
Restoring a Legacy
Spencer Rugaber

College of Computing, Georgia Institute of Technology
and

Jim White
Nortel, Atlanta Technology Park

In 1508, Pope Julius II commissioned Michelangelo Buonarroti to paint the ceiling of the
Cappella Sistina (Sistine Chapel) in Rome. Michelangelo labored for five years, much of
it while lying on his back, to complete the task. In 1538, he was called back by Pope Paul
III to add an enhancement, The Last Judgment, over the alter. This took seven more
years. Michelangelo’s work on the Sistine Chapel is surely a legacy–a gift from the past–
impossible to recreate and worthy of preserving.

Software systems can also be legacies. The system you will read about, RT-1000, was
originally built by a team of up to seventy developers, over a five year period, at a cost of
millions of dollars. In its current incarnation, it produces millions of dollars of revenue,
provides service to thousands of users, and would be prohibitively expensive to recreate.

In 1965, the Holy See commissioned a team of scientists, historians, and artists to restore
the paintings in the Chapel. Even though the restoration decision was controversial, work
proceeded over the next 30 years. Although no one would compare any software system
to Michelangelo’s masterpieces, the process of restoring the paintings has striking paral-
lels with the process of reengineering software.

Over the course of the last four years, the RT-1000 development team has worked to im-
prove quality and add features, turning what was a derelict into a high quality software
product. This article describes the RT-1000 legacy restoration process, comparing the
original to its current version and discussing factors that added and hindered the restora-
tion process.

System Description
RT-1000 is a telephony software system for Automated Call Distribution (ACD). An
ACD system comprises a set of software features that allows a large number of incoming
telephone calls to be distributed to a designated set of agent positions. An agent might
handle service requests, accept sales orders, or supply information to callers. If all agents

are busy, the calls are queued according to their priority and order of arrival. When an
agent becomes available, the call that has been waiting the longest is presented to the
agent. ACD features allow a supervisor to monitor the quality of service being provided
to incoming callers. Status displays indicate how well different queues or individual
agents are performing and where potential problems may exist. Detailed management re-
ports highlight service factors such as average waiting times and the number of aban-
doned calls. To match fluctuations in call traffic, ACD supervisors can fine-tune em-
ployee schedules or even reconfigure an entire call center in real time. Load management
capabilities allow a customer’s ACD administrator to monitor and manage call load and
configuration. Management information system (MIS) capabilities give the customer the
ability to generate real-time displays and statistical reports on the performance of a group
of agents. A typical customer for an ACD is a telephone company that uses it to handle
customer service requests for a whole state. A typical installation includes 5000 agents
and 150 supervisors. Figure 1 illustrates how the legacy RT-1000 system was normally
configured before the restoration process commenced.

RT-1000
ACD
System

Switch Switch Switch Switch

1 2 3 ...12

Up to 180
Supervisor
Terminals

RT-1000 Data

Data Base

Real Time
Control

Terminal
 Servers

Up to 7500
Agents

Figure 1: Original RT-1000 System Configuration

Initial Status

The paintings by Michelangelo in the Sistine Chapel comprise over 9,000 square feet.
Previous restorations, including efforts to censor parts of the nude figures, left doubts as
to the original conception. And centuries of grimy soot from candles that had been
burned in the chapel had done an unknown amount of damage.

RT-1000 History
RT-1000 was developed by a third-party software vendor in the late 1980’s and acquired
by Nortel in 1990. For the next three years it was enhanced and maintained by Nortel be-
fore being outsourced to another vendor to be systematically rewritten. This effort failed
and the system was returned to Nortel in mid-1994. By this time, the original design team
had been disbanded and scattered, and the customers were quite unhappy.

RT-1000 was assigned to the Atlanta Technology Park laboratory of Nortel, where the
cancellation of another project had left a department without a project. No staff members
had any experience with ACD software, and, due the previous project’s cancellation, staff
morale was quite low.

