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  Abstract

This paper is concerned with the units of knowledge
used in understanding programs. A pilot study was con-
ducted wherein a short, but complex, program was exam-
ined looking for “knowledge atoms,” the units from which
program understanding is built. The resulting atoms were
categorized along three orthogonal axes of knowledge
type, design decision used, and the type of analysis
required to uncover the atom. The results are discussed
relative to several approaches to program understanding
taken from the research literature.
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1. Motivation

The ultimate goal of research in program understand-
ing is to improve the process of comprehending programs,
whether by improving documentation, designing better
programming languages, or building automated support
tools. This laudable goal is inherently unattainable, how-
ever, for the following reason. We have no agreed-upon
definition or test of understanding! The closest measure of
which we are aware is Shneiderman’s 1970s experiments
in software psychology that gauge understanding by the
extent to which subjects can recreate a program from
memory [22]. While this measure surely qualifies, it is nat-
urally limited to small programs.

Researchers in natural language understanding have a
similar difficulty. However, early on, Alan Turing pro-
posed one way out of the problem, his now-named Turing
Test, by which human judges could communicate using
electronic means with the inhabitants of two closed rooms,
one containing a computer and one containing a person
[25]. If the judges, by various trial communications, could
do no better than chance at determining which room held
which occupant, the computer would be deemed to have
obtained human-level abilities to understand and commu-
nicate.

The field of program understanding has no such test.
In fact, there is no real agreement on what it is about a pro-
gram that needs to be understood. For example, Shneider-
man talks about syntactic and semantic knowledge [23].

Pennington uses the terms domain world and program-
ming world [13]. It is the purpose of this paper to explore
this issue. That is, to propose a characterization of the
units of knowledge from which program understanding
can be built.

To explore this question, the authors examined a non-
trivial program looking for knowledge atoms, individual
facts, the sum total of which would constitute complete
understanding. The atoms were then categorized along
several dimensions looking for overlap, inconsistency, and
gaps. Although not conducted as a rigorous experiment,
the investigation did produce sufficient insight that a the-
ory of program knowledge atoms can be proposed and
confirmatory experiments designed.

2. Procedure

We examined the ZEROIN program, which finds a
root of a function of a single, real variable in an interval
[4]. The program is widely used, and, despite containing
only 102 lines of FORTRAN code, is complex, providing
significant challenges to understanding, even by experi-
enced programmers.

The analysis procedure assumes a reader knowledge-
able in Fortran, reading for understanding rather than to
perform a specific maintenance task such as fixing a bug.
The procedure also assumes that the reader actively
engages the text by raising relevant questions while read-
ing and attempts to answer the questions with the material
read so far. Analysis via active reading has the advantage
of being well known and frequently recommended under-
standing technique [2]. Further, the analysis procedure is
largely independent of the various definitions of program
understanding available: which facts are relevant and how
relevant facts are used may vary from one form of program
understanding to another, but how the facts are gathered is
the same.

The reading assignment was to obtain an overall
understanding of ZEROIN. While reading, each fact used
to answer questions posed during the reading is recorded,
along with an indication of the program statements to
which the fact applied, and, for facts derived from the pro-
gram, the statements from which the fact arose. Facts



related exclusively to understanding the program’s FOR-
TRAN syntax are explicitly excluded.

After completing the reading, each recorded fact is
categorized as a knowledge atom in three orthogonal
ways: by knowledge category, by design-decision cate-
gory, and by automated-analysis category.

Knowledge category: place the atom in any of the follow-
ing traditional categories.

•   Domain knowledge - knowledge of numerical analysis
and root finding;

• FORTRAN language knowledge - non-syntactic knowl-
edge of language semantics and run-time library behav-
ior;

•   Programming knowledge - language-independent
knowledge of algorithms, data structures, and idioms.

Design decision category: place the atom according to
the type of design abstraction it expresses. In previous
work [19], one of the authors and his colleagues developed
a categorization of programming knowledge based upon
the type of design decision used to develop the program.
The particular categories are discernible by the use of vari-
ous abstraction mechanisms provided by the programming
language. For the pilot experiment, each of the detected
knowledge atoms were placed into any of the following
six categories.

