
  Abstract

Object Oriented Analysis (OOA) has become a
popular method for analyzing system requirements.
Unfortunately however, none of the current versions of
OOA have included a validation technique tailored to the
object oriented approach. Most, instead, merely
recommend document reviews without specifying the
kinds of problems to look for. This paper explores the
question by applying a natural language parser to a
requirements document, extracting candidate objects,
methods and associations, composing them into an
object model diagram, and then comparing the results to
those determined by manual OOA. To do this, we have
adapted an automated natural language parser and used
it to examine several high level system descriptions. The
results indicate that with a modest amount of effort, the
technique can give valuable feedback to the analyst.

1  Introduction

1.1 Background
The first step in most object oriented analysis

methods is the construction of an object model. Many
guidelines exist for identifying object classes, their
relationships, and their attributes from a problem
statement. Are these guidelines comprehensive enough
for automating the construction process? Probably not,
but can we instead use automatic analysis to generate a
model against which a manually generated analysis can
be validated? The best way to answer these questions is
by actually trying to implement a program for
generating an object diagram from a system description.

There are several papers which discuss the possibility
of automatic construction of an object model. Honiden
et al. [6] developed a standardized, formal OOA
specification process as a precursor to automation. Seki
et al. [11] describe a process for deriving incrementally a
formal specification from an informal specification.
Abbot [1] details a method for generating a program

design from an informal English description. All these
papers only give suggestions as to how to automate the
analysis process. We could find no description in the
published literature of the actual implementation of an
object model constructor. The purpose of this paper is to
describe one such implementation.

1.2 Object oriented analysis
Traditional approaches, like Structured Analysis, focus

mainly on the functionality of a system. OOA, on the
other hand, focuses on the objects or static entities of the
system and the associations among them. A main reason
for its popularity is the fact that a system designed around
static entities is less affected by subsequent changes in the
requirements than one organized functionally.

Booch [2] was the first to formalize the object oriented
approach. Now there are several popular object oriented
methods such as OOA by Coad and Yourdon [4], Object
Oriented Design (OOD) by Booch [3] and Object
Modeling Technique (OMT) by Rumbaugh et al. [10].
The methods have much in common. They all start with
the detection of objects in the system by textual analysis
of a specification document. After objects are identified,
the system is modeled in terms of their attributes and the
interactions among them. As originally proposed, nouns
in the specification document are good indicators of
objects. Similarly, verbs and adjectives are good signals
for the associations among and attributes of the objects.

The method that we chose is OMT because of its
popularity and extensive documentation. Of the three
OMT models (object, dynamic, and functional), we are
only concerned with the object model as it is the most
conducive to textual analysis. The approach
recommended by Rumbaugh et al. for object modelling
has the following steps:

1. Identify objects and classes (nouns);

2. Identify associations between objects (verb
phrases);

Requirements Validation via Automated Natural Language Parsing

Sastry Nanduri and Spencer Rugaber

Georgia Institute of Technology



3. Identify attributes of objects and associations
(adjectives);

4. Identify operations (verbs and adjectives);

5. Organize and simplify object classes using inherit-
ance*;

6. Iterate and refine the model.

2  Approach

The approach we took to automating the analysis
process is as follows. We first collected a list of guidelines
on object modeling from [10]. We expressed the
guidelines in terms of the parsing rules for a publicly
available natural language parser. We then applied these
guidelines to the parser output of several high level system
descriptions and analyzed the results. After refining the
parsing rules, we repeated the process for several other
documents. Finally, we implemented a program that used
the refined guidelines and a public domain graph drawing
tool to display object diagrams for the systems analyzed.

More precisely, the steps we followed in building our
analyzer were the following.

1. We gathered guidelines for creating an object model
and for identifying nouns, verbs etc. from the OMT
text.

2. We used a publicly available natural language parser
to parse a system description document. We chose
a link grammar based parser because it was easily
available, because it was able to parse a wide range
of English sentences, and because its dictionary
was easily extendible.

3. We wrote a rule based post-processor. These rules
are nothing but the guidelines gathered in step 1
expressed in terms of the parser’s links.

4. We extended our tool to accumulated knowledge
between sentences. The parser we used parsed each
sentence of the input independently. So, for the
construction of an object model from a multi-sen-
tence document, we had to accumulate knowledge
gained from each of the sentences. As there is no
foolproof way of connecting the pronouns in a sen-
tence to the appropriate antecedent in the previous
sentence, we also had to apply some ad hoc rules
for doing this.

5. Finally, we built and displayed the object model.
For displaying the object diagram graphically, we
used a publicly available graph drawing tool called

*Inheritance is a special kind of association indicating that
one object class is a special case of another

EDGE [8]. EDGE is an easy to use, extendible
graph editor. Graphs can be constructed either
interactively or by creating an input file consisting
of a list of nodes and edges. The program we devel-
oped for step 3 took the latter course and wrote the
accumulated knowledge about the objects and
associations into a file in a format understandable
by EDGE.

2.1 Natural language parsing using link gram-
mars

The parser we used was developed by Daniel D. Sleator
and Davy Temperley at Carnegie-Mellon University [12].
This parser is based on the theory of link grammars. A link
grammar consists of a set of words (the terminal symbols
of the grammar), each of which has one or more linking
requirements. A sequence of words is a sentence of the
language defined by the grammar if there exists a way to
assign links among the words so as to satisfy the following
three conditions:

1. Planarity: The links do not cross;

2. Connectivity: The links suffice to connect all the
words of the sequence together;

3. Satisfaction: The links satisfy the linking require-
ment of each word in the sequence.

The linking requirements of each word are contained in
a dictionary where they are expressed as a formula
involving the operators and and or, parentheses, and
connector names. The + or - suffix on a connector name
indicates the direction relative to the word being defined in
which the matching connector must lie. For example, the
linking requirements for the words “Mary” and “ran” are
shown below:

 Mary: O- or S+

 ran: S-

That is, “Mary” can act as a direct object if a
corresponding verb is on the left or as a subject if a
corresponding verb is on the right. “Ran” expects a subject
on its left. The linking requirements are satisfied in the
sentence “Mary ran” but not in the sentence “ran Mary”.
Hence, the latter is not accepted by the parser.

The output of the parser consists of all the words along
with the links satisfying the linking requirements. We
found that the connectors used to express the linking
requirements (O and S in the example above) are useful in
identifying the nouns and verb phrases of a sentence and,
thereby, the object classes and their associations. For
example, the output upon running the parser on the
sentence “Mary ran” consists of the following connectors.



    +- S -+
         |         |
     Mary   ran

This output indicates that the word “Mary,” which is on
the left side of the link, has the connector S+ and that the
word “ran” has the connector S-. We can gather by looking
at the S+ connector that “Mary” is the subject in the above
sentence. Likewise, “ran” is identified as a verb because it
has the connector S-.

For a better understanding of how the output of the
parser can be used to identify the classes, relationships,
etc., consider the following sentence “The company pays
the employees.” The parser’s output for this sentence is:

                    +-----  O  -----+

 +---D--+--- S ---+     +--- D ---+
      |            |             |       |              |

the  company.n pays the  employees.n

”Company” is recognized as a noun (the “.n” suffix),
“the” is a determiner, “pays” is a verb expecting a subject
and a direct object, with “the employees” serving the latter
role.

By using the guideline that any sentence of the form
Subject -S- verb -O- Object implies that the classes
Subject and Object have the association named by the
verb, we can infer that company and employees are
classes and that pays is an association between them. Most
of the guidelines for object identification can be expressed
in terms of links in this way.

2.2 Object and association detection guidelines
Rumbaugh et al. [10] gives some practical tips on how

to find classes, associations, and attributes in a problem
statement. They also suggests how to eliminate bad
classes, associations, etc. Both these and the other
guidelines in the literature are very general. A guideline of
the form, “names that primarily describe individual
objects should be restated as attributes,” though very
helpful for a human designer, cannot be incorporated into
program logic easily. The main problem when trying to
incorporate such knowledge is how can the program find
out which names describe individual objects. Most of our
effort in working on this project was spent on expressing
the existing guidelines in terms of the connectors. That is,
we transformed the guidelines into precise rules in terms
of the parser’s output.

Examples of the rules that we used to implement our
program are given below. For every word in the input
sentence, the program checks if any of the guidelines are
satisfied. If this is the case, then the corresponding
inference is made.

1. If a word is “with” and, if it has J (preposition) and
M (participle) connectors, then the class described
by the word with the M connector is an aggrega-
tion* of the class described by the word with the J
connector.

Example: A sentence containing “building with
floors...” indicates that building is an aggregation
of floors.

2. For every verb, if there is an EV (verb used with
prepositional phrases) connector, get the J connec-
tor of the EV connector, if it exists. Or if there is a
V connector, and the V connector has an I connec-
tor and the I (indirect object) connector has a TO
(infinitive) connector and the TO connector has a S
connector, get the final S connector. If either of the
above mentioned connectors exist, the two words
are candidate classes, and they have an association
named by the verb.

Example: A sentence of the form “A system is to be
installed in a building” indicates that system and
building have an association installed.

3. If a verb has a V connector followed by an S con-
nector, get the S connector. Also get the J connec-
tor following the EV connector. These words are
classes, and they have the association given by the
verb.

Example: A sentence containing “candidate is fired
by the company” indicates that there is an associa-
tion fired between candidate and company.

4. If a word is “has”, then the S connector of the word
is an aggregation of the O connector.

Example: A sentence containing “building has
floors” indicates that building is an aggregation of
floors.

5. If a verb is “becomes”, then the O connector is a
state (attribute) of the S connector.

Example: A sentence containing “person becomes
candidate” indicates that candidate (candidacy) is
an attribute of the class person.

2.3 The post-processor
The post-processor that we developed applies the

guidelines to the parser output and produces the list of
objects, their attributes, and the associations among them.
The post-processor is written in the C programming
language and is integrated into the parser code. We took
this approach because the number of guidelines that we

*Aggregation is a special kind of association that indicates
that objects in one class can be consider as part of objects in
the other.



had was not very large. If the number of guidelines
becomes larger, it may prove advantageous to separate the
post-processor code from the parser code.

The post-processor also makes use of a file of
synonyms while processing the output of the parser. The
synonyms are used for two purposes:

• To avoid creating redundant objects for synonymous
nouns in a document.

• To recognize plurals (e.g “companies”, “company”)
and different tenses of verbs (“fire”, “fires”, “fired”
etc.) as the same*.

After all the sentences of the input document are parsed
and processed, the post-processor writes the gathered
information into two files Output_file and graph.
Output_file, the name of which is specified by the user,
contains the results in English. That is, it will have
statements like “building is an aggregation of floors.” The
file with the name graph has the same information written
in a form understandable by EDGE.

3  Example

This section describes the action of the system in
analyzing a description of a small database system for an
employment agency. It is taken verbatim from [7].

3.1 The original description

Persons apply for positions, companies sub-
scribe by offering positions, and companies
hire candidates or fire employees. A person
may apply only once, thus becoming a candi-
date, losing this status when hired by a com-
pany but regaining it if fired; a company may
subscribe several times, the positive number
of offerings being added up; finally, only per-
sons that are currently candidates may be
hired, and only by companies that have vacant
positions. There are queries to check whether
a person is a candidate, for finding out the
company a person works for (provided that
the person is not a candidate), and for finding
out the number of vacant positions a company
still has (provided that the company has ever
subscribed). Initially, no person is a candidate
and no company has subscribed.

3.2 Modified system description
The link grammar parser has difficulty parsing certain

constructs, requiring manual modification of the input text.

*An alternative is a root word extractor such as used by the
UNIX spell command.

Our intent is to only make modifications dependent on the
parser and not on domain knowledge required to
understand the text. After modification, the text reads as
follows.

Persons apply for positions, companies sub-
scribe by offering positions, and companies
hire candidates or fire employees. A person
may apply only one time. The person
becomes a candidate when he applies. A per-
son loses his status as a candidate when hired
by a company. A person becomes a candidate
again if he is fired by the company. A com-
pany may subscribe several times. Only per-
sons that are still candidates can be hired by
companies. Only companies that have vacant
positions can hire candidates. There is a query
to check if a person is a candidate. There is a
query to find the company a person works for.
There is a query to find out the number of
vacant positions at a company. Initially, no
person is a candidate and no company has
subscribed.

3.3 Program output
The program generates the output shown in Table 1,

where associations are indicated by triples of the form:
Object Class -- Association -- Object Class; operations
and attributes are indicated by stating their name and the
class to which they belong; inheritance and aggregation
associations are suggested; and synonyms are placed in
parentheses. Note also that the parser may produce
duplicate suggestions, which have been manually removed
from the table below.

3.4 Object diagram
The results of running the parser are placed in a file that

is then fed to the EDGE graph drawing tool. For the input
text given above, the diagram shown in Figure 1 is
produced. Classes are contained in rectangles; arcs denote
associations. Classes contain three parts: the class name,
its attributes, and its operations. Note that there are several
ways in which the diagram could be easily improved. For
example, an association that holds between one class and a
second as well as between the first class and a subclass of
the second could be replaced by a single association. Also,
situations where an operation and an association on a class
have the same name could be detected and resolved.

4  Results

We applied the parser to four high-level system
descriptions commonly chosen as examples in software
engineering textbooks.



.

 Table 1: Parser Output for Employment Database Example

persons (person) -- apply -- positions

companies (company) -- hire -- candidates (candidate)

companies (company) -- fire -- employees (employee)

person -- apply -- time

candidate is an attribute value of class person

becomes (become) is an operation of class person

applies (apply) is an operation of class he (person)

person -- loses (lose) -- status

loses (lose) is an operation of class person

company -- hired (hire) -- person

candidate is an attribute value of class person

he (person) -- fired (fire) -- company

company -- subscribe -- times

still is an attribute value of class candidates (candidate)

hired (hire) is an operation of class persons (person)

vacant is an attribute value of class positions

hire is an operation of class companies (company)

class candidate can be a subclass of class person

subscribed (subscribe) is an operation of class company

Helicopter landing:
The helicopter system description has been taken from

[5]. Before running the parser on it, we had to rephrase
some of the sentences as simple sentences. There was not
much information that we could gather from the parser’s
output. The main problem was with the system description
itself, which described the history of the problem rather
than stating the requirements. We feel that even manual
construction of an object diagram from this description is
not possible.

Automatic teller machine (ATM):
We obtained another system description from chapter 8

of reference [10]. Here, the problem was stated very
clearly, probably because it was used to illustrate the
construction of an object model. The result of applying our
rules to this description was encouraging. The resulting
object diagram was reasonably close to that produced by
hand. There were some differences, but these were all
minor. For example, several extra classes like system and
cost were suggested. The main reason why our approach
produced them was because recognizing these classes as

bad classes required domain knowledge, which neither the
parser nor the post-processor had.

The lift system:
The lift system description is taken from [9]. Most of

the differences in the object diagram produced from using
our approach and that produced manually were due to the
inadequacy of the parser in capturing some aspects of
English grammar. And the rules that we used were not
powerful enough to offset the parser’s weakness. Here is
an example of the type of problem we experienced. In the
sentence, “Each lift has a set of buttons, one for each
floor,” ideally the parser should have recognized that the
word “one” refers to a button. From the parser’s output, we
could not derive a general rule for recognizing the classes
and associations correctly in a sentence of this form.



Figure 1:  Object Diagram for Employment
Database Example

Employment database:
The results of applying our approach to this system

description were also encouraging. But, we realized that
the rules approach to finding objects and association has
some drawbacks. We found that some of guidelines cannot
easily be expressed with rules. For example, from the
sentence, “there is a query to check if a person is a
candidate,” our program identified “query” as an object
instead of an operation, which would be desirable if we
were building a general database management system but
suboptimal for a small, special-purpose program.
Furthermore, because of the way the rule is defined, our
program would have identified “way” as an object in the
following sentence. “There is a way to check if a person is
a candidate.”

5  Conclusions and future work

With a relatively small amount of work (about three
weeks and under 800 lines of code), we were able to build
a tool capable of producing object diagrams that could be
compared with those produced by hand. Among the uses
of the resulting diagram would be detection of missing
classes, suggestion of alternative modeling choices
(attribute versus class or operation versus association), and
discovery of missing associations.

5.1 Limitations
As described in the previous section, the object

diagrams generated by our approach were not completely
satisfactory. The reasons for the failure in producing
completely acceptable object diagrams are the following.

• Parser inadequacy. While the breadth of English text
that the parser accepts is quite impressive, it still can-
not handle many sentences. For example, the parser
does not accept hyphenated words, idiomatic expres-
sions, and quotation marks. And it cannot connect a
pronoun with the corresponding noun. We had over-
come these problems to some extent by rephrasing
some input sentences in a form acceptable to the
parser. For the process to be completely automated, the
parser should be powerful enough to accept all types of
sentences.

• Ambiguous or incomplete descriptions. Sentences of
the form “ATM accepts cash cards” can be difficult to
deal with when the reader is a computer. Where does
the ATM accept the cash card from? While an intelli-
gent human understands this from the context, it is dif-
ficult for a program to do the same.

• Lack of domain knowledge. In the ATM document a
lot of domain knowledge was required to generate the
object diagram. Knowledge such as “bank holds
account” and “customers have cash cards” was
assumed and not explicitly mentioned in the text. A
practical automated analysis tool will need domain
knowledge and common sense. There are two
approaches to the solution of this problem. We can
incorporate the domain knowledge in the parser. Or we
can write the system description without assuming any
domain knowledge on the part of the user. Both the
approaches have practical difficulties.

• Inadequacy of guidelines. Most of the rules we derived
work for general cases. But, they cannot handle special
situations. For example, consider the following sen-
tence from the employment database system descrip-
tion. “There is a query to check if a person is a
candidate.” We can make query a class or an operation
of the class person. A human needs to look at the over-



all structure of the object diagram and use his or her
experience to decide whether to make query an object
or an operation. As all our rules are based on the struc-
ture of the sentence, such decisions cannot be made by
the program.

5.2 Future work
As noted earlier, a program that will automatically

produce a perfect object diagram from a system
description document is not currently possible. But our
program can be used to validate a manually produced
object diagram and to generate a preliminary object
diagram that can be refined by human designers. The
following enhancements suggest themselves as future
directions for our research:

• Testing the tool on real-life (lower) level documents,
particularly those with a specialized domain vocabu-
lary.

• Comparing the results of our semi-automatic validation
with that produced in a design review, both for thor-
oughness and cost-effectiveness.

• Testing the program with a wide range of documents
and refining the guidelines appropriately.

• Using a parser other than the link grammar parser to
see if some of the parsing limitations can be overcome.

  Acknowledgment

The authors wish to thank BNR, Inc. for their gift in
support of this research.

  References

[1] Abbott, Russell J. Program Design by Informal English
Descriptions. Communications of the ACM, 12, 11, 882-894,
(November 1983).

[2] Booch, Grady. Object-Oriented Development. IEEE Trans-
actions on Software Engineering, 12, 2, (February 1986).

[3] Booch, Grady. Object-Oriented Design with Applications.
Benjamin/Cummings Publishing, 1991.

[4] Coad, Peter and Yourdon, Edward. Object-Oriented Analysis
/ Second Edition. Yourdon Press, 1991.

[5] Davis, Alan M. Software Requirements / Revision / Objects,
Functions, & States. Prentice Hall, 1993.

[6] Honiden, Shinchi, Kotaka, Nobuto, and Kishimoto, Yoshi-
nori. Formalizing Specification Modeling in OOA. IEEE
Software, 10, 1, 54-66, (January 1993).

[7] Jackson, M. I. Developing Ada Programs Using the Vienna
Development Method (VDM). Software-Practice and Expe-
rience, 15, 3, 305-318, (March 1985).

[8] Paulish, Frances Newbery and Tichy, Walter. EDGE: An
Extendible Graph Editor. Software-Practice and Experience,
20, S1, 63-86, (June 1990).

[9] Proceedings of the Fourth International Workshop on Soft-
ware Specification and Design. April 3-4, 1987, Monterey,
California, IEEE Computer Society, 1993.

[10] Rumbaugh, James, Blaha, Michael, Premerlani, William,
Eddy, Frederic, and Lorensen, William. Object-oriented
Modeling and Design. Prentice Hall, 1991.

[11] Seki, M., Horai, H., and Enomoto, H. Software Development
Process from Natural Language Specification. 11th Interna-
tional Conference on Software Engineering, (May 1989).

[12] Sleator, Daniel D. and Temperley, Davy. Parsing English
with a Link Grammar, Carnegie-Mellon University, Depart-
ment of Computer Science, (March 1992).