Technical Difficulties
RT-1000 is a complex system. Among the things that make it difficult to deal with are the
following.
• The overall size of the system is about 500,000 source lines of code which imple-

ments a long list of powerful and interrelated features. The system is written in multi-
ple programming languages including Fortran (for the computational components), C
(for the real-time part), an SQL-like fourth generation language (for the MIS), and
various UNIX scripting languages (for system configuration). The architecture of the
system comprises multiple architectural styles including real-time (managing up to
fifty concurrent processes), MIS, computational, and an event-driven graphical user
interface. Moreover, the system must satisfy a long list of difficult, non-functional re-
quirements including data integrity, real-time response, distributed processing, reli-
ability, information security, usability, performance under load, and openness to cus-
tomer and third-party extensions.

• The small user base (six customer organizations) means that field trials can be con-
ducted with at most two customers prior to general delivery. And the widely varying

way in which customers use the system presented further difficulties. For example,
some customers use the workforce management feature as a key part of their busi-
ness, while others do not use it at all. This makes field trials problematic in terms of
guaranteeing that features are exercised from a true user perspective prior to making
the software generally available. Moreover, when the system was first moved to At-
lanta, it was not known exactly how customers used the system. For example, one
customer used third-party (custom-designed) software to post-process reporting data.
When a standard report was modified by the RT-1000 team (to add an extra column
for additional precision, as requested by customers), the downstream software could
no longer process the report. The customer based its payroll processing on the output
of the downstream software and was therefore highly sensitive to this change. The de-
sign team often has no knowledge of these off-board systems. Another example is of
a customer contracting with a third-party company for wallboard development (dis-
play of RT-1000 data on LED-based wallboards in remote offices). When a problem
developed with the wallboard display due to a new screen sequence, the development
team was contacted by the wallboard company requesting information, to the com-
plete surprise of the RT-1000 team.

• The third-party software and hardware components of RT-1000 were out of date and
no longer supported by their vendors. For example, the system included an out-of-
date operating system, no longer supported by its vendor, with no means of control-
ling changes to the version on the field-deployed machines. The database manage-
ment system, supplied by a commercial vendor, was also out of date. The hardware
platform was no longer capable of supporting the customer demands placed upon it.
Customer terminal software was proprietary and failed to conform to the emerging,
Windows-based, industry standard. Finally, the distributed-component, interconnec-
tivity mechanism required a local area network upgrade.

• Software process was non-existent. There was no version control on the software.
Product testing was not formalized. And over three hundred outstanding Customer
Service Requests (CSRs) existed.

• Little if any documentation of the software architecture existed, and there were virtu-
ally no comments in the code itself.

• And, of course, RT-1000 faced a serious Year 2000 exposure.

RT-1000 Restoration Strategy
The development team’s basic approach over the first two years of the project was to de-
termine its contractual exposures (the classes of deliverables Nortel still owed to its cus-

tomers), and to categorize its CSRs (the classes of known problems existing within the
system). Armed with this knowledge, we targeted those areas of the system that would
have the biggest payoff in terms of the two goals for immediate enhancement. For exam-
ple, if a single additional feature responded to three contractual issues and also addressed
a number of CSRs, it was given priority. Similarly, the largest two classes of CSRs ac-
counted for over half the reported system issues, so these areas were given priority. De-
signers incrementally developed expertise in these classes/areas and were thus able to ad-
dress issues with increasing speed. As the major classes were exhausted, repair efforts
branched out into other areas.

 After Restoration
 Restoring the paintings in the Sistine Chapel was a massive undertaking. For the Last
Judgment alone, more than a year of preparation was required, both working in a labora-
tory and experimenting directly on the painting itself. Restoration involved a team of
participants including scientists, historians, and artists. The restorers had to contend with
technical issues that varied across the surface of the painting. They had to develop an
elaborate cleaning process including bath of distilled water and chemical mixtures,
sometimes filtered through layers of paper and sometimes applied with sponges. Restora-
tion involved not only cleaning the painting, but removing retouchings that had been
added over the centuries. Finally, the restorers had to design an entirely new environment
for the Chapel, including filtered air and a tailored microclimate.

 Restoring a software system is not merely a matter of updating lines of code. In a sense, a
whole new development environment needs to be constructed. And this has to be done
while continuing to support customers and to develop new features.

 Current Status
 Over the past three years, the RT-1000 team has restored the system to address the prob-
lems mentioned above. Among the most significant improvements are the following.
• The CSR level was reduced from three hundred to under fifteen.
• All RT-1000 software was placed into a standard Nortel version-control library and

an automated, reproducible loadbuilding process.
• Over 80% of the original nine hundred test cases were automated, reduced load-

regression times from around ninety staff-weeks to under five. Formal capacity test-
ing using software simulation packages was introduced to closely parallel field con-
ditions of up to two hundred users (rather than rounding up ten people on a weekend
to “stress test” the system manually, as was formerly the case).

• Software maintenance and support contracts were negotiated with the operating sys-
tem and hardware vendor to guarantee that all operating systems software for deliv-
ered systems can only come from the development team, thus ensuring more standard
configurations.

• System hardware and the accompanying operating system were upgraded and a long-
term hardware migration plan was developed.

• ISO-9001 certification was obtained for the development process.
• Regular customer visits to the Atlanta laboratory were begun in order to build cus-

tomer relationships.
• The database management system was upgraded to its latest release.
• The system architecture was published and otherwise opened up to customer and

third-party enhancements.
• And significant new functionality was added.

The restoration of the RT-1000 system has enabled a much more open and flexible ar-
chitecture, as illustrated in Figure

Router

External LAN

Workforce
schedule
imported to
RT-1000

RT-1000

Switch Switch Switch Switch

1 2 3 ...12

200 Supervisor
Terminals via
Ethernet

RT-1000 Data

Data Base

Real Time
Control

Terminal
 Servers

Server

 RT-1000 Data
 Replication

Third party
Work Force
Management
 & Report
Writing
Software

7,500
Agents

Figure 2: Revised RT-1000 System Configuration

Lessons Learned

Tools
At the start of the project, a study was undertaken to determine what commercial, source-
browsing software might be purchased to support the code-understanding process. Even-
tually, the most sophisticated commercially available tool was purchased. Although it
provided quite powerful analysis and browsing capabilities, it could not deal with multi-
ple processes. That is, different processes contained subprograms with the same name
and the tool confused these. Moreover, soon after delivery, the providing company went
bankrupt. No tool addressing the name collision problem has yet been found.

Another tool-based effort was originally undertaken to support Fortran-to-C conversion.
Approximately half of the original RT-1000 code was written in Fortran, but it was felt
from both a performance and maintainability perspective that C was a better language in
which to develop the product. A freeware toolset was used to support the conversion ef-
fort and, while the trial was technically a success, the resulting C-code was so convoluted
as to be totally unmaintainable and unmodifyable. As an alternative, the use of configu-
ration scripts (makefiles) which allowed C and Fortran code to co-exist in compiled
modules was increased. This providers designers a choice of languages in which to work
on any given feature or problem.

Currently, the team is initiating the use of an automated, web-based, metrics tool that
evaluates the quality of software systems by measuring complexity and maintainability
using standard statistical techniques. This tool will be used periodically to assess code
releases as they are developed. The product team can thus assure customers that quality is
being incorporated throughout the entire development life-cycle. It will also allow more
informed decisions as to software architecture modifications in terms of areas which need
to be overhauled or eliminated.

Verification
Product verification has been greatly improved. In place of marginally documented sin-
gle-line descriptions, we now have fully described test cases. We have also added a
number of test cases of our own (both for systemic tests and to test features which we
have added). We have automated a large percentage of the entire test suite so as to easily
compare new versions of the code with past runs to detect GUI or data errors. Finally,
we have added true capacity testing to our suite, and are now able to emulate an entire
complement of live supervisors, rather than being limited to the number of physical PCs

we could connect to the system in the same way customers do. With a product as com-
plex and flexible as the RT-1000, however, the task of verification is daunting. The more
that we learn about rigorous testing, the more we realize that we need to learn.

The Web
At the start of the RT-1000 effort, we knew that the development team would have to
learn a lot about the system. But how could this knowledge be effectively shared? An in-
ternal hypertext of web pages was used to address this issue. The web has been a real ally
in managing this project. We began to use the web as an information repository and re-
trieval system, and aligned it with our ISO-9001 processes and goals such that it made
adherence to the standard a natural part of getting our job done. Also, tools were added to
automatically keep updated problem lists for easy reference and for historical tracking.

Project Transfer
Transferring a project of this size across geographic and managerial boundaries took at
least a year. In addition, when the type of project is radically different than the one it re-
places, large staff turnover can be expected. In such a case, it would likely be better to
retain the geographic location and merely hire an all-new staff. This would add some
complications, but would reduce others and, in the end, probably be simpler and less
costly than moving the project.

Also, higher management needs to offer extra support to a project such as this to reassure
those assigned to it that the corporation deems it a worthwhile effort. A lack of corporate
support to back up the organizational decisions can further delay and complicate the proj-
ect.

Organization
The most important problem we had to overcome was the lack of a single point of mana-
gerial control. At first, every element of the team (design, verification, technical assis-
tance, and product management) reported upwards through different management struc-
tures. When a disagreement developed, there was no way of resolving it quickly. The
only practical solution was to have reporting lines converge at a managerial level closer
to the working-level groups; otherwise, a very high level manager will need to devote
appreciable amounts of time to administer petty details.

CSRs
Customer service requests had been piling up within Nortel prior to the project being
farmed out to a third-party company. The customers were told that "the re-write will fix
everything!". During the re-write period, problem reports continued to come in, but there
was no longer a design group tasked with addressing them within Nortel. When the re-
write failed to materialize at all, customers demanded action on their backlog of prob-
lems, which had now grown to appreciable lengths.

We took a phased approach to solving the CSRs. Weekly meetings were begun with
senior managers (design, product line management, and testing) to discuss just one cus-
tomer's list. Week-to-week, it was pared down. Also, efforts were made across the board
to solve some of the issues independently. Managers also took time to characterize the
large pool of issues into the affected areas (database, reports, workforce management,
real-time, etc.). The area with the highest customer interest and the most problems was
targeted for a software overhaul via features; which addressed some of the CSRs as well.
In tandem, the CSR list's duplicate and “non-issue” elements were removed via reviews.
During the subsequent release, the next most important set of issues was addressed in
parallel with a feature enhancement. Also the next most troublesome customer's list was
tackled, once the first was reduced. Over a period of about eighteen months, the list was
radically shortened.

Restoration of the Sistine Chapel painting took over thirty years of painstaking effort.
The result enables us to fully appreciate one of the most glorious instances of artistic en-
deavors ever realized by man. Legacy software restoration likewise entails a massive
commitment of resources by management and software developers. In both cases, the ef-
fort requires careful planning, a well thought out process, deep technical understanding,
and a great deal of patience. In the case of RT-1000, up to twenty developers labored
over three years to restore the system to full functionality. The resulting increase in cus-
tomer satisfaction and product revenue has made the effort worthwhile.

References
To learn more about the Sistine Chapel restoration, the reader can visit the following web
site: http://www.christusrex.org/www1/sisteen/0-Tour.html.

The restoration of the Sistine Chapel is described in the following article. The book in
which the article is contained also includes over two hundred and fifty high-fidelity pho-
tographs of Michaelangelo’s paintings.

Carlo Pietrangeli.
“Introduction / An Account of the Restoration.”
in The Sistine Chapel / A Glorious Restoration, Pierluigi De Vecch, editor, Harry N.
Abrams Publishers, 1992.

