
Understanding Interleaved Code

Spencer Rugaber� Kurt Stirewalt� and Linda M� Wills

College of Computing

Georgia Institute of Technology

Atlanta� Georgia ����������

fspencer� kurt� lindag�cc�gatech�edu

Abstract

Complex programs often contain multiple� interwoven strands of computation� each respon�

sible for accomplishing a distinct goal� The individual strands responsible for each goal are

typically delocalized and overlap rather than being composed in a simple linear sequence� We

refer to these code fragments as being interleaved� Interleaving may be intentional�for exam�

ple� in optimizing a program� a programmer might use some intermediate result for several

purposes�or it may creep into a program unintentionally� due to patches� quick �xes� or other

hasty maintenance practices� To understand this phenomenon� we have looked at a variety

of instances of interleaving in actual programs and have distilled characteristic features� This

paper presents our characterization of interleaving and the implications it has for tools that

detect interleaving and extract the individual strands of computation� Our exploration of in�

terleaving has been done in the context of a case study of a corpus of production mathematical

software� written in Fortran from the Jet Propulsion Laboratory� This paper also describes our

experiences in developing tools to detect interleaving in this software� driven by the application

of program comprehension to improving the description of this software library�s components�

This in turn aids in the automated component�based synthesis of software using the library�

With every leaf a miracle�

� Walt Whitman�

� Introduction

Imagine being handed a software system you have never seen before� Perhaps you need to track

down a bug� rewrite the software in another language or extend it in some way� We know that

software maintenance tasks such as these consume the majority of software costs ���� and we know

that reading and understanding the code requires more e�ort than actually making the changes ����

But we don�t know what makes understanding the code itself so di�cult�

Letovsky has observed that programmers engaged in software understanding activities typically

ask 	how
 questions and 	why
 questions ����� The former require an indepth knowledge of the

programming language and the ways in which programmers express their software designs� This

includes knowledge of common algorithms and data structures and even concerns style issues such

as indentation and use of comments� Nevertheless� the answers to 	how
 questions can be derived

from the program text� 	Why
 questions are more troubling� Answering them requires not only

comprehending the program text but relating it to the program�s purpose�solving some sort of

problem� And the problem being solved may not be explicitly stated in the program text� nor is the

rationale the programmer had for choosing the particular solution usually visible�

This paper is concerned with a speci�c di�culty that arises when trying to answer 	why
 ques

tions about computer programs� In particular� it is concerned with the phenomenon of 	interleaving

in which one section of a program accomplishes several purposes� and disentangling the code respon

sible for each purposes is di�cult� Unraveling interleaved code involves discovering the purpose of

each strand of computation� as well as understanding why the programmer decided to interleave the

strands� To demonstrate this problem� we examine an example program in a stepbystep fashion�

trying to answer the questions 	why is this program the way it is�
 and 	what makes it di�cult to

understand�

��� NPEDLN

The Fortran program� called NPEDLN� is part of the SPICELIB library obtained from the Jet Propulsion

Laboratory and intended to help space scientists analyze data returned from space missions� The

acronym NPEDLN stands for Nearest Point on Ellipsoid to Line� The ellipsoid is speci�ed by the length

of its three semiaxes �A� B� and C�� which are oriented with the x� y� and z coordinate axes� The

line is speci�ed by a point �LINEPT� and a direction vector �LINEDR�� The nearest point is contained

in a variable called PNEAR� The full program consists of ��� lines� an abridged version can be found

in the Appendix with a brief description of subroutines it calls and variables it uses� The executable

statements� with comments and declarations removed� are shown in Figure ��

The lines of code in NPEDLN that actually compute the nearest point are somewhat hard to locate�

One reason for this has to with error checking� It turns out that SPICELIB includes an elaborate

mechanism for reporting and recovering from errors� and roughly half of the code in NPEDLN is used

for this purpose� We have indicated those lines by shading in Figure �� The important point to note

is that although it is natural to program in a way that intersperses error checks with computational

code� it is not necessary to do so� In principal� an entirely separate routine could be constructed to

make the checks and NPEDLN called only when all the checks are passed� Although this approach would

require redundant computation and potentially more total lines of code� the resultant computations

in NPEDLN would be shorter and easier to follow�

In some sense� the error handling code and the rest of the routine realize independent plans� We

use the term plan to denote a description or representation of a computational structure that the

designers have proposed as a way of achieving some purpose or goal in a program�� Plans can occur

�This de�nition is distilled from de�nitions in ���� ��� �	
� Note that a plan is not necessarily stereotypical or used

repeatedly� it may be novel or idiosyncratic� Following ���� �	
� we reserve the term clich�e for a plan that represents

a standard� stereotypical form� which can be detected by recognition techniques� such as ���� ��� �� ��� ��� 	�
�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 IF (RETURN ()) THEN
 RETURN
 ELSE
 CALL CHKIN ('NPEDLN')
 END IF
C
 CALL UNORM (LINEDR, UDIR, MAG)
 IF (MAG .EQ. 0) THEN
 CALL SETMSG('Line direction vector
 is the zero vector. ')
 CALL SIGERR('SPICE(ZEROVECTOR)')
 CALL CHKOUT('NPEDLN')
 RETURN
 ELSE IF ((A .LE. 0.D0)
 . .OR. (B .LE. 0.D0)
 . .OR. (C .LE. 0.D0))
 THEN
 CALL SETMSG ('Semi-axes: A = #,
 B = #, C = #.')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(INVALIDAXISLENGTH)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
 IF ((SCLA**2 .LE. 0.D0)
 . .OR. (SCLB**2 .LE. 0.D0)
 . .OR. (SCLC**2 .LE. 0.D0)) THEN
 CALL SETMSG ('Semi-axis too small:
 A = #, B = #, C = #. ')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
C Scale LINEPT.
 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
 CALL VMINUS (UDIR, OPPDIR)

 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))

 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 CALL VSCL (SCALE,PNEAR, PNEAR)
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
50001 CONTINUE
C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 IF (.NOT. XFOUND) THEN
 CALL SETMSG ('Candidate ellipse could not
 be found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 IF (.NOT. IFOUND) THEN
 CALL SETMSG ('Inverse projection could not
 be found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 CALL CHKOUT ('NPEDLN')
 RETURN
 END

Figure �� NPEDLN minus comments and declarations�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 IF (RETURN ()) THEN
 RETURN
 ELSE
 CALL CHKIN ('NPEDLN')
 END IF
C
 CALL UNORM (LINEDR, UDIR, MAG)
 IF (MAG .EQ. 0) THEN
 CALL SETMSG('Line direction vector
 is the zero vector. ')
 CALL SIGERR('SPICE(ZEROVECTOR)')
 CALL CHKOUT('NPEDLN')
 RETURN
 ELSE IF ((A .LE. 0.D0)
 . .OR. (B .LE. 0.D0)
 . .OR. (C .LE. 0.D0))
 THEN
 CALL SETMSG ('Semi-axes: A = #,
 B = #, C = #.')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(INVALIDAXISLENGTH)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
 IF ((SCLA**2 .LE. 0.D0)
 . .OR. (SCLB**2 .LE. 0.D0)
 . .OR. (SCLC**2 .LE. 0.D0)) THEN
 CALL SETMSG ('Semi-axis too small:
 A = #, B = #, C = #. ')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
C Scale LINEPT.
 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
 CALL VMINUS (UDIR, OPPDIR)

 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))

 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 CALL VSCL (SCALE,PNEAR, PNEAR)
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
50001 CONTINUE
C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 IF (.NOT. XFOUND) THEN
 CALL SETMSG ('Candidate ellipse could not
 be found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 IF (.NOT. IFOUND) THEN
 CALL SETMSG ('Inverse projection could not
 be found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 CALL CHKOUT ('NPEDLN')
 RETURN
 END

Figure �� Code with error handling highlighted�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 CALL UNORM (LINEDR, UDIR, MAG)
 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
C
 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
C
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 CALL VSCL (SCALE,PNEAR, PNEAR)
 RETURN
 END IF
50001 CONTINUE

C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 RETURN
 END

Figure �� The residual code without the error handling plan�

at any level of abstraction from architectural overviews to code� By extracting the error checking

plan from NPEDLN� we get the much smaller and� presumably� more understandable program shown

in Figure ��

The structure of an understanding process begins to emerge� detect a plan� such as error checking�

in the code and extract it� leaving a smaller and more coherent residue for further analysis� document

the extracted plan independently� and note the way in which it interacts with the rest of the code�

We can apply this approach further to NPEDLN�s residual code in Figure �� NPEDLN has a primary

goal of computing the nearest point on an ellipsoid to a speci�ed line� It also has an orthogonal

goal of ensuring that the computations involved have stable numerical behavior� that is� that the

computations are accurate in the presence of a wide range of numerical inputs� A standard trick in

numerical programming for achieving stability is to scale the data involved in a computation and

then unscale the results� The code responsible for doing this in NPEDLN is scattered throughout the

program�s text� It is highlighted in the excerpt shown in Figure ��

The delocalized nature of this 	scaleunscale
 plan makes it di�cult to gather together all the

pieces involved for consistent maintenance� It also gets in the way of understanding the rest of the

code� since it provides distractions that must be �ltered out� Letovsky and Soloway�s cognitive study

���� shows the deleterious e�ects of delocalization on comprehension and maintenance�

When we extract the scaleunscale code from NPEDLN� we are left with a much smaller code segment

shown in Figure � that more directly expresses the program�s purpose� computing the nearest point�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 CALL UNORM (LINEDR, UDIR, MAG)
 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
C
 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
C
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 CALL VSCL (SCALE,PNEAR, PNEAR)
 RETURN
 END IF
50001 CONTINUE

C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 RETURN
 END

Figure �� Code with scaleunscale plan highlighted�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 CALL UNORM (LINEDR, UDIR, MAG)
C
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 RETURN
 END IF
50001 CONTINUE

C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 RETURN
 END

Figure �� The residual code without the scaleunscale plan�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 CALL UNORM (LINEDR, UDIR, MAG)
C
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 RETURN
 END IF
50001 CONTINUE

C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 RETURN
 END

Figure �� Code with distance plan highlighted�

There is one further complication� however� It turns out that NPEDLN not only computes the

nearest point from a line to an ellipsoid� it also computes the shortest distance between the line and

the ellipsoid� This additional output �DIST� is convenient to construct� based on intermediate results

obtained while computing the primary output �PNEAR�� This is illustrated in Figure ���

Note that an alternative way to structure SPICELIB would be to have independent routines for

computing the nearest point and the distance� The two routines would each be more coherent� but

the common intermediate computations would have to be repeated� both in the code and at runtime�

The 	pure
 nearest point computation is shown in Figure �� It is now much easier to see the

primary computational purpose of this code�

The production version of NPEDLN contains several interleaved plans� Intermediate Fortran com

putations are shared by the nearest point and distance plans� A delocalized scaling plan is used to

improve numerical stability� and an independent error handling plan is used to deal with unaccept

able input� Knowledge of the existence of the several plans� how they are related and why they were

interleaved is required for a deep understanding of NPEDLN�

��� Contributions

In this paper� we present a characterization of interleaving incorporating three aspects that make

interleaved code di�cult to understand� independence� delocalization� and resource sharing� We

have distilled this characterization from an empirical examination of existing software�primarily

�The computation of DIST using VDIST is actually the last computation performed by the subroutine NPELPT� which

NPEDLN calls� we have pulled this computation out of NPELPT for clarity of presentation�

�

SUBROUTINE NPEDLN (A, B, C, LINEPT, LINEDR,
 PNEAR, DIST)

C
 CALL UNORM (LINEDR, UDIR, MAG)
C
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 SCLC, PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR, SCLA,
 SCLB, SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 CALL VEQU (PT(1,I), PNEAR)
 RETURN
 END IF
50001 CONTINUE

C
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA, SCLB, SCLC, CANDPL,
 CAND, XFOUND)
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
C
 CALL VPRJPI (PRJNPT, PRJPL, CANDPL, PNEAR,
 IFOUND)
 RETURN
 END

Figure �� The residual code without the distance plan�

SPICELIB� Secondary sources of existing software which we also examined are a Cobol database report

writing system from the US Army and a program for �nding the roots of functions �ZEROIN�� presented

and analyzed in ��� and ����� We relate our characterization of interleaving to existing concepts in

the literature� such as delocalized plans ����� coupling ����� and redistribution of intermediate results

���� ����

We then describe the context in which we are exploring and applying these ideas� Our driving

program comprehension problem is to elaborate and validate existing partial speci�cations of the JPL

library routines to facilitate the automation of speci�cationdriven generation of programs using these

routines� We are developing analysis tools� based on the Software Re�nery� to detect interleaving� We

describe the analyses that we have formulated to detect classes of interleaving that are particularly

useful to elaborating speci�cations� This paper concludes with a re�ection on the feasibility of

building tools to assist interleaving detection and extraction� open issues in the requirements on

software and plan representations that detection imposes� the role of domain model guidance and

clich�e recognition in addressing the interleaving problem� and issues that arise when scaling up these

analyses to the architectural level�

� Interleaving

Programmers solve problems by breaking them into pieces� Pieces are programming language im

plementations of plans� and it is common for multiple plans to occur in a single code segment� We

use the term 	interleaving
 to denote this merging�

�

Interleaving expresses the merging of two or more distinct plans within some contiguous

textual area of a program� Interleaving can be characterized by the delocalization of the

code for the individual plans involved� the sharing of some resource� and the implemen

tation of multiple� independent plans in the program�s overall purpose�

We are characterizing the types of interleaving that typically occur in programs in order to develop

techniques for detecting and extracting interleaved� but logically cohesive plans�

Interleaving may arise for several reasons� It may be intentionally introduced for e�ciency� For

example� it may be more e�cient to compute two related values in one place than to do so sepa

rately� Intentional interleaving may also be performed to deal with nonfunctional requirements� such

as numerical stability� that impose global constraints which are satis�ed by di�use computational

structures� Interleaving may also creep into a program unintentionally� as a result of inadequate soft

ware maintenance� such as adding a feature locally to an existing routine rather than undertaking

a thorough redesign� Or interleaving may arise as a natural byproduct of expressing separate but

related plans in a linear� textual medium� For example� accessors and constructors for manipulating

data structures are typically interleaved throughout programs written in traditional programming

languages due to their procedural� rather than objectoriented structure� Regardless of why inter

leaving is introduced� it severely complicates understanding a program� This makes it di�cult to

perform tasks such as extracting reusable components� localizing the e�ects of maintenance changes�

and migrating to objectoriented languages�

There are several reasons interleaving is a source of di�culties� The �rst has to do with delo

calization� Because two or more design purposes are implemented in a single segment of code� the

individual code fragments responsible for each purpose are more spread out than they would be if

they were encapsulated� Another reason interleaving presents a problem is that when it is the result

of poorly thought out maintenance activities� the original� highly coherent structure of the system

is typically degraded as 	patches
 and 	quick �xes
 are introduced� Finally� while interleaving

may be introduced for purposes of optimization� expressing intricate optimizations in a clean and

welldocumented fashion is not typically done� The rationale behind the decision to intentionally

introduce interleaving is often not explicitly recorded in the program� For all of these reasons� our

ability to comprehend code containing interleaved fragments is compromised�

We now examine each of the characteristics of interleaving�delocalization� sharing� independence�

in more detail�

��� Delocalization

Delocalization is one of the key characteristics of interleaving� one or more parts of a plan are

spatially separated from other parts by code from other plans with which they are interleaved�

The 	scaleunscale
 pattern found in NPEDLN is a simple example of a more general delocalized

plan that we refer to as a reformulation wrapper� which is frequently interleaved with computations

in SPICELIB� Reformulation wrappers transform one problem into another that is simpler to solve

�

SUBROUTINE NPEDLN(A, B, C, LINEPT, LINEDR,
 . PNEAR, DIST)
 ...
 CALL UNORM (LINEDR, UDIR, MAG)
 ... [error checks]

 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
 ... [error checks]

 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
 CALL VMINUS (UDIR, OPPDIR)
 CALL SURFPT (SCLPT, UDIR, SCLA, SCLB,
 . SCLC,PT(1,1), FOUND(1))
 CALL SURFPT (SCLPT, OPPDIR,SCLA, SCLB,
 . SCLC, PT(1,2), FOUND(2))
 ... [checking for intersection of the
 line with the ellipsoid]
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VSCL (SCALE, PNEAR, PNEAR)
 ...
 RETURN
 END IF
 ... [handling the non-intercept case]
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 ...
 RETURN

END

Figure �� Portions of the NPEDLN Fortran program� Shaded regions highlight the lines of code

responsible for scaling and unscaling�

and then transfer the solution back to the original situation� Other examples of reformulation

wrappers in SPICELIB are reducing a threedimensional geometry problem to a twodimensional one

and mapping an ellipsoid to the unit sphere to make it easier to solve intersection problems�

Delocalization may occur for a variety of reasons� One is that there may be an inherently non

local relationship between the components of the plan� as is the case with reformulation wrappers�

which makes the spatial separation necessary� Another reason is that the intermediate results of

part of a plan may be shared with another plan� causing the plans to overlap and their steps to be

shu�ed together� the steps of one plan separate those of the other� For example� in Figure �� part of

the scale plan �computing the scaling factor� is separated from the rest of the plan �dividing by the

scaling factor� in all scalings� except the scaling of A� This allows the scaling factor to be computed

once and the result reused�

Realizing that a reformulation wrapper or some other delocalized plan is interleaved with a

particular computation can help prevent severe comprehension failures during maintenance ����� It

can also help detect when the delocalized plan is incomplete� as it was in an earlier version of our

example subroutine whose modi�cation history includes the following correction�

C� SPICELIB Version ������ ���NOV����� �NJB	

C Bug fix
 in the intercept case� PNEAR is now

C properly re�scaled prior to output� Formerly�

C it was returned without having been re�scaled�

��

SUBROUTINE NPEDLN (A, B, C, LINEPT,
. LINEDR, PNEAR, DIST)
 ...
 [First 100 lines of NPEDLN]
 ...
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)

 DIST = VDIST (PRJNPT, PRJPT)

 CALL VPRJPI(PRJNPT,PRJPL,CANDPL,PNEAR,
. IFOUND)
 IF (.NOT. IFOUND) THEN
 ... [error handling]
 END IF
 CALL VSCL (SCALE, PNEAR, PNEAR)

 DIST = SCALE * DIST

 CALL CHKOUT ('NPEDLN')
 RETURN
 END

Shared

Figure �� Portions of NPEDLN� highlighting two overlapping computations�

��� Resource Sharing

The sharing of some resource is characteristic of intentional interleaving� When interleaving is

introduced into a program� there is normally some implicit relationship between the interleaved plans�

motivating the designer to choose to interleave them� An example of this within NPEDLN is shown in

Figure �� The shaded portions of the code shown are shared between the two computations for PNEAR

and DIST� In this case� the common resources shared by the interleaved plans are intermediate data

results� The implementations for computing the nearest point and the shortest distance overlap in

that a single structural element contributes to multiple goals�

The sharing of the results of some subcomputation in the implementation of two distinct higher

level operations is termed redistribution of intermediate results by Hall ���� ���� More speci�cally�

redistribution is a class of function sharing optimizations which are implemented simply by tapping

into the data�ow from some value producer and feeding it to an additional target consumer� intro

ducing fanout into the data�ow� Redistribution covers a wide range of common types of function

sharing optimizations� including common subexpression elimination and generalized loop fusion�

Hall developed an automated technique for redistributing results for use in optimizing code gen

erated from generalpurpose reusable software components� We are interested in 	undoing
 these

types of optimizations� and we can use the redistribution concept to capture forms of interleaving

in which the resources shared are data values�

The commonality between interleaved plans might be in the form of other shared resources

besides data values� such as control structures� lexical module structures� and names�

Control coupling� Control conditions may be redistributed just as data values are� The use of

control �ags allows control conditions to be determined once but used to a�ect execution at more

than one location in the program� In NPEDLN� for example� SURFPT is called to compute the intersection

of the line with the ellipsoid� This routine returns a control �ag� FOUND� indicating whether or not

the intersection exists� This �ag is then used outside of SURFPT to control whether the intercept or

��

CALL SURFPT � SCLPT� UDIR� SCLA� SCLB�

� SCLC� PT����	� FOUND��	 	

CALL SURFPT � SCLPT� OPPDIR� SCLA� SCLB�

� SCLC� PT����	� FOUND��	 	

DO �����

� I � �� �

IF � FOUND�I	 	 THEN

��� �handling the intercept case�

RETURN

END IF

����� CONTINUE

C Getting here means the line doesn�t

C intersect the ellipsoid�

��� �handling the non�intercept case�

RETURN

END

Figure ��� Fragment of subprogram showing control coupling

nonintercept case is to be handled� as is shown in Figure ���

The use of control �ags is a special form of control coupling� 	any connection between two

modules that communicates elements of control �����
 typically in the form of function codes� �ags�

or switches ����� This sharing of control information between two modules increases the complexity

of the code� complicating comprehension and maintenance�

Content coupling� Another form of resource sharing occurs when the lexical structure of a

module is shared among several related functional components� For example� the entire contents of

a module may be lexically included in another� This sometimes occurs when a programmer wants

to take advantage of a powerful intraprocedural optimizer limited to improving the code in a single

routine� Another example occurs when a programmer uses ENTRY statements to partially overlap the

contents of several routines so that they may share access to some state variables� This is sometimes

done in a language� such as Fortran� that does not contain an encapsulation mechanism like packages

or objects�

These two practices are examples of a phenomenon called content coupling in which ���� �

	some or all of the contents of one module are included in the contents of another
�and which

often manifests itself in the form of a multipleentry module� Content coupling makes it di�cult to

independently modify or maintain the individual functions�

Name Sharing� A simple form of sharing is the use of the same variable name for two di�erent

purposes� This can lead to incorrect assumptions about the relationship between subcomputations

within a program�

In general� the di�culty that resource sharing introduces is that it causes ambiguity in inter

preting the purpose of program pieces� This can lead to incorrect assumptions about what e�ect

changes will have� since the maintainer might be focusing on only one of the actual uses of the

��

resource �variable� value� control �ag� data structure slot� etc���

��� Independence

While interleaving is introduced to take advantage of commonalities� it is also true that the inter

leaved plans each have a distinct purpose� One implication of this is that the decision to interleave

the plans can� in principle� always be undone� This may require copying of common code to eliminate

resource sharing� resulting in an equivalent� but possibly less e�cient� program�

In the NPEDLN example� a separate routine could be provided responsible for computing DIST� This

code would be nearly identical to the original� requiring added maintenance and a likely runtime

cost as well� Although interleaving may be necessary for e�ciency� it obscures the independence of

the components involved� Ironically� this hinders activities for making the code more e�cient and

reusable in the long run� such as parallelization and objectivization of the code�

� Case Study

In order to better understand interleaving� we have undertaken a case study of production library

software� The library� called SPICELIB� consists of approximately ��� mathematical programs� written

in Fortran by programmers at the Jet Propulsion Laboratory for analyzing data sent back from

space missions� The software performs calculations in the domain of solar system geometry� such

as coordinate frame conversions� intersections of rays� ellipses� planes� and ellipsoids� and lighttime

calculations� NPEDLN comes from this library�

We were introduced to SPICELIB by researchers at NASA Ames� who have developed a component

based software synthesis system� called Amphion ���� ��� ���� Amphion automatically constructs

programs that compose routines drawn from SPICELIB� It does this by making use of a domain theory

that includes formal speci�cations of the library routines� connecting them to abstract concepts in

the solar system geometry domain� The knowledge of the domain is encoded in a structured repre

sentation� expressed as axioms in �rstorder logic with equality� A space scientist using Amphion can

schematically specify the geometry of a problem through a graphical user interface� and Amphion

automatically generates Fortran programs to call SPICELIB routines to solve the described problem�

Amphion is able to do this by proving a theorem about the solvability of the problem in the domain

and� as a side e�ect� generating the appropriate calls� This is shown in the bottom half of Figure

���

Amphion has been installed at JPL and used by space scientists to successfully generate over one

hundred programs to solve solar system kinematics problems� The programs consist of dozens of

subroutine calls and are typically synthesized in under three minutes of CPU time using a Sun Sparc

� ���� ���� Amphion�s success depends on how accurate� consistent� and complete the domain theory

is that Amphion uses� An essential program understanding task is to validate the domain theory by

checking it against the SPICELIB routines and extending it when incompletenesses are found�

��

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

domain-
based
spec

Fortran
program

Amphion
(NASA)

Reuse
Library

Domain
Theory

Spec Extraction,
Elaboration

component partial spec elaborated spec

plans

Galileo
Jupiter

Sun

?

