
Using Executable Domain Models to�
Implement Legacy Software Re-Engineering�

Position Paper�

Jean-Marc DeBaud�

College of Computing�
Georgia Institute of Technology�

Atlanta, GA 30332-0280�
debaud@cc.gatech.edu�

ABSTRACT

In this position paper, we advocate a domain-centric approach to the evolution of legacy systems. The
migration of legacy systems is a difficult endeavor because traditional methods have two principal
deficiencies. First, they fail to capture the context of a system, i.e., its domain. Second, the legacy
system’s comprehension results are not directly usable for the system evolution. We propose the
construction of executable domain models to alleviate both problems. The construction of an executable
domain model entails a process of domain analysis that leads to a domain model, as well as the transition
of the former to an executable state. The domain model provides domain expectations that drive legacy
system understanding. The executable domain model provides a medium in which the result of the legacy
system comprehension can be recorded. In fact, the executable domain model is instantiated using the
system requirements derived during program comprehension. The artifact thus created takes the role of
the re-engineered program. Our work uses the technique of object-oriented frameworks (OOF) as the
executable domain model representation.�

1. INTRODUCTION

The process of software re-engineering is multi-phased. In the first phase, the re-engineering of a
software artifact entails the comprehension of both what the artifact does, i.e., its context, and how it
accomplishes its purpose, i.e., its structure and control flow. This phase traditionally corresponds to
reverse engineering. In the second phase, the artifact is evolved using both the information gained in the
first phase and its new specifications. Because of the difficulties of each of these phases, program re-
engineering is a complex endeavor.�

Research in the field is moving somewhat away from the question of how an artifact accomplishes its
purpose. Using lexical, syntactic, and semantic rules for legal program constructs, tools such as
Reasoning Systems’ Software Refinery [9] can discover an artifact’s structure and control flow. The
purpose of an artifact is a much more difficult problem to solve.�

Programs have a purpose. They exist because of some computational needs. But a computation has
value only if it models or approximates some aspects of the real world. Insofar as the model is accurate,
the program will succeed in performing as expected. And, to the extend that the model is comprehended
by the reverse engineer, the process of understanding the program will be eased. Hence, to understand
what a program does, one must understand the context in which it evolves; that is, the part of the world it
is modeling or its application domain.�

So to understand a program, one must understand the domain in which it revolves. To understand
that domain, one must carefully analyse it. Research in computer science offers a technique, domain
analysis, to do that. Once one has such a domain model, one can use it to drive program understanding.�

To complete the re-engineering process, a software artifact must be evolved once it is fully
comprehended. The form and representation used to record the comprehension of an artifact are critical
to its utilization in the evolution step. Should the new evolution specifications concern the artifact’s
application domain, then it may be necessary for the programmer to use the domain model to implement
them or to acquire some domain knowledge. Hence, the evolution step also benefits from the existence of
a domain model. �

In a previous paper [4] we have argued that application domain modeling provides key concepts to
facilitates program context comprehension. In this position paper we argue that an executable application
domain model provides a key technique to implement legacy software re-engineering.�

2. THE METHOD AND RESULTS

The gist of our re-engineering method consists of the construction of an executable, domain-specific reuse
infrastructure (or domain model) and its use to drive, record and evolve software artifacts. The method is
presented in details in [5]. The main steps of the method (see Figure 1) are as follows: First, an
application domain must be chosen. Second, a domain analysis is performed upon that realm and a
domain model is created. Third, that model is expressed in executable form. The particular technology
we use is object-oriented frameworks [6]. At that stage, what is indeed a domain-specific reuse
infrastructure is in place. Fourth, the application domain model is used to guide artifact comprehension,
i.e., the reverse engineering. By a process of instantiating the object-oriented framework, the results of
the artifact comprehension are recorded. This process in fact amounts to specializing the reuse
infrastructure according to the recovered artifact specifications. At the end of the artifact understanding
process, its functionality is replicated by the framework. Now, as the fifth and last step, the evolution of
the artifact can begin. This is done by augmenting and/or modifying the previous set of instantiations.�

To apply this method, we have developed an executable domain model for Report-Writing. This is a
stable, well understood domain that has been successfully modeled by database management system
vendors in the form of report writing tools. We tested this approach on the Installation Materiel
Condition Status Reporting System [3], a standard U.S. Army management information system. It
consisted of approximately 10000 lines of COBOL code broken into 15 programs, most of which were
writing reports.�

While the process of domain analysis and framework construction is difficult and time consuming,
we found our efforts rewarded in many respects. First, we experienced a substantial improvement in the
time it took us to comprehend existing programs. We estimate, conservatively, to have speeded the
understanding step by a factor of two. Second, recording the artifact specifications generated from the
comprehension process was vastly simplified by simply having to parametrize the framework. Third,

artifact evolution was also greatly simplified because that process meant evolving the artifact
specification as opposed to the source-code. Our experience shows that complex artifact evolution
became a matter of minutes for someone familiar with the domain. �

Executable
Domain
Models
(OOFs)

Domain
Models

The World
(Application

Realms)