•   Decomposition - a decision to break a concept into
pieces;

• Specialization - a decision to treat a situation in terms of
one of several special cases of a general concept;

•   Dispersal - a decision on how best to organize the ele-
ments of an abstraction, either by encapsulating them or
interleaving them with the elements of another abstrac-
tion;

•   Representation - a decision on the use of one mecha-
nism to implement another;

•   Operationality - a decision on how declaratively to
express a concept;

•   Modality - a decision on whether an implementation is
more relational or functional in nature.

Further explication of these categories is given in Sec-
tion 5.2.

Automated analysis category: place the atom according
to the type of automated analysis required to detect it. One
of the authors, in a previous article has described the fol-
lowing categories of automated analyses [18].

•   Textual - measuring simple properties of the source
code text, e.g., the number of source lines of code pre-
dicts the amount of effort required to comprehend a
program;

•   Lexical - decomposing the sequence of characters in a
program’s source listing into its constituent lexical units
(e.g., identifiers, operators, keywords, strings, and num-
bers). This enables the generation of cross-reference
listings and complexity metrics based on the relative
frequency and uniqueness of identifiers and operators;

•   Syntactic - parsing source text into a hierarchical orga-
nization of its syntactic structure, based on constituents
such as expressions, statements, and modules defined
by the grammar of the source code’s programming lan-
guage;

•   Control flow - analysis to determine the order in which
statements can be executed within a subprogram and
the calling relationships among subprograms;

•   Data flow - analysis of the dependencies between defi-
nitions and uses (or references) of variables;

•   Semantic - derivation of semantic properties of a pro-
gram through mathematical techniques based on deno-
tational semantics, such as abstract interpretation.

Section 3 presents several examples of the knowledge
atoms categorized. After categorization, the resultant data
was stored into a relational database management system,
on which queries could be written and analyses performed.
The results of these analyses are presented in Section 4.
Previous, alternative approaches to analyzing the
ZEROIN program are described in Section 5.

3. Examples

This section presents some examples of the knowl-
edge atoms obtained when reading ZEROIN. The com-
plete analysis can be found in reference [17]. The intent of
the pilot study was to simulate the following situation. You
are assigned responsibility for maintaining a program you
have never seen before. It is written in the FORTRAN lan-
guage and is concerned with finding the roots of a func-
tion. We will assume that you know the FORTRAN
language but are not an expert at it. That is, you still have
to occasionally look at the reference manual to answer
questions about the language. We will also assume that
you have a computer science background, either through
formal education or by on-the-job experience, so that you
know how to design and compose programs similar to the
one you are about to maintain. Finally, we will assume that
you have a passing acquaintance with numerical analysis,
possibly from a course you took. Hence, you are familiar
with the idea of finding a root of a function, but you would
have to look up an actual algorithm in order to write a
root-finding program yourself.

As you are responsible for long-term maintenance of
the program, you want to understand it better. So you
decide to systematically read it. This is distinct from the
situation where you have a specific task to accomplish,
such as finding a bug, adding a new feature, or updating
the program to conform to a change in the language or



operating environment. In these cases, instead of system-
atic reading, you might direct your efforts to accomplish-
ing the specific task. Here, we will assume that you are
going to make a single, sequential pass through the pro-
gram text, with perhaps a few side trips to answer small
questions as they arise.

The program text found in the Appendix is taken
directly from its source [4]. We have added three-digit line
numbers in the left margin for expository purposes; they
are not part of the program itself. The examples selected
are intended to represent the different kinds of knowledge
required to understand the program. In some cases, of
course, a single pass is insufficient to gain understanding,
and the best that can be expected during reading is to raise
questions for later resolution. We have presented examples
of such questions in italics.

Example 1: Computation of Relative Machine Precision

  9       EPS = 1.0
 10    10 EPS = EPS/2.0
 11       TOL1 = 1.0 + EPS
 12       IF (TOL1 .GT. 1.0) GO TO 10

Understanding these lines of code requires knowledge
of floating point arithmetic. Without this knowledge, it
looks like we keep dividing EPS by 2.0 until we cannot
distinguish it from 0.0! If this is the case, then the whole
block of statements reduces to a no-op. In fact, the purpose
of the block is to find a very small floating point number,
but one that acts like 0.0 when it is added to 1.0. Without
reading the rest of the program, we cannot tell why this
information is needed, consequently, we are left with ques-
tions for later resolution: Are we trying to compute a value
for TOL1 or for EPS? Which of these are referred to later
in the routine, and which are temporary variables?