Interleaving
Detection

Figure ��� Applying interleaving detection to componentbased reuse�

To do this� we need to be able to pull apart interleaved strands� For example� one incompleteness

in Amphion�s domain theory is that it does not fully cover the functionality of the routines� Some

routines compute more than one result� For example� NPEDLN computes the nearest point on an

ellipsoid to a line as well as the shortest distance between that point and the ellipsoid� However� the

domain theory does not always describe all the values that are computed� In the case of NPEDLN� only

the nearest point computation is modelled� not the shortest distance� In these routines� it is often

the case that the code responsible for the secondary functionalities is interleaved with the code for

the primary function covered by Amphion�s domain theory� Uncovering the secondary functionality

requires unraveling and understanding two interleaved computations�

Another way in which Amphion�s current domain theory is incomplete is that it does not express

preconditions on the use of the library routines� for example� when a line given as input to a routine

is not the zero vector or that an ellipsoid�s semiaxes must be large enough to be scalable� It is

di�cult to detect the code responsible for checking these preconditions because it is usually tightly

interleaved with the code for the primary computation in order to take advantage of intermediate

results computed for the primary computation�

In collaboration with NASA Ames researchers� we are detecting ways in which Amphion�s domain

theory is incomplete� and we are building program comprehension techniques to extend it� As the top

half of Figure �� shows� we are developing mechanisms for detecting particular classes of interleaving�

with the aim of extending a partial model of the software�s application domain� In the process� we

are also performing analyses to gather empirical information about how much of SPICELIB is covered

by the domain theory�

We are building interleaving detection mechanisms and empirical analysis tools using a collection

of commercial tools� called the Software Re�nery ����� This is a comprehensive tool suite including

��

languagespeci�c analyzers and browsers for Fortran� C� Ada� and Cobol� language extension mech

anisms for building new analyzers� and a user interface construction tool for displaying the results

of analysis� It maintains an objectoriented repository for holding the results of analyses� such as

abstract syntax trees and symbol tables� It provides a powerful widespectrum language� called Re

�ne ����� which supports pattern matching and querying the repository� Using the Software Re�nery

allows us to leverage commercially available tools as well as evaluate the strengths and limitations

of its approach to program analysis� which we discuss in Section ����

Section ��� brie�y describes our motivation for building tools to elaborate a domain model� from

the perspective of both synthesis and analysis� Section ��� describes mechanisms for detecting and

reporting precondition checks in the library routines� Section ��� describes heuristic mechanisms

still under development for �nding candidate places where interleaving is likely to occur�

��� Domain Model Elaboration in Synthesis and Analysis

Our motivations for validating and extending a partial domain model of existing software come both

from the synthesis and from the analysis perspectives� The primary motivations for doing this from

the synthesis perspective are to make component retrieval more accurate� to assist in updating and

growing the domain model as new software components are added� and to improve the software

synthesized�

From the software analysis perspective� the re�nement and elaboration of domain knowledge�

based on what is discovered in the code� is a primary activity� driving the generation of hypotheses

and informing future analyses� The process of understanding software involves two parallel knowl

edge acquisition activities ��� ��� ����

�� using domain knowledge to understand the code�knowledge about the application sets up

expectations about how abstract concepts are typically manifested in concrete code implemen

tations�

�� using knowledge of the code to understand the domain�what is discovered in the code is

used to build up a description of various aspects of the application and to help answer ques

tions about why certain code structures exist and what is their purpose with respect to the

application�

We are studying interleaving in the context of performing these activities� given SPICELIB and an

incomplete model of its application domain� We are targeting our detection of interleaving toward

elaborating the existing domain model� We are also looking for ways in which the current knowledge

in the domain model can guide detection and ultimately comprehension�

��

CProcedure SURFPT � Surface point on an ellipsoid 	

SUBROUTINE SURFPT � POSITN� U� A� B� C� POINT� FOUND 	

DOUBLE PRECISION U � � 	

���declarations���

C Check the input vector to see if its the zero vector� If it is

C signal an error and return�

C

IF � � U��	 �EQ� ���D� 	 �AND�

� � U��	 �EQ� ���D� 	 �AND�

� � U��	 �EQ� ���D� 	 	 THEN

CALL SETMSG � �SURFPT
 The input vector is the zero vector�� 	

CALL SIGERR � �SPICE�ZEROVECTOR	� 	

CALL CHKOUT � �SURFPT� 	

RETURN

END IF

���

Figure ��� A fragment of the subroutine SURFPT in SPICELIB� This fragment shows a precondition

check which invokes an exception if all of the elements of the U array are ��

��� Extracting Preconditions

Using the Software Re�nery� we automated a number of program analyses� one of which is the detec

tion of subroutine parameter precondition checks� Because precondition checks are often interspersed

throughout a subprogram� they tend to delocalize the plans that perform the primary computational

work� They are usually part of a larger plan that detects exceptional� usually erroneous conditions

in the state of a running program� and then takes alternative action when these conditions arise�

such as returning with an error code� signaling� or invoking error handlers�

We found many examples of precondition checks in our empirical analysis of the SPICELIB� One

such check occurs in the subprogram SURFPT and is shown in Figure ��� SURFPT �nds the intersection

�POINT� of a ray �represented by a point POSITN and a direction vector U� with an ellipsoid �represented

as three semiaxes lengths A� B� and C�� if such an intersection exists �indicated by FOUND�� One of

the preconditions checked by SURFPT is that the direction vector U is not the zerovector�

Precondition checks make explicit the assumptions a subprogram places on its inputs� The

process of understanding a subprogram can be facilitated by removing its precondition checks and

using the information they encode to elaborate a highlevel speci�cation of the subprogram� We have

created a tool that detects precondition checks and extracts the preconditions into a documentation

form suitable for expression as a partial speci�cation� The speci�cations can then be compared

against the Amphion domain model�

Precondition checks are particularly di�cult to understand when they are sprinkled throughout

the code of a subroutine as opposed to being localized at the beginning� We discovered that� though

interleaved� these checks could be reliably identi�ed by searching for IF statements whose conditions

are a function of the input parameters and whose bodies invoke exception handlers� The analysis

��

that decides whether or not IF statements test only input parameters is speci�c to the Fortran

language� whereas the analysis that decides if a code fragment is an exception plan is application

domain speci�c� The implication is that the Fortran speci�c portion is not likely to need changing

when we apply the tool to a new Fortran application� whereas the application speci�c portion will

certainly need to change� With this in mind� we chose a tool architecture that allows �exibility in

keeping these di�erent types of pattern knowledge separate and independently adaptible�

Detecting Exception Handlers In general� we need application speci�c knowledge about usage

patterns in order to discover exception handlers� SPICELIB� for example� provides a routine SIGERR

that sets an error condition� Typically� SIGERR is followed almost immediately by a RETURN statement�

Hence� a call to SIGERR followed closely by a RETURN indicates a clich�e for handling an exception� In

some other application� the form of this clich�e will be much di�erent� It is� therefore� necessary to

design the recognition component of our architecture around this need to specialize the tool with

knowledge about the application of a system being analyzed�

The Software Re�nery provides excellent support for this design principle through the use of the

rule construct and a treewalker that applies these rules to an abstract syntax tree �AST�� Rules

declaratively specify state changes by listing the conditions before and after the change without

specifying exactly how the change occurs� This is useful for linking application speci�c pattern

knowledge into a system because it allows the independent� declarative expression of the di�erent

facets of the pattern�

We recognize applicationspeci�c exception handlers using two rules which search the AST for a

call to SIGERR� followed by a RETURN statement� These rules and the Re�ne code that applies them

are presented in detail in �����

Detecting Guards Discovering 	guards�
 which are IF statements that depend only upon input

parameters� involves keeping track of whether or not these parameters have been modi�ed before the

check� If they have been modi�ed before the check� then the check probably is not a precondition

check on inputs� In Fortran� a variable X can be modi�ed by�

�� appearing on the left hand side of an assignment statement�

�� being passed into a subprogram which then modi�es the formal parameter bound to X by the

call�

�� being implicitly passed into another subprogram in a COMMON block and modi�ed in this other

subprogram� or

�� explicitly aliased by an EQUIVALENCE statement to another variable which is then modi�ed�

Currently our analysis does not detect modi�cation through COMMON or EQUIVALENCE because none

of the code in SPICELIB uses these features with formal parameters� We track modi�cations to

input parameters by using an approximate data�ow algorithm that propagates a set of unmodi�ed

��

RECGEO ��F � �����RE � ���D��

REMSUB ���LEFT � RIGHT ���RIGHT � ����LEFT � ����RIGHT � LEN�IN����LEFT � LEN�IN���

SURFPT ���U��� � ���D��� �U��� � ���D��� �U��� � ���D���

XPOSBL ���MOD�NCOL�BSIZE� �� �� � �MOD�NROW�BSIZE� �� ��� � ��NCOL � �� � ��NROW �

�����BSIZE � ��

Figure ��� Preconditions extracted for some of the subroutines in SPICELIB�

variables through the sequence of statements in the subroutine� At each statement� if a variable X

in the set could be modi�ed by the execution of the statement� then X is removed from the set�

After the propagation� we can easily check whether or not an IF statement is a guard�

Results The result of this analysis is a table of preconditions associated with each subroutine�

Since we are targetting partial speci�cation elaboration� we chose to make the tool output the

preconditions in LaTEX form so as to generate nicely formatted reports� Figure �� gives examples

of preconditions extracted for a few SPICELIB subroutines� Our tool generated the LaTEX source

included in Figure �� without change�

Taken literally� the precondition for SURFPT� for example� states that one of the �rst three elements

of the U array parameter must be nonzero� In the domain model� U is seen as a vector� so the more

abstract precondition can be stated as 	U is not the zero vector�
 Extracting the precondition

into the literal representation is the �rst step to being able to express the precondition in the more

abstract form�

The other preconditions listed in Figure ��� stated in their abstract form� are the following� The

subroutine RECGEO converts the rectangular coordinates of a point RECTAN to geodetic coordinates�

with respect to a given reference spheroid whose equatorial radius is RE� using a �attening coe�cient

F� Its precondition is that the radius is greater than � and the �attening coe�cient is less than ��

The subroutine REMSUB removes the substring �LEFT�RIGHT� from a character string IN� It requires

that the positions of the �rst character LEFT and the last character RIGHT to be removed are in the

range � to the length of the string and that the position of the �rst character is less than the position

of the last� Finally� the subroutine XPOSBL transposes the square blocks within a matrix BMAT� Its

preconditions are that the block size BSIZEmust evenly divide both the number of rows NROW in BMAT

and the number of columns NCOL and that the block size� number of rows� and number of columns

are all at least ��

��� Finding Interleaving Candidates

There are other analyses that we are implementing which are heuristic techniques for �nding likely

interleaving candidates�

��

����� Routines with Multiple Outputs

One heuristic for �nding instances of interleaving is to determine which subroutines compute more

than one output� When this occurs� the subroutine is returning either the results of multiple distinct

computations or a result whose type can not be directly expressed in the Fortran type system �e�g��

as a data aggregate�� In the former case� the subroutine is realized as the interleaving of multiple

distinct plans� as is the case with NPEDLN�s computation of both the nearest point and the shortest

distance�

In the latter case� the subroutine may be implementing only a single plan� but a maintainer�s

conceptual categorization of the subroutine is still obscured by the appearance of some number of

seemingly distinct outputs� A good example of this case occurs in the SPICELIB subroutine SURFPT�

which conceptually returns the intersection of a vector with the surface of an ellipsoid� However�

it is possible to give SURFPT a vector and an ellipsoid that do not intersect� In such a situation the

output parameter POINT will be unde�ned� but the Fortran type system cannot express the type�

DOUBLE PRECISION � Unde�ned� The programmer was forced to simulate a variable of this type using

two variables� POINT and FOUND� adopting the convention that when FOUND is false� the return value

is Unde�ned� and when FOUND is true� the return value is POINT�

Clearly subprograms with multiple outputs complicate program understanding� We built a tool

that determines the multiple output subprograms in a library by analyzing the direction of data�ow

in parameters of functions and subroutines� A parameter�s direction is either� in if the parameter is

only read in the subprogram� out if the parameter is only written in the subprogram� or in�out if

the parameter is both read and written in the subprogram� Multiple output subprograms will have

more than one parameter with direction out or inout�

Our tool bases its analysis on the structure chart �call graph� objects that the Software Re�nery

creates� The nodes of these structure charts are annotated with direction information about param

eters� The resulting analysis showed that �� percent of the subprograms in SPICELIB had multiple

output parameters� We were thus able to focus our work on these routines �rst� as they are likely

to involve interleaving�

In addition� we performed an empirical analysis to determine� for those routines covered by the

Amphion domain model ��� percent of the library�� which ones have multiple output parameters�

some of which are not covered by the domain model� We refer to outputs that are not mapped

to anything in the domain model as dead end data�ows� since the programs that Amphion creates

can never make use of these return values� they have not been associated with any meaning in the

application domain� For example� NPEDLN�s distance output �DIST� is a dead end data�ow as far as

the domain model is concerned� Dead end data�ows imply interleaving in the subprogram and�or

an incompleteness in the domain model� Our analysis revealed that of the subroutines covered by

the domain model� �� percent have some output parameters that are dead end data�ows� These are

good focal points for detecting interleaved plans that might be relevant to elaborating the domain

theory�

��

����� Control Coupling

Another heuristic for detecting potential interleaving �nds candidate routines that may be involved

in control coupling� In particular� it asks the question� Which calls to library routines� supply a

constant as a parameter to other routines as opposed to a variable� The constant parameter may be

a �ag that is being used to choose among a set of possible computations to perform� A strategy we

use for detecting control coupling �rst computes a set of candidate routines that are invoked with

a constant parameter in the library or by code generated from the Amphion domain model� Each

member of this set is then analyzed to see if the formal parameter associated with the constant actual

parameter is used to conditionally execute disjoint sections of code� We have discovered instances of

control coupling in SPICELIB and have computed the set of routines that are invoked with a constant

parameter� This set accounts for �� percent of the total routines in SPICELIB� and we are currently

investigating these to see how many of them actually exhibit control coupling�

����� Reformulation Wrappers

A third heuristic for locating interleaving is to ask� Which pairs of routines �co�occur�� Two

routines cooccur if they are always called by the same routines� they are executed under the same

conditions� and there is a �ow of computed data from one to the other� We would like to detect

cooccurrence pairs because they are likely to form reformulation wrappers� Detecting cooccurrence

pairs in the library can heuristically help generate candidates for reformulation wrappers� The pairs

need to be checked further to see whether they are inverses of each other� Of course� in general we

would like to consider any code fragments as potential pairs� not just library routines�

Through empirical investigation of SPICELIB� we have discovered cooccurrence pairs that form

reformulation wrappers and are currently building tools to perform this analysis automatically� The

idea is to generate a set of all possible pairs of routines in the system and then eliminate pairs that

do not cooccur� Given a pair hS�� S�i we say that S� and S� cooccur if and only if� �� every

subroutine in the library that references S� also references S�� �� execution of S� implies execution

of S� and vice versa� and �� there is a �ow of computed data from S� to S�� We describe how to

implement this test in �����

� Open Issues

We are convinced that interleaving seriously complicates understanding computer programs� But

recognizing a problem is di�erent from knowing how to �x it� Questions arise as to how powerful tools

need to be to detect and extract interleaved components� what form of representation is appropriate

to hold the extracted information� how information about the application domain can be used to

detect plans� and the extent to which the concept of interleaving and its detection mechanisms scale

up to the architectural level�

��

��� Tool Support

We used the Software Re�nery from Reasoning Systems in our analyses� This comprehensive toolkit

provides a set of languagespeci�c browsers and analyzers� a parser generator� a user interface builder�

and an objectoriented repository for holding the results of analyses� We made particular use of two

other features of the toolkit� The �rst is called the Workbench� and it provided preexisting analyses

for traditional graphs and reports such as structure charts� data�ow diagrams� and cross reference

lists� The results of the analyses can be accessed from the repository using small� Re�ne language

programs such as those described in ����� The Re�ne compiler was the other feature we used�

compiling a Re�ne program into compiled Lisp�

The approach taken by the Re�ne language and tool suite has many advantages for attacking

problems like ours� The language itself combines features of imperative� objectoriented� functional�

and rulebased programming� thus providing �exibility and generality� Of particular value to us

is its rulebased constructs� Beforeandafter condition patterns de�ne the properties of constructs

without indicating how to �nd them� We had merely to add a simple tree walking routine to apply

the rules to the abstract syntax tree� In addition to the rulebased features� Re�ne provides abstract

data structures� such as sets� maps� and sequences� which manage their own memory requirements�

thereby reducing programmer work� The objectoriented repository further reduces programmer

responsibility by providing persistence and memory management�

We also take full advantage of Reasoning Systems� existing Fortran language model and its

structure chart analysis� These allowed us a running start on our analysis and provided a robust

handling of Fortran constructs that are not typically available from noncommercial research tools�

We can see several ways in which the Re�ne approach can be extended� In particular� the avail

ability of other analyses� such as control �ow graphs for Fortran and general data�ow analysis� would

prove useful� Robust data�ow analysis is particularly important to the precision of precondition ex

traction� The Re�ne language itself might also be extended further� Currently it does not support

passing functions as parameters� and the application of the rule construct is somewhat restricted�

��� Representation

The strategy for building program analysis tools is to formulate a program representation whose

structural properties correspond to interesting program properties� A programming style tool� for

example� uses a control �ow graph that explicitly represents transfer of execution �ow in programs�

Irreducible control �ow graphs signify the use of unstructured GO TO statements� The style tool

uses this structural property to report violations of structured programming style� Since we want

to build tools for interleaving detection we have to formulate a representation that captures the

properties of interleaving� We do this by �rst listing structural properties that correspond to each

of the three characteristics of interleaving and then searching for a representation that has these

structural properties�

The key characteristics of interleaving are delocalization� resource sharing� and independence�

��

In sequential languages like Fortran� delocalization often can not be avoided when two or more

plans share data� The components of the plans have to be serialized with respect to the data�ow

constraints� This typically means that components of plans cluster around the computation of the

data being shared as opposed to clustering around other components of the same plan� This total

ordering is necessary due to the lack of support for concurrency in most high level programming

languages� It follows then that in order to express a delocalized plan� a representation must impose

a partial rather than a total execution ordering on the components of plans�

The partial execution ordering requirement suggests that some form of graphical representation

is appropriate� Graph representations naturally express a partial execution ordering via implicit con

currency and explicit transfer of control and data� Since there are a number of such representations

to choose from� we narrow the possibilities by noting that�

�� independent plans must be localized as much as possible� with no explicit ordering between

them�

�� sharing must be detectable �shared resources should explicitly �ow from one plan to another��

similarly if two plans p�� p� both share a resource provided by a plan p� then p� and p� should

appear in the graph as siblings with a common ancestor p���

�� the representation must support multiple views of the program as the interaction of plans at

various levels of abstraction� since interleaving may occur at any level of abstraction�

An existing formalism that meets these criteria is Rich�s Plan Calculus ���� ��� ���� A plan

in the Plan Calculus is encoded as a graphical depiction of the plan�s structural parts and the

constraints �e�g�� data and control �ow connections� between them� This diagrammatic notation

is complemented with an axiomatized description of the plan that de�nes its formal semantics�

This allows us to develop correctness preserving transformations to extract interleaved plans� The

Plan Calculus also provides a mechanism� called overlays� for representing correspondences and

relationships between pairs of plans �e�g�� implementation and optimization relationships�� This

enables the viewing of plans at multiple levels of abstraction� Overlays also support a very general

notion of plan composition which takes into account resource sharing at all levels of abstraction by

allowing overlapping points of view�

��� Domain Knowledge

Most of the current technology available to help understand programs addresses how questions� that

is� it is driven by the syntactic structure of programs written in some programming language� But the

tasks that require the understanding�perfective� adaptive� and corrective maintenance�are driven

by the problem the program is solving� that is� its application domain� These tasks really require

answers to why questions� For example� if a maintenance task requires extending NPEDLN to handle

symmetric situations where more than one 	nearest point
 exist to a line� then the programmer

needs to �gure out what to do about the distance calculation also computed by NPEDLN� Why was

DIST computed inside of the routine instead of separately� Was it only for e�ciency reasons� or might

��

the nearest point and the distance be considered a pair of results by its callers� In the former case�

a single DIST return value is still appropriate� in the latter� a pair of identical values is indicated� To

answer questions like these� programmers need to know which plans pieces of code are implementing�

And plans are direct re�ections of the application domain� not the program�

Another example from NPEDLN concerns reformulation wrappers� These plans are inherently

delocalized� In fact� they only make sense as plans at all when considered in the context of the

application domain� stable computations of solar system geometry� Without this understanding�

the best hope is to recognize that the code has uniformly multiplied the elements of a vector in two

places� without knowing why this was done and how the multiplications are connected�

The underlying issue is that any scheme for code understanding based solely on a topdown or

a bottomup approach is inherently limited� As illustrated by the examples� a bottomup approach

cannot hope to relate delocalized segments or disentangle interleavings without being able to relate

to the plans being implemented� And a topdown approach cannot hope to �nd where a plan is

implemented without being able understand how plan implementations are related syntactically and

via data �ows� The implication is that a coordinated strategy is indicated� where plans generate

expectations that guide program analysis and program analysis generates related segments that need

explanation�

��� Architectural Interleaving

We can characterize the ways interleaving manifests itself in source code along two orthogonal di

mensions� These form a possible design space of solutions to the interleaving problem and can help

relate existing techniques that might be applicable� One dimension is the scope of the interleaving�

which can range from intraprocedural to interprocedural to object to architectural� Another dimen

sion is the structural mechanism providing the interleaving� which may be naming� control� data�

or protocol� Protocols are global constraints� such as maintaining stack discipline or synchroniza

tion mechanisms for cooperating processes� For example� the use of control �ags is a controlbased

mechanism for interleaving with interprocedural scope� The common iteration construct involved

in loop fusion is another controlbased mechanism� but this interleaving has intraprocedural scope�

Reformulation wrappers use a protocol mechanism� usually at the intraprocedural level� but they

can have interprocedural scope� Multipleinheritance is an example of a datacentered interleaving

mechanism with object scope�

Interleaving at the scope of objects and architectures or involving global protocol mechanisms is

not yet well understood� Consequently� few mechanisms for detection and extraction currently exist

in these areas� We believe that more knowledge of the domain will be required to detect interleaving

as the scope becomes more global in nature�

��

� Related Work

Techniques for detecting interleaving and disentangling interleaved plans are likely to build on ex

isting program comprehension and maintenance techniques�

��� The Role of Recognition

When what is interleaved is familiar �i�e�� stereotypical� frequently used plans�� clich�e recognition

�e�g�� ���� ��� ��� ��� ��� ��� ���� is a useful detection mechanism�� In fact� most recognition systems

deal explicitly with the recognition of clich�es that are interleaved in speci�c ways with unrecognizable

code or other clich�es� One of the key features of GRASPR ����� for instance� is its ability to deal with

delocalization and redistributiontype function sharing optimizations�

KBEmacs ���� ��� uses a simple� specialpurpose recognition strategy to segment loops within

programs� This is based on detecting coarse patterns of data and control �ow at the procedural

level that are indicative of common ways of constructing� augmenting� and interleaving iterative

computations� For example� KBEmacs looks for minimal sections of a loop body that have data �ow

feeding back only to themselves� This decomposition enables a powerful form of abstraction� called

temporal abstraction� which views iterative computations as compositions of operations on sequences

of values� The recognition and temporal abstraction of iteration clich�es is similarly used in GRASPR

to enable it to deal with generalized loop fusion forms of interleaving� Loop fusion is viewed as

redistribution of sequences of values and treated as any other redistribution optimization �����

Most existing clich�e recognition systems tend to deal with interleaving involving data and control

mechanisms� Domainbased clustering� as explored by DM�TAO in the DESIRE system ���� focuses on

naming mechanisms� by keying in on the patterns of linguistic idioms used in the program� which

suggest the manifestations of domain concepts�

Mechanisms for dealing with speci�c types of interleaving have been explicitly built into existing

recognition systems� In the future� we envision recognition architectures that detect not only familiar

computational patterns� but also recognize familiar types of transformations or design decisions that

went into constructing the program� Many existing clich�e recognition systems implicitly detect

and undo certain types of interleaving design decisions� However� this process is usually done with

specialpurpose procedural mechanisms that are di�cult to extend and that are viewed as having

secondary 	supporting roles
 to the clich�e recognition process� rather than as being an orthogonal

form of recognition�

��� Disentangling Unfamiliar Plans

When what is interleaved is unfamiliar �i�e�� novel� idiosyncratic� not repeatedly used plans�� other�

nonrecognitionbased methods of delineation are needed� For example� slicing ���� ��� is a widely

�Recognition as a program understanding technique deals with clich�es� not plans in general� Only clich�ed plans

can be recognized� since recognition implies noticing something that is familiar�

��

used technique for localizing functional components by tracing through data dependencies within the

procedural scope� Cluster analysis ��� ��� ��� ��� is used to group related sections of code� based on

the detection of shared uses of global data� control paths� and names� However� clustering techniques

can only provide limited assistance by roughly delineating possible locations of functionally cohesive

components� Another technique� called 	potpourri module detection
 ���� detects modules that

provide more than one independent service by looking for multiple proper subgraphs in an entityto

entity interconnection graph� These graphs show dependencies among global entities within a single

module� Presumably� the independent services re�ect separate plans in the code�

Research into automating data encapsulation has recently provided mechanisms for hypothesizing

possible locations of data plans at the object scope� For example� Bowdidge and Griswold ��� use an

extended data �ow graph representation� called a star diagram� to help human users see all the uses

of a particular data structure and to detect frequently occurring computations that are candidates

for abstract functions� Techniques have also been developed within the RE� project ��� ��� for

identifying candidate abstract data types and their associated modules� based on the call graph and

dominance relations� Further research is required to develop techniques for extracting objects from

pieces of data that have not already been aggregated in programmerde�ned data structures� For

example� detecting multiple pieces of data that are always used together might suggest candidates

for data aggregation �as for example� in NPEDLN� where the input parameters A� B� and C are used as

a tuple representing an ellipsoid� and the outputs PNEAR and DIST represent a pair of results related

by interleaved� highly overlapping plans��

� Conclusion

This paper characterizes interleaving� a particularly troublesome feature of programs which makes

them di�cult to understand� We o�er the following de�nition�

Interleaving expresses the merging of two or more distinct plans within some contiguous

textual area of a program� Interleaving can be characterized by the delocalization of the

code for the individual plans involved� the sharing of some resource� and the implemen

tation of multiple� independent plans in the program�s overall purpose�

Whether this characterization is robust is an issue for future empirical studies� We plan to study

the frequency of occurrence of the various types of interleaving we have identi�ed in our example

programs� This may lead to better complexity metrics for determining the maintainability and

comprehensibility of programs� Ultimately� designing tools for detection and extraction will be the

true test of the usefulness of this characterization�

Acknowledgments Support for this research has been provided by ARPA� �contract number

NAG ������ We are grateful to JPL�s NAIF group for enabling our study of their SPICELIB software�

We also bene�ted from insightful discussions with Michael Lowry at Nasa Ames Research Center

concerning this study and interesting future directions�

��

� Appendix� NPELDN with Some of Its Documentation

C$ Nearest point on ellipsoid to line.
SUBROUTINE NPEDLN(A,B,C,LINEPT,LINEDR,PNEAR,
 . DIST)
 INTEGER UBEL
 PARAMETER (UBEL = 9)
 INTEGER UBPL
 PARAMETER (UBPL = 4)
 DOUBLE PRECISION A
 DOUBLE PRECISION B
 DOUBLE PRECISION C
 DOUBLE PRECISION LINEPT (3)
 DOUBLE PRECISION LINEDR (3)
 DOUBLE PRECISION PNEAR (3)
 DOUBLE PRECISION DIST
 LOGICAL RETURN
 DOUBLE PRECISION CANDPL (UBPL)
 DOUBLE PRECISION CAND (UBEL)
 DOUBLE PRECISION OPPDIR (3)
 DOUBLE PRECISION PRJPL (UBPL)
 DOUBLE PRECISION MAG
 DOUBLE PRECISION NORMAL (3)
 DOUBLE PRECISION PRJEL (UBEL)
 DOUBLE PRECISION PRJPT (3)
 DOUBLE PRECISION PRJNPT (3)
 DOUBLE PRECISION PT (3, 2)
 DOUBLE PRECISION SCALE
 DOUBLE PRECISION SCLA
 DOUBLE PRECISION SCLB
 DOUBLE PRECISION SCLC
 DOUBLE PRECISION SCLPT (3)
 DOUBLE PRECISION UDIR (3)
 INTEGER I
 LOGICAL FOUND (2)
 LOGICAL IFOUND
 LOGICAL XFOUND
 IF (RETURN ()) THEN
 RETURN
 ELSE
 CALL CHKIN ('NPEDLN')
 END IF
 CALL UNORM (LINEDR, UDIR, MAG)
 IF (MAG .EQ. 0) THEN
 CALL SETMSG('Direction is zero vector.')
 CALL SIGERR('SPICE(ZEROVECTOR)')
 CALL CHKOUT('NPEDLN')
 RETURN
 ELSE IF ((A .LE. 0.D0)
 . .OR. (B .LE. 0.D0)
 . .OR. (C .LE. 0.D0)) THEN
 CALL SETMSG ('Semi-axes: A=#,B=#,C=#.')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(INVALIDAXISLENGTH)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
C Scale the semi-axes lengths for better
C numerical behavior. If squaring any of the
C scaled lengths causes it to underflow to
C zero, signal an error. Otherwise scale the
C point on the input line too.
 SCALE = MAX (DABS(A), DABS(B), DABS(C))
 SCLA = A / SCALE
 SCLB = B / SCALE
 SCLC = C / SCALE
 IF ((SCLA**2 .LE. 0.D0)
 . .OR. (SCLB**2 .LE. 0.D0)
 . .OR. (SCLC**2 .LE. 0.D0)) THEN
 CALL SETMSG ('Axis too small: A=#,B=#,C=#.')
 CALL ERRDP ('#', A)
 CALL ERRDP ('#', B)
 CALL ERRDP ('#', C)
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN

 END IF
 SCLPT(1) = LINEPT(1) / SCALE
 SCLPT(2) = LINEPT(2) / SCALE
 SCLPT(3) = LINEPT(3) / SCALE
C Hand off the intersection case to SURFPT.
C SURFPT determines whether rays intersect a body,
C so we treat the line as a pair of rays.
 CALL VMINUS(UDIR, OPPDIR)
 CALL SURFPT(SCLPT, UDIR, SCLA, SCLB,
 . SCLC, PT(1,1), FOUND(1))
 CALL SURFPT(SCLPT, OPPDIR, SCLA, SCLB,
 . SCLC, PT(1,2), FOUND(2))
 DO 50001
 . I = 1, 2
 IF (FOUND(I)) THEN
 DIST = 0.0D0
 CALL VEQU (PT(1,I), PNEAR)
 CALL VSCL (SCALE, PNEAR, PNEAR)
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
50001 CONTINUE
C Getting here means the line doesn't intersect
C the ellipsoid. Find the candidate ellipse CAND.
C NORMAL is a normal vector to the plane
C containing the candidate ellipse. Mathematically
C the ellipse must exist; it's the intersection of
C an ellipsoid centered at the origin and a plane
C containing the origin. Only numerical problems
C can prevent the intersection from being found.
 NORMAL(1) = UDIR(1) / SCLA**2
 NORMAL(2) = UDIR(2) / SCLB**2
 NORMAL(3) = UDIR(3) / SCLC**2
 CALL NVC2PL (NORMAL, 0.D0, CANDPL)
 CALL INEDPL (SCLA,SCLB,SCLC,CANDPL,CAND,XFOUND)
 IF (.NOT. XFOUND) THEN
 CALL SETMSG ('Candidate ellipse not found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
C Project the candidate ellipse onto a plane
C orthogonal to the line. We'll call the plane
C PRJPL and the projected ellipse PRJEL.
 CALL NVC2PL (UDIR, 0.D0, PRJPL)
 CALL PJELPL (CAND, PRJPL, PRJEL)
C Find the point on the line lying in the project-
C ion plane, and then find the near point PRJNPT
C on the projected ellipse. Here PRJPT is the
C point on the line lying in the projection plane.
C The distance between PRJPT and PRJNPT is DIST.
 CALL VPRJP (SCLPT, PRJPL, PRJPT)
 CALL NPELPT (PRJPT, PRJEL, PRJNPT)
 DIST = VDIST (PRJNPT, PRJPT)
C Find the near point PNEAR on the ellipsoid by
C taking the inverse orthogonal projection of
C PRJNPT; this is the point on the candidate
C ellipse that projects to PRJNPT. The output
C DIST was computed in step 3 and needs only to be
C re-scaled. The inverse projection of PNEAR ought
C to exist, but may not be calculable due to nu-
C merical problems (this can only happen when the
C ellipsoid is extremely flat or needle-shaped).
 CALL VPRJPI(PRJNPT,PRJPL, CANDPL, PNEAR, IFOUND)
 IF (.NOT. IFOUND) THEN
 CALL SETMSG ('Inverse projection not found.')
 CALL SIGERR ('SPICE(DEGENERATECASE)')
 CALL CHKOUT ('NPEDLN')
 RETURN
 END IF
C Undo the scaling.
 CALL VSCL (SCALE, PNEAR, PNEAR)
 DIST = SCALE * DIST
 CALL CHKOUT ('NPEDLN')
 RETURN
 END

��

C Descriptions of subroutines called by NPEDLN:
C
C CHKIN Module Check In (error handling).
C UNORM Normalize double precision 3-vector.
C SETMSG Set Long Error Message.
C SIGERR Signal Error Condition.
C CHKOUT Module Check Out (error handling).
C ERRDP Insert DP Number into Error Message Text.
C VMINUS Negate a double precision 3-D vector.
C SURFPT Find intersection of vector w/ ellipsoid.
C VEQU Make one DP 3-D vector equal to another.
C VSCL Vector scaling, 3 dimensions.
C NVC2PL Make plane from normal and constant.
C INEDPL Intersection of ellipsoid and plane.
C PJELPL Project ellipse onto plane, orthogonally.
C VPRJP Project a vector onto plane orthogonally.
C NPELPT Find nearest point on ellipse to point.
C VPRJPI Vector projection onto plane, inverted.
C __
C
C Descriptions of variables used by NPEDLN:
C A Length of semi-axis in the x direction.
C B Length of semi-axis in the y direction.
C C Length of semi-axis in the z direction.
C LINEPT Point on input line.
C LINEDR Direction vector of input line.
C PNEAR Nearest point on ellipsoid to line.
C DIST Distance of ellipsoid from line.
C UBEL Upper bound of array containing ellipse.
C UBPL Upper bound of array containing plane.
C PT Intersection point of line & ellipsoid.
C CAND Candidate ellipse.
C CANDPL Plane containing candidate ellipse.
C NORMAL Normal to the candidate plane CANDPL.
C UDIR Unitized line direction vector.
C MAG Magnitude of line direction vector.
C OPPDIR Vector in direction opposite to UDIR.
C PRJPL Projection plane, which the candidate
C ellipse is projected onto to yield PRJEL.
C PRJEL Projection of the candidate ellipse
C CAND onto the projection plane PRJEL.
C PRJPT Projection of line point.
C PRJNPT Nearest point on projected ellipse to
C projection of line point.
C SCALE Scaling factor.

��

References

��� V�R� Basili and H�D� Mills� Understanding and documenting programs� IEEE Trans� on Soft�

ware Engineering� ������������� May �����

��� T� Biggersta�� B� Mitbander� and D� Webster� Program understanding and the concept assign

ment problem� Comm� of the ACM� ������������ May �����

��� Barry Boehm� Software Engineering Economics� Prentice Hall� �����

��� R� Bowdidge and W� Griswold� Automated support for encapsulating abstract data types� In

Proc� �nd ACM SIGSOFT Symp� on Foundations of Software Engineering� pages ������� New

Orleans� Dec� �����

��� R� Brooks� Towards a theory of the comprehension of computer programs� Int� Journal of

Man�Machine Studies� ����������� �����

��� F� Calliss and B� Cornelius� Potpourri module detection� In IEEE Conf� on Software Mainte�

nance 	
���� pages ������ San Diego� CA� November ����� IEEE Computer Society Press�

��� G� Canfora� A� Cimitile� and M� Munro� A reverse engineering method for identifying reusable

abstract data types� In Proc� of the First Working Conference on Reverse Engineering� pages

������ Baltimore� Maryland� May ����� IEEE Computer Society Press�

��� A� Cimitile� M� Tortorella� and M� Munro� Program comprehension through the identi�ca

tion of abstract data types� In Proc� rd Workshop on Program Comprehension� pages ������

Washington� D�C�� November ����� IEEE Computer Society Press�

��� R� K� Fjeldstad and W� T� Hamlen� Application program maintenance study� Report to our

respondents� In GUIDE ��� � ����� Also appears in �����

���� R� Hall� Program improvement by automatic redistribution of intermediate results� Technical

Report ����� MIT Arti�cial Intelligence Lab�� February ����� PhD�

���� R� Hall� Program improvement by automatic redistribution of intermediate results� An

overview� In M� Lowry and R� McCartney� editors� Automating Software Design� AAAI Press�

Menlo Park� CA� �����

���� J� Hartman� Automatic control understanding for natural programs� Technical Report AI

������ University of Texas at Austin� ����� PhD thesis�

���� D� Hutchens and V� Basili� System structure analysis� Clustering with data bindings� IEEE

Trans� on Software Engineering� ������ August �����

���� Reasoning Systems Incorporated� Software Re�nery Toolkit� Palo Alto� CA�

���� W� L� Johnson� Intention�Based Diagnosis of Novice Programming Errors� Morgan Kaufmann

Publishers� Inc�� Los Altos� CA� �����

��

���� W� Kozaczynski and J�Q� Ning� Automated program understanding by concept recognition�

Automated Software Engineering� ����������� March �����

���� S� Letovsky� Plan analysis of programs� Research Report ���� Yale University� December �����

PhD�

���� S� Letovsky and E� Soloway� Delocalized plans and program comprehension� IEEE Software�

����� �����

���� M� Lowry� A� Philpot� T� Pressburger� and I� Underwood� Amphion� automatic programming

for subroutine libraries� In Proc� �th Knowledge�Based Software Engineering Conference� pages

����� Monterey� CA� �����

���� M� Lowry� A� Philpot� T� Pressburger� and I� Underwood� A formal approach to domainoriented

software design environments� In Proc� �th Knowledge�Based Software Engineering Conference�

pages ������ Monterey� CA� �����

���� G� Myers� Reliable Software through Composite Design� Petrocelli Charter� �����

���� J�Q� Ning� A� Engberts� and W� Kozaczynski� Automated support for legacy code understand

ing� Comm� of the ACM� ������������ May �����

���� S� Ornburn and S� Rugaber� Reverse engineering� Resolving con�icts between expected and

actual software designs� In IEEE Conf� on Software Maintenance 	
���� pages ������ Orlando�

Florida� November �����

���� G� Parikh and N� Zvegintozov� editors� Tutorial on Software Maintenance� IEEE Computer

Society� ����� Order No� EM����

���� A� Quilici� A memorybased approach to recognizing programming plans� Comm� of the ACM�

������������ May �����

���� C� Rich� A formal representation for plans in the Programmer�s Apprentice� In Proc� �th Int�

Joint Conf� Arti�cial Intelligence� pages ���������� Vancouver� British Columbia� Canada�

August �����

���� C� Rich� Inspection methods in programming� Technical Report ���� MIT Arti�cial Intelligence

Lab�� June ����� PhD thesis�

���� C� Rich and R� C� Waters� The Programmer�s Apprentice� AddisonWesley� Reading� MA and

ACM Press� Baltimore� MD� �����

���� C� Rich and L� M� Wills� Recognizing a program�s design� A graphparsing approach� IEEE

Software� ����������� January ����� Reprinted in P� H� Winston� editor� Arti�cial Intelligence

at MIT� Expanding Frontiers� MIT Press� Cambridge� MA� In press�

���� S� Rugaber� S� Ornburn� and R� LeBlanc� Recognizing design decisions in programs� IEEE

Software� ����������� January �����

��

���� S� Rugaber� K� Stirewalt� and L� Wills� Detecting interleaving� In IEEE Conf� on Software

Maintenance 	
���� Nice� France� September ����� IEEE Computer Society Press� To appear�

���� R� Schwanke� An intelligent tool for reengineering software modularity� In IEEE Conf� on

Software Maintenance 	
��
� pages ������ �����

���� R� Schwanke� R� Altucher� and M� Plato�� Discovering� visualizing� and controlling software

structure� In Proc� �th Int� Workshop on Software Specs� and Design� pages �������� Pittsburgh�

PA� �����

���� P� Selfridge� R� Waters� and E� Chikofsky� Challenges to the �eld of reverse engineering �

A position paper� In Proc� of the First Working Conference on Reverse Engineering� pages

�������� Baltimore� Maryland� May ����� IEEE Computer Society Press�

���� D� Smith� G� Kotik� and S� Westfold� Research on knowledgebased software environments at

Kestrel Institute� IEEE Trans� on Software Engineering� November �����

���� E� Soloway and K� Ehrlich� Empirical studies of programming knowledge� IEEE Trans� on

Software Engineering� �������������� September ����� Reprinted in C� Rich and R�C� Waters�

editors� Readings in Arti�cial Intelligence and Software Engineering� Morgan Kaufmann� �����

���� M� Stickel� R� Waldinger� M� Lowry� T� Pressburger� I� Underwood� and A� Bundy� Deductive

composition of astronomical software from subroutine libraries� In Proc�
�th International

Conference on Automated Deduction� pages ������� Nancy� France� �����

���� R� C� Waters� A method for analyzing loop programs� IEEE Trans� on Software Engineering�

������������� May �����

���� Mark Weiser� Program slicing� In �th Int� Conf� on Software Engineering� pages �������� San

Diego� CA� � �����

���� L� Wills� Automated program recognition by graph parsing� Technical Report ����� MIT

Arti�cial Intelligence Lab�� July ����� PhD Thesis�

���� E� Yourdon and L� Constantine� Structured Design� Fundamentals of a Discipline of Computer

Program and Systems Design� PrenticeHall� �����

��

