statement, did it take the same
amount of time to undo as it did to do, and what to do
about new errors all lead the authors to believe no valid
conclusions can be drawn from the reconstruction time
data collected.

In the following discussion we use the classification of
novice (undergraduates), intermediate (graduate students
or beginning professionals), and expert programmers (pro-
fessionals with experience) suggested in Empirical Studies
of Programmers: Fourth Workshop [3]. Weiser showed [8]
that expert programmers use slicing while debugging. The
data gathered in Phase II of the experiment discussed in
this paper shows the opposite to be true with novice pro-
grammers. Of the seventeen subjects in our experiment
only four used slicing. This is less than one-fourth of the
sample size. Yet if slicing improves understanding, slicing
may be a valuable tool for novice programmers. However,
novice programmers will have to be taught slicing.

Of the four subjects classified as slicers in the experi-
ment two of these are dicers. That is, two did not examine
any statements outside the faulty dice. Table 1 shows sta-
tistics calculated with a separation of slicers who are dic-
ers from slicers who are not dicers. Because of the small
number of subjects in the two categories we do not gener-
alize any of the results.

The conclusions mentioned above give rise to several
interesting questions, each worthy of further investigation.
The most obvious question is:

•   Does debugging cause understanding?

But there are several others that merit further study too
including:

• Does teaching novice programmers about slicing
improve their debugging skills?

• Does dicing improve code understanding more than
slicing during debugging?

The last two of these questions have ramifications in
both computer science education and automated debug-
ging tools. A strategy shown to provide both quick reduc-
tion of the code-fault area and better understanding of the
code at the end of the debugging process is a strategy
worth teaching the novice programmer. It also has value as
part of an automated debugging tool.

Researchers are always searching for effective experi-
mental methods that are non-invasive, easy to learn and
which do not alter a subject’s normal behavior. The
method of recording statements as they are evaluated for
correctness, used in this experiment, proved itself to be a
method that meets all three of these criteria. Observation
during the training sessions showed that recording state-
ments does not change the subjects natural patterns of
debugging. Also the training period needed to teach sub-
jects how to record which statements they are evaluating
for correctness was short yet effective. The time involved
in training was about 20 minutes. Lastly the method is
non-invasive. Subjects do not have to be observed while
debugging nor prompted in any way.
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