Several other issues arise when considering these
statements. One concerns the use of labels and the GO TO
statement. Whenever we come across a labeled statement,
several questions come immediately to mind. Is it used for
flow of control or is it a FORMAT statement? If the
former, what statements refer to (can branch to) this label?
Under what circumstances can those branches be taken?
That is, what can we assume is true after such a branch
has been taken?

Lines 10-12 actually implement a do-while loop such
as is found in the C language. That is, these FORTRAN
lines provide the programmer a representation for a non-
existent language feature. Making an imaginary transfor-
mation, we get the following replacement statements.

 9        EPS = 1.0
          DO
10          EPS = EPS / 2.0

11          TOL1 = 1.0 + EPS
12        WHILE (TOL1 .GT. 1.0)

Another issue concerning this block arises every time
we have a loop. Are we even sure that the loop terminates?
Might there not be a “smallest floating point number”
which when divided by two and the results rounded
upward, yields itself. Only a thorough understanding of
floating point arithmetic and the hardware of the machine
on which the program is run can answer the question.

The code in 9-12 makes no reference to the input
parameters. This raises another issue, should the value of
EPS be computed externally to ZEROIN and passed in as
a parameter to avoid repeated recomputation? Or should
it be computed at compile time and available in some form
of environmental constant such as is provided in the ANSI
C language?

Example 2: Interleaving

16       IF (IP .EQ. 1) WRITE (6,11)
17    11 FORMAT('THE INTERVALS DETER
           MINED BY ZEROIN ARE')

IP is an input parameter. In fact, its only use in
ZEROIN is to control debugging printout. Those lines in
the program that refer to it (16-17 and 29-30) could be
removed from the program without affecting the roots that
it computes. It is as if ZEROIN is trying to accomplish
two things simultaneously: root computation and debug-
ging printout. This is an example of interleaving [20]. To
assure ourselves that this is the case, however, we must
answer several questions about the function. Is IP’s value
ever set in ZEROIN? Or can it be treated as a read-only
parameter? What other values can IP hold? Is it being
used as a flag? Why does the program perform output
inside of a function?

Example 3: State introduction

18       A = AX
19       B = BX
20       FA = F(A)
21       FB = F(B)

Two programming tricks are illustrated by these four
lines. In the first two lines, new state is introduced: copies
of input parameters are being saved into local variables so
that the copies might be subsequently altered without cor-
rupting the original values. Understanding this fact
requires knowledge of how FORTRAN passes parameters
and answers to the following two questions. Are there any
other references to AX and BX? Are the values of AX and
BX ever changed?

The second programming trick is illustrated by lines
20-21. F is an example of a parameter to a function that is
itself a function. F is actually invoked in lines 20-21. The



name FA suggests that it serves as a surrogate for the call
to F with parameter A, perhaps introduced to save what
might be a costly re-execution. In fact, we can hypothesize
an invariant condition: FA shadows the value of F(A) and
whenever A changes, F(A) should be called and assigned
to FA. To check this requires scanning the entire program
to see if there is ever any violation.

Example 4: Variable name reuse

41 40 TOL1 = 2.0*EPS*ABS(B) + 0.5*TOL

The TOL1 variable name is being recycled here. We
can think of the memory location named by TOL1 as
being interleaved between its uses in lines 11-12 and its
uses in the rest of ZEROIN. How can we confirm this? We
have to make sure that no path from the previous definition
can reach any reference to TOL1 without going through
the current statement. Data flow analysis of ZEROIN is
required to confirm this.

Example 5: Interval midpoints and convergence

42       XM = .5*(C-B)
43 IF (ABS(XM) .LE. TOL1) GO TO 90
44       IF (FB .EQ. 0.0) GO TO 90

Understanding these three lines of code requires
knowing something about root finding—that it works by
shrinking an interval containing a root until the interval
length passes a convergence test. In particular, if C and B
define the current interval, then C-B is the interval length,
and XM is the distance to the midpoint. Could the name
XM stand for the X value of the distance to the Midpoint
of the interval?

Lines 43-44 is a candidate for the termination test of
the convergence loop. Is line 90 the function exit? The two
values being compared correspond to one half of the
length of the interval (XM) and the size of the region
(TOL1). When the interval gets small enough (.LE.
TOL1) then it doesn’t make sense to continue shrinking it.
If our hypothesis is correct about FB being always the
value of F(B), then another reason for quitting is that FB is
0.0; that is, that we have found a root.

Example 6: Alternative interval shrinkage methods

57       S = FB/FA
58       P = 2.0*XM*S
59       Q = 1.0 - S

64    50 Q = FA/FC
65       R = FB/FC
66       S = FB/FA
67       P = S*(2.0*XM*Q*(Q-R)-(B-A) *
           (R-1.0))
68       Q = (Q-1.0)*(R-1.0)*(S-1.0)

Lines segments 57-59 and 64-68 have similar appear-
ances and roles. They both compute some intermediate
values prerequisite to shrinking the interval boundaries. In
fact, the two segments are both special instances of the
general desire to find an intermediate point in the interval
to serve as a new interval boundary. In order to assure our-
selves of this, however, requires answering several ques-
tions. Are S, P, and Q used similarly outside of these
segments? Is the value of R computed in line 65 used any-
where outside of these lines?

Example 7: Programming style

77      IF ((2.0*P) .GE. (3.0*XM*Q -
          ABS(TOL1*Q))) GO TO 70
78 IF (P .GE. ABS(0.5*E*Q)) GOTO 70

Here are two adjacent statements both making tests
whose consequent is to skip the remainder of this section
of ZEROIN. As there are no side effects present, why not
just combine these two lines into one with an .AND.? One
possible reason is to guarantee order of evaluation; that is,
to make sure that the first condition gets checked before
the second. If .AND. is used instead and if the language
definition allows, some compilers might take the liberty to
reorder the evaluations of these two conditions. This is a
language semantics question. Another possible reason is
that both of these two conditions have their own relevance
to the interpretation of the underlying algorithm. That is, it
makes the program more readable to see the two condi-
tions on separate lines.

4. Results

4.1 Raw data

ZEROIN comprises 102 lines of Fortran. Of these, 41
are comments, 28 of which are, in turn, blank; that is, pro-
vided only to improve the program’s readability. Of the
remaining 61 lines, four are not executable, being either
declarations or indicating the end of the function. Of the
57 executable lines, 36 are assignments, 15 are IF state-
ments, two are FORMAT statements, three are GO TO
statements, and one is the RETURN statement. For the 36
assignment statements, the right hand sides of seventeen of
them has no operations, fourteen have one, two have two,
two have five, and one has nine operations. These observa-
tions roughly follow the statistics measured by Knuth in
his empirical study of Fortran programs [8].

While reading the 102 lines, 71 knowledge atoms
were detected. The range of program statements over
which an atom applies gives a rough estimate of the atom’s
complexity; the more statements over which an atom
ranges, the more complex it is. Within the context of a sin-
gle, sequential reading of the source code, 54 atoms



ranged over a single statement, one ranged over two state-
ments, fifteen ranged over three statements, and one
ranged over four statements.

4.2 Traditional categorization

The traditional breakdown of the knowledge required
to understand a program distinguishes between syntactic
and semantics knowledge [23]. The semantic category,
includes knowledge of the programming language’s
semantics, of the application domain, and of programming
itself. The results obtained in the pilot study are presented
in Table 1, where F denotes knowledge of Fortran, D
denotes knowledge of the domain of root finding, and P
denotes knowledge of programming.

Lines in the None category correspond to parts of
ZEROIN whose purpose could not be determined based
on a single, sequential reading of the program.

Discussion: The collected data indicate strong overlap (or
inability to distinguish) between Fortran and domain
knowledge. This is not surprising when considering that
Fortran is being used to solve a domain problem. More-
over, the fact that the program is short and involves little in
the way of data structures, suggests why the programming
category is as small as it is. Overall, the traditional break-
down has not given us much guidance on either how to
organize the knowledge required to understand the pro-
gram or on how to structure tools to support understand-
ing.

4.3 Design decision categorization

Several different types of design decisions were
detected in reading ZEROIN, located primarily in 23

knowledge atoms. The dominant decision type was choice
of representation, which participated in 14 (or 61%) of the
23 atoms involving a decision. A related decision that
overlapped with 11 of the representation decisions is the
operationality decision: i.e., whether to use a declarative
data representation (chosen in 15 atoms) as opposed to a
procedural mechanism (chosen once) to manage some
computation. ZEROIN also featured one decomposition
decision and three instances of each of the specialization
vs. generalization and the dispersal (i.e., encapsulate vs.
interleave) decisions. At least one knowledge atom was
associated with each of the categories of design decisions
except modality. While only 23 knowledge atoms involved
making a design decision, almost all those that did
involved more than one interacting decision.

Discussion: Design decisions are harder to characterize
and understand than the traditional knowledge categories.
This might explain the reduced number of atoms detected.
The high incidence of representation decisions is charac-
teristic of programs written in older languages where the
programmer is forced to simulate modern structured con-
trol structures.

4.4 Type of analysis

Ultimately, of course, it is desirable to automate as
much as possible of the software understanding process.
There currently exist a variety of analysis techniques that
are routinely applied, and many more have been proposed.
The question is, which ones are really useful in supporting
understanding? Of those routinely available, Table 2 shows
how frequently they occurred when the knowledge atoms
from ZEROIN were considered.

Discussion: It should come as no surprise that syntactic
analysis is frequently required to understand many knowl-
edge atoms. The prominence of abstract syntax trees as an
intermediate representation mirrors this observation. The
semantic category is also strongly represented, probably
because it serves as a way to categorize all forms of analy-
sis more powerful than dataflow analysis.

Table 1: Traditional Knowledge Sources

Knowledge Source Count

F 8

P 0

D 6

F & D 42

P & D 1

F & P 1

F, P, &D 8

None 5

Total F 59

Total P 10

Total D 57

Table 2: Type of Analysis

Type Count

Textual 15

Lexical 34

Syntactic 56

Control Flow 36

Data Flow 23

Semantic 53



4.5 Overall discussion

Because of the informal and preliminary nature of our
study, we have not attempted to compute cross-correla-
tions among the categories. Nevertheless, such statistics
would provide insight into questions such as which kinds
of analyses are required to detect domain knowledge, what
is the relationship between programming knowledge and
design decision categories, and what kinds of semantic
analyses are really required to answer programmers ques-
tions about a program?

5. Alternative approaches

A single-pass, top-down approach is not the only way
to read a program. One alternative is to examine the pro-
gram bottom-up, building up a description of overall pro-
gram functionality from the computations performed on
the specific lines. This can even be done formally, with a
mathematical description being given to the computations.
Basili and Mills have done this for the ZEROIN program
[3], and we summarize their approach in the next subsec-
tion.

Another possibility is to combine a top-down and a
bottom-up approach. The bottom-up approach looks at the
mechanics of each statement from the point of view of
design decisions made by the programmer while a syn-
chronized, top-down process is building up a description
of the problem the program is solving. Rugaber, Ornburn,
and LeBlanc have described this approach for ZEROIN
[19], and we summarize it in the second subsection to fol-
low.

Our empirical study of the knowledge atoms underly-
ing program understanding is also related to research in
using programming plans and design patterns as a basis
for program understanding. We discuss this relationship in
the remainder of the section.

5.1 Basili and Mills

Basili and Mills apply ideas from structured program-
ming and program correctness proofs to the understanding
and annotation of computer programs [3]. In particular,
they construct a prime program decomposition of the pro-
gram, define program functions for each prime program,
build a data reference table describing the uses of each
program variable, and then synthesize a program correct-
ness proof demonstrating exactly how the program accom-
plishes its goals.

A proper program is a contiguous program segment
with a single entry point, a single exit point, and the prop-
erty that each statement in the segment is on a path from

the entry to the exit; that is, that each statement is actually
used during execution. A prime program is a proper pro-
gram that does not contain any more-basic proper program
except for the individual program statements. Roughly
speaking, a prime program corresponds to a structured
control construct. In fact, for the two prime programs in
ZEROIN that contained more than one predicate, Basili
and Mills manually replaced them with structured control
constructs.

A useful property of prime programs is that they can
be composed. That is, larger program units can be built out
of smaller ones while still retaining the single entry, single
exit, composition property. Thus, we can compose the
meanings of the prime units in the same ways that we can
compose them syntactically.

Program functions are predicates that describe how a
statement or larger program segment produces its output
values in terms of its inputs. They are abstractions that
summarize what a series of statements accomplishes with-
out going into the details of how they accomplish it.

A data reference table is like a cross-reference listing
that breaks out references into those that set or define a
variable from those that merely access or use it.

Using their approach, the authors are able to gain an
understanding of ZEROIN. The approach helps them
organize their analysis and provides a completeness crite-
rion. That is, they know that they have to keep working
until they complete their proof. Hence, it gives them a way
of knowing when their understanding is deep enough. It
should be noted, however, that like other uses of program
correctness proofs, the authors’ approach to program
understanding requires mathematical sophistication and a
certain inventiveness for constructing loop invariant condi-
tions and for recognizing the indeterminate bounded vari-
able that they used to summarize the program’s progress.

5.2 Rugaber, Ornburn and LeBlanc

Rugaber, Ornburn, and LeBlanc view programs as the
results of design decisions made by a programmer during
the course of development [19]. Understanding an existing
program, therefore, requires recognizing and annotating its
decisions based on the evidence provided by the source
code.

The paper characterizes design decisions based on the
kinds of abstractions provided by programming languages,
by database modeling techniques, and by transformational
programming theory. The decisions belong to one of sev-
eral categories. A composition decision groups lower level
constructs and gives them a single name. For example,
variables can be grouped into a record structure, or pro-



gram statements can be grouped into a subprogram. In
ZEROIN, the programmer decomposed the algorithm into
a series of paragraphs each introduced by a comment.

A separate but related decision is whether the inter-
nals of the resulting aggregate are visible to its clients. If
not, the aggregate is said to be encapsulated. In the case of
program statements, encapsulation can be enforced by the
use of modules, abstract data types, or information hiding.
An alternative to encapsulation is interleaving where the
internals of two or more constructs are intentionally inter-
mixed, usually for reasons of improved efficiency. Perhaps
the most difficult aspect of understanding ZEROIN is
appreciating how it interleaves three different methods for
shrinking the interval during each iteration of the main
loop.

The three methods for shrinking the loop also illus-
trate a specialization design decision. That is, the three
ways of shrinking the interval all have the effect of updat-
ing the program state for the next iteration. Specialization
is even easier to accomplish in object-oriented program-
ming languages where inheritance can be used to quickly
define functionality in a subclass that specializes that in its
superclass.

A fourth category of design decision is called repre-
sentation. Representation is typically seen when one type
of data structure, such as an array, is used to implement
another, such as a stack. In ZEROIN, an interval is repre-
sented by a pair of floating point numbers. Additionally,
the programmers who wrote ZEROIN made disciplined
use of its GO TO statement to represent more structured,
but unavailable, control structures, such as the if-then-else
statement.

Programmers often have to decide whether to com-
pute a value or look it up. In ZEROIN, for example, the
variables FA, FB, and FC are used to hold the values of
F(A), F(B), and F(C), respectively. These values could
have been computed when they were needed, but the pro-
grammer decided that a call to F might be costly, and look-
ing up the value in a variable could accomplish the same
purpose, even if it made the code marginally more difficult
to understand.

The final category of design decision described by
Rugaber, Ornburn, and LeBlanc has to do with functions
and relations. ZEROIN is a FORTRAN function that
takes as input another function, a tolerance, and an interval
and produces a root. It is possible to imagine a related
function that takes the function, tolerance, and root, and
produces the interval. In fact, the Prolog programming lan-
guage supports this duality by allowing, in many cases, the
same code to be used for computing in both directions.
That is, the Prolog program allows the designer to express

the relation between the values (interval, tolerance, root,
and function) without requiring specification of which val-
ues are inputs and which are outputs. While FORTRAN
does not permit this degree of generality, specifications are
often couched in terms of relations that must be explicitly
implemented as functions.

After describing the categories of design decisions,
Rugaber, Ornburn, and LeBlanc present examples of them
in the code for ZEROIN. They suggest that the annotation
of decisions such as those made during program develop-
ment can significantly ease the burden of subsequently
maintaining the program.

5.3 Programming plans

For several years, researchers have investigated the
key role that plans play in understanding how the goals of
a program are implemented in its code. A plan denotes a
description or representation of a computational structure
that the designers have proposed as a way of achieving
some purpose or goal in a program [9][15][24]. Note that a
plan is not necessarily stereotypical or used repeatedly; it
may be novel or idiosyncratic, as is the idiom shown in
Example 8.

Several techniques have been developed for automat-
ing the recognition of standard, stereotypical plans (or cli-
chés [15]), such as [1][6][7][10][11][12][14][16][26].
Experiments with these recognition systems have shown
the benefits of uncovering plans in programs to form a
basis for understanding the programs.

Our categorization of knowledge atoms encompasses
plans in addition to other forms of knowledge that are
valuable in understanding programs. Our categorization
describes plans at a fine level of granularity, cutting across
multiple dimensions. For example, plans may be program-
ming-knowledge-specific (such as standard ways of con-
trolling a search) or domain-specific (such as a quadratic
interpolation algorithm or interval shrinkage methods).
Some are more amenable to detection based on control-
flow analysis while others are manifested primarily in
dataflow constraints. In addition, our categorization of
knowledge atoms includes information about the design
decisions or rationale underlying each unit.

While knowledge atoms capture the basic units of
knowledge underlying a plan, plans impose causal struc-
ture on collections of knowledge atoms. They capture
knowledge about the purpose of each atom in relation to
the other atoms and the overall goals of the program.

In [6], Hartman proposed an empirical study of pro-
grams to determine their “planfulness” with respect to a
given plan library. The planfulness of a program refers to



the extent to which plans in the library and variations of
them occur in the program. Such a study would be valu-
able in helping to confirm the hypothesis that recognizing
plans is beneficial to program understanding and would
also help tailor recognition techniques to a given program
population and plan library. The study we have performed
is an initial step toward an empirical study similar to and
extending the one Hartman proposed. Realizing that plans
are one form of knowledge that is useful in understanding
programs, we would like to broaden the study of natural
program populations to focus on the range of knowledge
units we’ve identified. This will help validate and refine
our categorization as a basis of the knowledge underlying
program understanding.

5.4 Design patterns

Recently, researchers have started collecting, docu-
menting and cataloging software design patterns [5][21].
These are recurring solutions to common problems in a
context. They originally grew out of work on high-level
design solutions in object-oriented programming and now
encompass a variety of areas, including non-object ori-
ented design, maintenance, and testing, and a range of
solutions that feature nonfunctional properties and social
and human factors.

Patterns are at a much higher level of granularity than
knowledge atoms. In fact, knowledge atoms, plans, and
patterns each form successive layers of an overlapping
hierarchy with increasing granularity. Patterns are “molec-
ular” in that they include knowledge from several knowl-
edge atoms. Several different aspects of a recurring
solution need to be present to be collectively recognizable
as a pattern, including the pattern’s problem context, con-
sequent benefits, and drawbacks. They also include infor-
mation about related patterns and collaborations with
other patterns that are typically used in conjunction with
them.

6. Conclusions and future work

This paper argues that we need to better understand
the units of knowledge from which program understanding
is constructed. Without such an understanding it will be
difficult for us to make much progress toward our ultimate
goal of helping practical programmers do their jobs better.

Understanding even a relatively small program is a
complex process. It requires both knowledge and analysis.
Knowledge is required of the programming language syn-
tax, semantics, and run-time libraries, of the computing
machine and its operating environment, of the application
domain, including how problems in the domain are typi-
cally solved, and of programming in general—how pro-

grams are structured, variables used, and correctness
guaranteed.

Much work is required to develop the ideas we have
presented. We need to sharpen the definition of knowledge
atoms and perform repeatable experiments to see whether
programmers find the same units. We also need to sharpen
our categories and compare the results obtained by differ-
ent subjects when attempting to characterize a given atom.

We believe that properly organized knowledge is an
essential ingredient of any automated understanding tool.
But how should the knowledge be organized? Our answer
is that it should be organized in the same units that people
use when understanding programs manually. Conse-
quently we have to better understand those units.
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Appendix: ZEROIN

  1      REAL FUNCTION ZEROIN(AX,BX,F,TOL,IP)
  2      REAL AX,BX,F,TOL
  3C
  4C
  5      REAL A, B, C, D, E, EPS, FA, FB, FC, TOL1, XM, P, Q, R, S
  6C
  7C     COMPUTER EPS, THE RELATIVE MACHINE PRECISION
  8C
  9      EPS = 1.0
 10   10 EPS = EPS/2.0
 11      TOL1 = 1.0 + EPS
 12      IF (TOL1 .GT. 1.0) GO TO 10
 13C
 14C     INITIALIZATION
 15C
 16      IF (IP .EQ. 1) WRITE (6,11)
 17   11 FORMAT(‘THE INTERVALS DETERMINED BY ZEROIN ARE’)
 18      A = AX
 19      B = BX
 20      FA = F(A)
 21      FB = F(B)
 22C
 23C     BEGIN STEP
 24C
 25   20 C = A
 26      FC = FA
 27      D = B - A
 28      E = D
 29   30 IF (IP .EQ. 1) WRITE (6,31) B, C
 30   31 FORMAT (2E15.8)
 31      IF (ABS(FC) .GE. ABS(FB)) GO TO 40
 32      A = B
 33      B = C
 34      C = A
 35      FA = FB
 36      FB = FC
 37      FC = FA
 38C



 39C     CONVERGENCE TEST
 40C
 41   40 TOL1 = 2.0*EPS*ABS(B) + 0.5*TOL
 42      XM = .5*(C-B)
 43      IF (ABS(XM) .LE. TOL1) GO TO 90
 44      IF (FB .EQ. 0.0) GO TO 90
 45C
 46C     IS BISECTION NECESSARY
 47C
 48      IF (ABS(E) .LT. TOL1) GO TO 70
 49      IF (ABS(FA) .LE. ABS(FB)) GO TO 70
 50C
 51C     IS QUADRATIC INTERPOLATION POSSIBLE
 52C
 53      IF (A .NE. C) GO TO 50
 54C
 55C     LINEAR INTERPOLATION
 56C
 57      S = FB/FA
 58      P = 2.0*XM*S
 59      Q = 1.0 - S
 60      GO TO 60
 61C
 62C     INVERSE QUADRATIC INTERPOLATION
 63C
 64   50 Q = FA/FC
 65      R = FB/FC
 66      S = FB/FA
 67      P = S*(2.0*XM*Q*(Q-R) - (B-A) * (R-1.0))
 68      Q = (Q-1.0)*(R-1.0)*(S-1.0)
 69C
 70C     ADJUST SIGNS
 71C
 72   60 IF (P .GT. 0.0) Q = -Q
 73      P = ABS(P)
 74C
 75C     IS INTERPOLATION ACCEPTABLE
 76C
 77      IF ((2.0*P) .GE. (3.0*XM*Q - ABS(TOL1*Q))) GO TO 70
 78      IF (P .GE. ABS(0.5*E*Q)) GO TO 70
 79      E = D
 80      D = P/Q
 81      GO TO 80
 82C
 83C     BISECTION
 84C
 85   70 D = XM
 86      E = D
 87C
 88C     COMPLETE STEP
 89C
 90   80 A = B
 91      FA = FB
 92      IF (ABS(D) .GT. TOL1) B = B + D
 93      IF (ABS(D) .LE. TOL1) B = B + SIGN(TOL1,XM)
 94      FB = F(B)
 95      IF ((FB*(FC/ABS (FC))) .GT. 0.0) GO TO 20
 96      GO TO 30
 97C
 98C     DONE
 99C
100   90 ZEROIN = B
101      RETURN
102      END