Domain Analysis

Domain Model Operationalization

System
Re-Engineered

Legacy System
Requirements

D
om

ai
n

E
ng

in
ee

rin
g

Legacy
Systems

Syntactic Analysis

Contextual
Analysis

Instantiated
Components

Legacy S
ystem

s R
e-E

ngineering

Figure 1: Using Domain Models for Software re-Engineering

Object-oriented frameworks provide a clear and normative structure to guide the reverse engineering
effort through feature expectations and purpose patterns. To achieve this, domain analysis is crucial.
Frameworks are also easily extended with new domain features (i.e., concrete classes), so long as no
dramatic conceptual changes are made to the domain. Frameworks, like every model representation
techniques are prone to difficulties when used to model fluid domains. Domain analysis must produce a
model that is robust to changes; a non trivial task. Frameworks are based on the object model, making
their overall understandability to users somewhat easier than other representations.�

Having first developed the report writing framework for forward engineering purposes, we were
impressed by the capabilities of the technique to record the process of reverse engineering via framework
instantiation. It was an unexpected benefit. We were also impressed by the power of domain models to
build expectations and their related prescription abilities. �

3. DOMAIN MODELING AND REVERSE ENGINEERING �

We now say a few words about the relation between domain modeling and reverse engineering. A
domain is a problem area. Typically, many applications programs exist to solve the problem in a single
domain. Arango and Prieto-Diaz [1] give the following prerequisites for the presence of a domain: the
existence of comprehensive relationships among objects in the domain, a community interested in
solutions to the problems in the domain, a recognition that software solutions are appropriate to the
problems in the domain, and a store of knowledge or collected wisdom to address the problems in the
domain. �

According to Neighbors [7] [8], domain analysis “is an attempt to identify the objects, operators, and
relationships between what experts perceive to be important about the domain.” As such, it bears a close
resemblance to traditional systems analysis, but at the level of a collection of problems rather than a
single one. Domain engineering/modeling/analysis is an emerging research area in software engineering.
It is primarily concerned with understanding domains to support initial software development and reuse,
but its artifacts and approaches prove useful in support of reverse engineering as well.�

In order for domain analysis to be useful for software development, reuse, or reverse engineering, the
results of the analysis must be captured and expressed, preferably, in a systematic fashion, hence the need
for a representation method [2]. Among the aspects that might be included in such a representation are
domain objects and their definitions, including both real world objects and concepts; solution
strategies/plans/architectures; and a description of the boundary and other limits to the domain. An
unresolved issue, of importance both to software developers and reverse engineers, is the exact form of
the representation and the extent of its formality. �

What role might a domain description play in reverse engineering a program? In general, a domain
description can give the reverse engineer a set of expected constructs to look for in the code. These might
be computer representations of real world objects or algorithms or overall architectural schemes. Because
a domain is broader than any single problem in it, there may be expectations engendered by the domain
representation that are not found in a specific program. Because a program is not always accurate or up-
to-date, there may be things missing or incorrectly expressed in the program, despite contraindications in
the domain representation. And, because a program is often used for more than one purpose, it may
include components that do not appear at all in the domain representation. �

Nevertheless, a domain representation can establish expectations to be confirmed in a program.
Furthermore, the objects in the domain representation are related to each other and organized in
prototypical ways that may likewise be recognized in the program. Hence, a domain representation can
act as a schema for controlling the reverse engineering process and a template for organizing its results. �

ACKNOWLEDGEMENT

The author gratefully acknowledge the original support of the Army Research Laboratory through
contract DAKF 11-91-D-0004-0019 and helpful comments from Spencer Rugaber.�

REFERENCES

[1] Arango, Guillermo and Prieto-Diaz, Ruben. Domain Analysis Concepts and Research Directions, in
Domain Analysis and Software Systems Modeling, ed. Ruben Prieto-Diaz and Guillermo Arango ,IEEE
Computer Society Press, 1991.�

[2] Arango, Guillermo. Domain Analysis Methods. In Software Reusability. (Eds.) W. Schaeffer, R. Prieto-
Diaz, and M. Matsumoto. Ellis Horwood, New York, 1993, pp. 17-49.�

[3] Automated Data Systems Manual, Installation Material Condition Status Reporting System (IMCSRS),
Functional User’s Manual, Commander FORSCOM, AFLG-RO, Ft. McPherson, Georgia, April 1, 1984.�

[4] DeBaud, Jean-Marc, Moopen, Bijith, and Rugaber, Spencer. Domain Analysis and Reverse Engineering,
Proceedings of the Conference on Software Maintenance, pp. 326-335, Victoria, British Columbia,
September 1994.�

[5] DeBaud, Jean-Marc, and Rugaber, Spencer. A Software Re-Engineering Method using Domain Models, To
appear in Proceedings of the Conference on Software Maintenance, Nice, France, October 1995.�

[6] Johnson, Ralph E. and Foote, Brian. Designing Reusable Classes. Journal of Object-Oriented
Programming, June/July 1988, Volume 1, Number 2, pp 22-35�

[7] Neighbors, James. “Software Contruction from Components”, PhD thesis, TR-160, ICS Department,
University of California at Irvine, 1980.�

[8] Neighbors, James. DRACO: A Method for Engineering Reusable Software Systems. 1989 ACM, Inc.
Addison-Wesley Publishing Co., Reading MA. �

[9] Reasoning Systems, Inc., Palo Alto, CA. REFINE User’s Guide, 1990. For REFINE (TM) version 3.0�

