
Automating The Design of Speci�cation Interpreters

Kurt Stirewalt� Spencer Rugaber� Gregory Abowd

College of Computing

Georgia Institute of Technology

Atlanta� Georgia ����������

Abstract

In this paper� we demonstrate the use of model check�

ing in an automated technique to verify the opera�

tionalization of a declarative speci�cation language�

We refer to an interpreter synthesizer as a software

tool that transforms a declarative speci�cation into

an executable interpreter� Iterative approaches to

synthesizer generation re�ne initial synthesizer de�

signs by validating them over a test suite of speci�ca�

tions� Carefully chosen test suites and structural con�

straints enable inductive reasoning with support from

a model checker to assert the correctness of gener�

ated interpreters� This iterative approach to synthe�

sizer generation occurred naturally in our work on de�

veloping interpreters for declarative human�computer

dialogue languages as part of the DARPA MASTER�

MIND project� We will discuss the issues underly�

ing the translation� operationalization and veri�ca�

tion of the hierarchical task language for MASTER�

MIND� We will also discuss the importance of this

semi�automated� iterative approach for assessing non�

functional design tradeo�s�

Keywords� model checking� declarative speci��

cation languages� model�based user interfaces� auto�

mated veri�cation

� Introduction

Reactive� or event�driven� software systems are di��

cult to build and maintain� A good example of such

an event�driven system is the graphical user interface�

in which the behavior of the system is driven by user

activity� A declarative speci�cation language can ease

the initial description of such a reactive system� and

in the case of graphical user interfaces� the speci��

cation language is referred to as dialogue� or task�

language ���� In the MASTERMIND project� we are

concerned with the development of tools to automate

the generation of graphical user interfaces based on

declarative task speci�cations� Our approach is sim�

ilar to that taken in the model�based user interface

community �		��

One problem that we encountered is the di�culty

of formally proving the correctness of an interpreter

built for the task speci�cation language� This is

a general problem of operationalizing a declarative

speci�cation language� Operationalization is the pro�

cess of generating an interpreter synthesizer for a

declarative speci�cation language� The synthesizer

generates a reactive state�based interpreter to imple�

ment the speci�ed behavior� Operationalized speci��

cation languages enable engineers to specify and rea�

son over systems and then feed the speci�cations into

a compiler that generates an executable simulator�

Operationalization as a process is inherently an

engineering activity� Analysts design synthesizers

that satisfy interdependent constraints from two ma�

jor sources
 speci�cation language semantics and

customer e�ciency requirements� Variations in the

speci�cation language imply changing semantic con�

straints on the design of the synthesizer� Likewise�

requirements on the synthesized interpreters mani�

fest themselves as constraints on synthesizer design�

An engineering process for operationalization must

support the generation of synthesizers that simulta�

neously satisfy constraints from both sources� We

Page 	



found symbolic model checking technology useful in

automating this simultaneous solution process� The

results we present in this paper directly address the

translation from a speci�cation language�in our case

the MASTERMIND task modeling language�to an

executable interpreter consisting of communicating

state machines� We describe an approach that ad�

dresses the treatment of non�functional e�ciency re�

quirements� The end result of the design process is

a set of tools to generate and verify a synthesizer

and partial results that could be used to reapply the

process in the face of change �e�g�� if the language

changes� or the e�ciency requirements of the cus�

tomer change�

Overview of paper

In Section �� we relate this application of model

checking to other work on applying model checking

to software systems� Using the speci�c example of

the MASTERMIND task modeling language� we ex�

plore in Section � the issues surrounding the intro�

duction of automation into the engineering process

of generating an interpreter from a declarative spec�

i�cation language� The approach we use is to trans�

late the language into an interpreter using concurrent

state machines� There are then trade�o� issues deal�

ing with the mechanics of how communication occurs

between these state machines� In order to follow an

engineering approach to examining these alternatives�

we need to invoke some automated support� and this

is where we employ modern model checking technol�

ogy� In Section �� we discuss how we use a partic�

ular model checking technology� the Symbolic Model

Veri�er �SMV���� Using this tool we were able to

experiment with design tradeo�s to ensure the prod�

uct meets its functional requirements� and to quickly

understand how inconsistency arises� Additionally�

the infrastructure facilitates tuning a design to non�

functional user requirements without sacri�cing cor�

rectness� In Section �� we outline a procedure for this

automated trade�o� analysis�

� Related Work

There has been increasing attention given by the soft�

ware engineering community to the merits of model

checking� On the surface� the approach is very sim�

ple� A problem is described in terms of a state�based

model description and that model is exhaustively

searched in order to verify that it upholds certain

properties� The cause for the recent surge in interest

can be linked to developments that have provided for

e�cient search across very large �nite state spaces us�

ing symbolic instead of explicit means of representa�

tion ��� ��� The majority of the work in model check�

ing has been demonstrated on hardware problems�

because they are better suited to model checking tech�

nology�s restriction to �nite models� Applications

of model checking to event�based software systems

which have a �nite state representation have been

demonstrated for examining timing requirements ���

and for verifying properties of production rule dia�

logues in a human�computer interface �	��

Model checking is good at pointing out errors in a

speci�cation� but it requires a �nite state representa�

tion of a problem� Wing and Vaziri�Farahani �	�� pro�

vide an elegant argument justifying the application of

model checking technology to software problems with

in�nite state spaces through �nite abstractions� Jack�

son ��� used model checking technology to e�ciently

search a �nite pruning of a Z speci�cation state space

to detect errors� We are also taking advantage of the

error spotting in our iterative approach to verifying a

synthesizer generator in this paper� Our work here is

a unique application of model checking to the prob�

lem of matching a declarative language to an auto�

matically generated interpreter� Our tools not only

employ a symbolic model checker to do exhaustive

search� as done by all of the approaches listed above�

but they also generate the properties of speci�cations

that need to be checked�

Page �



� Case Study� The MASTER�

MIND Task Language

A reactive system speci�cation environment provides

designers with a language for specifying reactive sys�

tems� a suite of tools for reasoning over speci�cations�

and a compiler that generates executable run�time

systems from speci�cations� Such environments dif�

fer in the nature of the speci�cation language� the

degree of support for reasoning� and the extent to

which the generation of run�time systems is fully au�

tomated� MASTERMIND is an environment that

specializes in generating highly interactive user in�

terfaces and attaching them to applications �	��� The

MASTERMIND project involves a number of di�er�

ent models that are relevant for interactive systems

design �presentation� application� and task and we

are focusing here on the task model and its associ�

ated speci�cation language� A suite of design critics

help designers reason about these speci�cations� and

the task interpreter synthesizer generates executable

run�time interface drivers from these speci�cations�

The MASTERMIND approach is useful because its

task speci�cation language directly supports hierar�

chical task analysis� Features of the language compli�

cated the design of the interpreter synthesizer� This

section explores those complications�

��� The Language

Research in human�computer interaction suggests

that hierarchical task analysis is a natural means of

dialogue speci�cation ���� The MASTERMIND task

language is a visual language for expressing the re�

sults of such analysis� It allows designers to spec�

ify task hierarchies� hierarchical ordering constraints�

and interaction with an external environment in the

form of preconditions and e�ects� The visual lan�

guage has a textual analogue �which we will use in

this paper containing only hierarchy and ordering

information�

An example helps motivate the language� Suppose

we are to design the interface for a simple e�mail pro�

gram� Users of this program want to accomplish two

main tasks
 sending mail and reading mail� In the

designer�s mind� users perform one of these tasks or

the other� but not both at the same time� This is

expressed in the task language by declaring the Mail

task to decompose alternatively into the Send Mail

task and the Read Mail task


Mail 

� alt�Send Mail �

Read Mail

The keyword alt speci�es that one and only one of

the subtasks may be performed� The designer must

now re�ne the two subtasks� The Send Mail task has

three major subtasks
 enter the name of the recipi�

ent� compose the message to be sent� and send the

message� The designer rationalizes that these sub�

tasks must be performed in that order and declares

the following


Send Mail 

� seq�Enter Recipient �

Compose Message�

Press Send

Each of these subtasks must be re�ned� The simplest

is Press Send which represents an atomic user inter�

action via a mouse press� It has no subtasks� and so

is declared as a leaf task


Press Send 

� leaf

In addition to those already described� the lan�

guage provides the following ordering operators


par speci�es that subtasks may be performed in

any order and interleaved� For example� the

Enter Recipient and Compose Message tasks

might be ordered in this fashion rather than

sequentially� allowing users to perform parts of

both both tasks in any order�

opt speci�es that a single subtask may execute� or

may be skipped if the user chooses to perform a

subsequent subtask� An opt task in the e�mail

example might be the a task to enter Carbon

copy �Cc recipients�

cond speci�es that a single subtask will execute in

the situation where an environmental condition

is initially satis�ed� If an e�mail user imports

Page �



non�ASCII data in the text of the message� the

system could issue a warning to inform this per�

son that some mailers might have di�culty with

the message� A cond task could be used to place

the warning at an appropriate point relative to

other tasks�

continuous speci�es that a subtask executes contin�

uously as long as some environmental condition

is satis�ed� The Read Mail task� for example�

might reissue the read prompt as long as there

are unread messages in the mail box�

repeat speci�es that a single subtask executes re�

peatedly as long as the user chooses to request

it� Rather than choosing to return the user to the

read prompt based on the mail box contents� the

Read Mail task could instead allow the user to

explicitly repeat the task or continue with some

subsequent task�

The opt� cond� continuous� and repeat ordering

operators are required to operate over a single sub�

task� The seq� par� and alt operators operate over

any �nite set of subtasks�

��� State Machine Interpretation

Since the task language expresses hierarchical order�

ing invariants over subtasks� its operationalization

was di�cult� The �rst issue we faced was deciding

the representation of the interpreter� Task speci��

cations express the legal orderings of user and sys�

tem interactions� Operational interpretations must

actively monitor interaction and constrain the system

so that only legal orderings may occur� Speci�cally�

if in some state only a certain set of interactions is

legal� the interpreter enables only the widgets associ�

ated with this set of interactions� Enabling a widget

means allowing that widget to accept mouse and�or

keyboard events� When the system changes state in

response to an interaction� the set of legal leaf tasks

will likely change� The interpreter handles this by

disabling enabled widgets not in the new set and en�

abling those in the new set that were not in the old

set� This is typically indicated by greying out but�

tons� menu items� etc� The legality of a given inter�

action changes depending upon temporal context�

If� for example� we declare that the tasks En�

ter Recipient and Compose Message are to be

strictly sequenced� interactions that comprise En�

ter Recipient must be enabled for the duration of

that task but disabled when Compose Message

begins� Our language is such that the legal inter�

actions associated with a state are statically deter�

minable� Given this behavior it seems natural to as�

sociate sets of legal interactions with states in the

generated interpreter�

��� Correctness by Induction

Engineers are obliged to show that synthesizer designs

yield a generator that produces correct interpreters�

Deductive proofs of correctness are ideal� but they

are di�cult to construct� If some aspect of the prob�

lem can be shown to have inductive structure� then we

could exhaustively show correctness on a small collec�

tion of tests and use the induction principle to assert

correctness on any speci�cation� An inductive proof

of design correctness utilizes a technique called struc�

tural induction� Structural induction establishes the

correctness of a synthesizer over a set of atomic tasks

�the base case and then argues that simple compo�

sitions of these tasks are correct �the inductive step�

The induction principle then says that the synthe�

sizer generates a consistent machine for speci�cations

of any size�

We developed a test suite of example speci�cations

that exhaustively exercises both the base case and the

inductive step� If a synthesizer passes the test suite�

we assert semantic con�dence in that product� For

the proof to hold� we must argue that speci�cations

not in the set behave like compositions of speci�ca�

tions in the set �the structural induction argument�

Speci�cally� the synthesizer must generate inter�

preter components that communicate hierarchically

because the ordering operators correspond to tasks

with hierarchical subtasks� This means that the out�

put representation cannot be a simple state machine�

Simple state machines retain compositional structure

for some of the task language operators but not all of

Page �



them� Composition using the seq operator� for exam�

ple� can be preserved by making the �nal state of the

machine synthesized from the �rst subtask the start

state of the machine generated by the second sub�

task� The alternative operator is likewise preserved�

The par operator� however� is not preserved in the

structure of the machines� The only general way to

implement the par of two state machines is to gen�

erate a machine whose states are the cross product

of the states of the constituent subtasks� yielding an

explosion of states� This problem necessitates a dif�

ferent representation for the output of the synthe�

sizer� Since simple state machines cannot deal well

with parallelism� we look to a system of concurrent

state machines ����

��� Concurrent Mealy Machines

We chose to make the synthesizer translate each task

into a Concurrent Mealy Machine� Mealy Machines���

are deterministic �nite state machines that consume

and then produce a symbol at every state transition�

Concurrent Mealy Machines treat the produced sym�

bols as events and allow the produced events of one

machine to be the consumed events of others� Mealy

Machines compose by synchronous parallel composi�

tion ��� With only seven types of tasks in the lan�

guage� we need only seven classes of Mealy Machine�

Each di�erent class of task ordering is captured by a

canonical machine that controls the execution of sub�

tasks by issuing control events� Interaction tasks are

also associated with machines and respond to En�

able and Disable control events issued by machines

upholding ordering invariants�

Mealy Machines enforce ordering invariants by ob�

serving the behavior of other machines and issuing

control events that enable or disable these machines�

Subtask machines must have facilities to respond to

control events� and control events must be targetted

to particular machines� Since tasks compose hierar�

chically� any type of task might be the subtask of an�

other task� The following states exist in all machine

classes for ordering control


notready indicates this machine is not able to do

anything because of ordering constraints�

ready indicates this machine is able to perform an

activity but has not yet begun�

active indicates this machine is presently participat�

ing in some form of activity�

With these canonical states there are canonical events

that cycle through them�

Enable forces a machine in the notready state to

transition to the ready state�

Disable forces a machine in the ready state to tran�

sition back to the notready state�

��� Example Design Decision

Consider modeling part of the dialogue of a World

Wide Web browser� Users may move forward one

page or back one page by pressing arrow buttons on

the toolbar� One cannot� however� do both at once�

The tasks associated with this choice are modeled in

our formalism as follows


History 

� alt�Move Forward �

Move Back

�where Move Forward and Move Back are interac�

tion tasks� The synthesizer generates a Mealy ma�

chine for each of the three tasks� At some point� the

History machine enables its subtasks by issuing an

Enable event to bothMove Forward andMove Back �

Once enabled� widgets associated with these ma�

chines are enabled� and the user may physically in�

teract with one of them to communicate a choice�

If the user clicks on the widget associated with the

Move Forward machine� the History machine must

issue a Disable event to the Move Back machine�

The alt machine �History must respond to the

activity of subtask machines to know when to issue

Disable events to others� One way to implement this

is to make the ordering machines like alt peek into the

states of subtask machines and transition based on

the results of these peeks� Another implementation

forces subtasks to announce activity to parent tasks�

Each approach has advantages� and the decision to

use one or the other is a trade�o� between time and

space requirements� Peeking is the least sensitive to

Page �



race conditions� but uses a lot of space for deep hi�

erarchies� The announce option� on the other hand�

uses constant space but must make a number of steps

to get to its destination� The di�erence between the

two becomes more noticeable with deeper hierarchies


Mail 

� alt�Send Mail �

Read Mail

Send Mail 

� seq�Enter Recipient �

Compose Message�

Press Send

Read Mail 

� seq�Select Mailbox �

Select Message

The Mail task controls the exclusive choice of interac�

tion tasks Enter Recipient and Select Mailbox which

are not its immediate subtasks�

If the machine associated with Mail uses peeking

to detect activity� it must be able to peek into the

internal state of both interaction tasks� There could

be many of these interaction tasks� The ordering ma�

chine might need to peek into as many as �k machines

where k is the depth of the hierarchy rooted by the

alternative task� Peeking clearly gives up space to

achieve more rapid switching�

Instead of peeking� machines could announce ac�

tivity by issuing an Activate event to their imme�

diate parent� The parent would then perform any

ordering activity appropriate at its level in the hier�

archy and issue another Activate event to its parent�

In the Mail example� when the Enter Recipient ma�

chine notices interaction� it issues an Activate event

to Send Mail � Send Mail will then issue an Activate

event to Mail � At this point� the Mail task issues a

Disable event to Read Mail which in turn sends a

Disable event to Select Mailbox � Announcing activ�

ity clearly introduces delay in terms of propagation

to achieve constant space increase�

The mechanism for responding to activity poses a

design choice� Engineers can weigh the cost�bene�ts

of time and space usage� but they have no way of

knowing the solution is correct� Both approaches

seem to work for this small example� but there are

six other types of ordering operators� A tool that

judges the validity of such design decisions would be

bene�cial�

� Model Checking

Which observation mechanism should we use� Both

solutions have good and bad properties� The peeking

solution is easier to reason about because it subsumes

the need to propagate events throughout the hierar�

chy� Unfortunately� it comes with a possibly expo�

nential cost in terms of added states� The announce�

ment of activity solution� on the other hand� is not as

easy to reason about but uses much less space� Ulti�

mately� engineers will decide which strategy to apply

and will need to demonstrate the correctness of the

choice with respect to the task language� Some of

these solutions are di�cult to reason about� and deci�

sions tend to be subtly inter�related� If tradeo�s like

peek vs� announce come up for each ordering mecha�

nism� decisions made in one case will likely invalidate

assumptions made in others� Fortunately� automated

tools can be applied to assist in the validation�

In our approach� engineers associate each type of

task in the speci�cation language with a unique class

of state machine and a schema of temporal invariants

demonstrating the ordering semantics of the task� A

tool instantiates speci�cations into a collection of con�

current Mealy Machines and a collection of temporal

invariants whose composition demonstrates the cor�

rectness of the machines� The output of the transla�

tion tool can be fed into the SMV Model Checker to

be veri�ed� When this step passes for each specicifa�

tion in the test suite� the design is correct�

��� The SMV Model Checker

The SMV model checker reads the speci�cation of

a system of concurrent state machines and a collec�

tion of temporal speci�cations over the states of these

machines� SMV state machines are de�ned in two

parts� VAR blocks declare variables that retain in�

ternal state� States of the machine are taken to be all

combinations of variable values� ASSIGN blocks ex�

press transition functions� Initial values are assigned

to each of the state variables through the init�� � � as�

signment� The transition function is constructed by

associating a state �set of variable values with a set

of possible next states �new values of variables using

Page �



the next�� � � state feature�

A MODULE in SMV is a parameterized encapsu�

lation of state machine declarations� MODULES can

be instantiated into the state of other MODULES� An

unparameterized distinguished MODULE main con�

tains the concurrent state machine instantiations that

make up a system� During instantiation� MODULE

parameters of a machine can be bound to internal

state variables of other machines�

��� State Machine Conventions

Engineers de�ne classes of Mealy machines corre�

sponding to the di�erent features of the speci�cation

language� Since machines must compose hierarchi�

cally� we provide a template of minimal state function�

ality that each class must possess� Machine classes

take the form of parameterized SMV modules�� Ma�

chine instantiation then corresponds to MODULE in�

stantiation� A template addresses two needs


	� support for general hierarchical composition� and

�� augmentation with ordering invariants�

The template reserves the names of two internal

state variables
 state and event� The state variable

maintains the state of the particular machine� In�

teraction widgets and application service invocations

are associated with these states� The event vari�

able remembers an event issued to this machine by

some other� This is necessary because SMV does not

directly support event�broadcast mechanisms� Ma�

chines must in�uence the state of other machines by

issuing events� A machine may not directly modify

the state variable of another machine�

For machines to issue events to other machines�

they must be connected� Connections represent the

minimal state required for two machines to commu�

nicate �access each other�s internal states and issue

events to one another� Connections are directed in

the sense that they always match a parent machine to

a child machine� but both machines can issue events

�To Referee� We have included two such classes in the ap�

pendix� The classes for the other ordering operators can be

included if you think they would be instructive� We did not

include them for reasons of space�

to each other� To support connection� all classes of

machine have the following two MODULE parame�

ters for each machine with which they might need

to communicate� One of these parameters is bound

to the machine� and the other parameter is bound to

the event variable of the machine� The binding of the

event variable of other machines allows this machine

to modify the �eld �issue the other machine an event�

Two parameters are necessary because SMV visibil�

ity rules only allow modi�cation of variables that are

explicitly passed as parameters� Those variables that

are brought into scope by the machine binding are

e�ectively read�only�

The hierarchy


History 

� alt�Move Forward �

Move Back

Move Forward 

� leaf

Move Back 

� leaf

generates the following instantiation of machine

classes


MODULE main

VAR

History � process alt�Move�Forward�

Move�Back�

Move�Forward�event�

Move�Back�event��

Move�Forward � process leaf�History

History�event��

Move�Back � process leaf�History�

History�event��

The machine History has a connection with the ma�

chine Move�Forward� Move�Forward is instantiated with

History�s event variable and so may issue an event

to History� Likewise� History is instantiated with

Move�Forward�s event variable�

��� Invariant Conventions

To validate the instantiated machines we must also

instantiate the invariants that express their correct�

ness� SMV expresses state machine invariants using

Computation Tree Logic �CTL� CTL is a subset of

branching time temporal logic that allows the speci�

�cation of temporal properties over paths execution�

SMV uses model checking to verify or refute CTL

formulae over classes of concurrent state machines�

Page �



When the CTL expression is of a certain form� SMV

can actually construct a counter�example to demon�

strate a failure case� To the extent possible� we ex�

ploit that form in the invariants we instantiate so that

engineers will get constructive feedback when their

designs are �awed�

The semantics of the various task language features

are captured in a quanti�ed tree language that facil�

itates instantiation alongside the state machines� In

general the ordering operators demonstrate semantics

by proving two types of properties


safety which demonstrate that the orderings are not

violated� and

liveness which demonstrate that a maximal number

of legal choices are presented to the user�

We take as an example the semantics of the alt order�

ing operator� Alternative ordering explicitly prohibits

concurrent activity between machines in disjoint sub�

tasks� The disjointness can be captured by the CTL

expression


AG ���t��state 	 active� 
 �t��state 	 active��

where t� and t� are machines associated with sub�

tasks at some level from the two disjoint subtasks�

The semantics of alternatives imply that the user can

make a choice� This liveness property is captured

with the following CTL expression


EF ��t��state 	 ready� 
 �t��state 	 ready��

where t� and t� are machines associated with the

direct subtasks of the particular task�

Interestingly� liveness properties tend to be ade�

quately captured by temporal constraints over im�

mediate subtasks� whereas safety properties tend to

require temporal constraints over all possible pairs of

descendant subtasks�

��� Announce Example

The MODULE leaf �shown in Figure 	 represents

an interaction task� Needing to communicate only

with its parent in the hierarchy� it takes two parame�

ters� From the ready state� the machine could receive

an Activate event� Since parent tasks assume sub�

tasks notify them of activity� this task must issue an

MODULE leaf�parent�parevent�

VAR

event � fNull� Disable� Enable� Activateg�

state � fnotready� ready� activeg�

ASSIGN

init�state� �	 notready�

init�event� �	 Null�

next�state� �	

case

�state 	 notready� 


�event 	 Enable� � ready�

�state 	 ready� 


�event 	 Disable� � notready�

�state 	 ready� 


�event 	 Activate� � active�

�state 	 active� � notready�

� � state�

esac�

next�event� �	

case

state 	 ready � fActivate� Nullg�

� � Null�

esac�

next�parevent� �	

case

next�state� 	 active � Activate�

� � parevent�

esac�

Figure 	
 SMV description of a leaf interaction task�

Activate event to its parent� This is achieved through

the assignment next�parevent� �� ���� Each class

of machine has similar functionality to support the

propagation of Activate events up the hierarchy�

MODULEs representing the alt and seq ordering ma�

chines appear in the appendix�

Unfortunately� when we apply SMV to the ma�

chine instantiation and invariant instantiations of the

History hierarchy� the invariant does not hold� SMV

provides us with the counterexample of Figure �� The

inconsistency arises from an event propagation race

condition� The counterexample shows an execution

sequence in which both Move�Forward and Move�Back

become active before History is scheduled to run�

Perhaps machines should check for sibling activity

rather than relying on control events to arrive� This

observation led us to the peeking solution�

��� Peek Example

The next design makes use of the DEFINE primitive

in SMV which allows designers to associate a symbolic

name with a formula over system state� These macros

Page �



state ����

Move�Forward�event 	 Enable

Move�Forward�state 	 notready

Move�Back�event 	 Enable

Move�Back�state 	 notready

History�event 	 Disable

History�state 	 notready

state ����

�executing process Move�Forward

state ����

�executing process Move�Forward

Move�Forward�event 	 Null

Move�Forward�state 	 ready

state ����

�executing process Move�Forward

Move�Forward�event 	 Activate

state ����

�executing process Move�Back

Move�Forward�state 	 active

History�event 	 Activate

state ����

�executing process Move�Back

Move�Back�event 	 Null

Move�Back�state 	 ready

state ����

�executing process Move�Back

Move�Back�event 	 Activate

state ����

Move�Back�state 	 active

Figure �
 SMV counterexample for the activity an�

nouncement solution of the History hierarchy�

are recursive with respect to MODULE instantiation

which allows one to compactly de�ne modules that

can peek at the states of arbitrarily many machines�

The actual state duplication to support this peeking

is done at MODULE instantiation time� The expres�

sion is powerful and particularly useful for quantify�

ing over the behavior of all machines in an inductive

structure like a task hierarchy� As with any pow�

erful feature� it must be applied symmetrically and

methodically�

Machines are extended with the DEFINE macro

BUSY that summarizes activity in the hierarchy rooted

by the machine� For leaf machines� the declaration is


BUSY �	 �state 	 active�

whereas for machines like alt that represent internal
nodes in hierarchies� the BUSYmacro includes the BUSY
for each subtask


BUSY �	 �state 	 active� � child��BUSY � child��BUSY

With this macro de�ned for each class of machine�

other machines can compactly ascertain the activ�

ity of all machines in a sub�hierarchy by referring

to the BUSY macro of the machine that tops the hi�

erarchy� Ordering task machines are extended with

two macros
 PAREXCL� and PAREXCL� that encapsulate

exclusion criteria induced by parent machines� Ex�

clusion criteria are built up from logical conditions

about the BUSY�ness of sibling hierarchies according

to parent tasks� For alternative machines� the exclu�

sion criteria for the �rst subtask machine �PAREXCL�

states that the second subtask machine is not experi�

encing activity at any level in its hierarchy� If the �rst

subtask machine could somehow access this knowl�

edge� it could use in as a precondition for becoming

active�

By supplying these exclusion criteria as MODULE

parameters� leaf machines will have access to the ex�

clusion appropriate to their level in the hierarchy�

The leaf transition to the active state can then have

the additional condition that there is no sibling ac�

tivity that would preclude this machine going active�

The peeking declarations for leaf and alt appear in

the appendix� SMV con�rms that this design upholds

the safety speci�cation for the History example�

� Addressing Design Tradeo�s

The iterative approach addresses correctness require�

ments but does not directly address e�ciency require�

ments� Typical speci�cation languages might have

a collection of correct operationalizations� Some of

these will have more desirable non�functional prop�

erties than others� Ideally� a mechanized design pro�

cess converges to a solution that is both correct and

e�cient�

��� An Example Tradeo�

The tradeo� between peeking and announcement is il�

lustrative� Peeking at the internal state of concurrent

machines requires support from the run�time inter�

preter� When the degree of peeking is excessive� this

support can be prohibitively expensive� The SMV

macros we use to implement peeking expand into an

amount of state proportional to the depth of a leaf

node in a hierarchy� In the worst case� this expansion

is exponential� The alternative to intrusive peeking

is to communicate control by issuing events� The an�

Page �



nouncement based design failed because control was

delocalized and sometimes machines could carry out

illegal behavior before the control events disabling

such behavior had time to arrive� Though the ap�

proach failed to hold up under correctness scrutiny�

it has very desirable e�ciency properties� The two

approaches are at opposite end points of a design

spectrum� Perhaps a hybrid design exists that has the

correctness properties of the peeking solution and the

e�ciency properties of the announcement solution�

What makes the announcement solution fail is that

it assumes too much about the relative scheduling

of concurrent machines� The model checker looks at

all possible interleavings to make sure that designs

are not sensitive to such orderings� Delivered inter�

preters� however� will only simulate parallel execution

on a sequential machine� If the scheduling policy is

�xed by the design� the engineer could use knowledge

of the schedule when designing state machines to re�

duce the amount of duplicated state� Conversely� if

the engineer determines that a scheduling assumption

enables an e�cient state machine design� he could �x

the interpreter scheduling policy to be one that re�

�ects that assumption� This adds another degree of

freedom to the design process�

For example� we believe a prioritized scheduling

policy enables an e�cient compromise between the

peeking and event announcement solutions� If ma�

chines only need to peek at parent states to guard

themselves from going active� the amount of repli�

cated state would be linear in the depth of the hier�

archy as opposed to exponential� This is safe as long

as events issued to parent machines reach those ma�

chines before other machines that the parent controls

can execute� Since Activate events propagate up the

hierarchy� we believe that a prioritized scheduling al�

gorithm in concert with parent peeking would uphold

the safety semantics of the ordering operators�

��� Automated Design Support

This opens an interesting question regarding the au�

tomation of interpreter design
 Can we extend the

model checking framework to enable engineers to

experiment with tradeo�s of state machine design

and scheduling policy� Extension requires a suitable

metaphor for scheduling policy in terms understood

by model checking technology�

Scheduling policies can be thought of as con�

straints on the sequences of feasible machine execu�

tions� The SMV model checker associates a boolean

value running with each state machine� The running

value is true when the associated machine is execut�

ing in that state and false otherwise� With the in�

terleaved process model of execution� only one ma�

chine is ever running in any given state� The running

value is treated as just another state variable and

can be referred to in CTL expressions� This allows

engineers to express execution ordering constraints�

scheduling policies�using CTL� Conceptually� these

expressions represent path �lters� and invariant spec�

i�cations should only be applied to paths that are

not �ltered out by these expressions� The feasibil�

ity of reasoning about design tradeo�s between state

complexity and scheduling policy now rests on two

assumptions


	� CTL is a comfortable mechanism for denoting

the scheduling policies engineers want to reason

about� and

�� The path �lter architecture has a realization ei�

ther through some CTL construct or some ex�

plicit facility in a given model checker�

��� Di�culties Using CTL

We believe that CTL is a comfortable schedule spec�

i�cation mechanism� Consider the proposed priori�

tized scheduling policy acting on the WWW browser

history interaction example� All paths that are con�

sistent with this policy will uphold the following in�

variant at every point along those paths


��Move�Forward�running �� ���EX History�running� �

�AX History�running��� 


�Move�Back�running �� ���EX History�running� �

�AX History�running����

This says that if Move�Forward or Move�Back is running

in the current state� then either History cannot run in

the next state or it necessarily runs in the next state�

The condition can be synthesized for an arbitrary task

hierarchy�

Page 	�



We �rst attempted to bring scheduling reasoning

into our framework by guarding the correctness in�

variant speci�cations with these schedule invariants�

The general form of correctness invariant is


AG �scheduling�invariant

��

correctness�invariant�

Unfortunately� this formadmits paths for which the

scheduling�invariant does not hold globally� Con�

sider a path p�p� � � �pkq�q� � � �� The pi states are

such that the scheduling invariant is not true� and

the qi states are such that it is true� When the an�

tecedent of an implication is false� the implication is

true� This path would be admissible according to the

speci�cation� Scheduling invariants cannot be com�

bined with correctness invariants in this manner be�

cause too many paths are admissible�

A mechanism is needed that will apply the correct�

ness invariant only to paths for which the scheduling

invariant holds globally� Functionality for this path

selection mechanism must be provided by the model

checker� SMV takes steps in this direction� In SMV�

speci�cations are only quanti�ed over what it calls

fair paths� Fair paths are speci�ed with FAIRNESS

constraints of the form


FAIRNESS

ctl�form

where ctl�form is any CTL expression� SMV deter�

mines paths for which these constraints are true �in�

�nitely often� and uses only these paths when check�

ing speci�cations�

Unfortunately� our problem dictates the need to de�

clare ctl�form to be true globally over all fair paths�

Without this ability� we cannot use SMV as the en�

abling technology for our approach� However� if SMV

could be extended to restrict its attention to paths

for which a given CTL expression holds globally� we

believe that our framework will support design trade�

o�s between state machine complexity and scheduling

policy�

� Conclusion

We have demonstrated the utility of model check�

ing in supporting the operationalization of a declar�

ative speci�cation language� By providing support

to check correctness� the model checker frees engi�

neers to explore design tradeo�s between compet�

ing non�functional requirements� In the MASTER�

MIND example� the primary non�functional require�

ment was e�cient interpretation� The optimal solu�

tion is a compromise between scheduling policy and

state space representation� The formalization of this

compromise is easily expressed in second order CTL�

Some model checkers provide limited second order ca�

pabilities �such as SMV�s FAIRNESS constraints� Our

framework suggests the usefulness of more general

second order facilities in model checking technology�

References

�	� Gregory D� Abowd� Hung�Ming Wang� and An�

drew F� Monk� A formal techniqe for automated

dialogue development� In Gary M� Olson and

Sue Schuon� editors� Proceedings of the Sym�

posium on Designing Interactive Systems� Pro�

cesses� Practices� Methods � Techniques� pages

�	������ ACM Press� August 	����

��� Joanne Atlee and John Gannon� State�based

model checking of event driven systems require�

ments� IEEE Transactions on Software Engi�

neering� 	���� January 	����

��� J�R� Burch� E�M� Clarke� K�L� McMillan� D�L�

Dill� and L�J� Hwang� Symbolic model checking


	��� states and beyond� In Proceedings of the �th

International Symposium on Logic in Computer

Science� June 	����

��� Alan Dix� Janet Finlay� Gergory Abowd� and

Russell Beale� Human�Computer Interaction�

Prentice Hall� New York� 	����

��� Nicolas Halbwachs� About synchronous pro�

gramming and abstract interpretation� In

First International Static Analysis Symposium�

SAS���� pages 	���	��� 	����

��� David Harel� On visual formalisms� Communi�

cations of the ACM� �	��� 	����

Page 		



��� John E� Hopcroft and Je�rey D� Ullman� In�

troduction to Automata Theory� Languages� and

Computation� Addison Wesley Publishing Com�

pany� 	����

��� Daniel Jackson and Craig A� Damon� Elements

of style
 Analyzing a software design feature

with a counterexample detector� In Interna�

tional Symposium on Software Testing and Anal�

ysis �ISSTA���	� 	����

��� K� L� McMillan� Symbolic Model Checking� An

Approach to the State Explosion Problem� PhD

thesis� Carnegie Mellon University� 	���� CMU�

CS����	�	�

�	�� R� Neches� J� Foley� P� Szekely� P� Sukaviriya�

P� Luo� S� Kovacevic� and S� Hudson�

Knowledgeable development environments using

shared design models� In Intelligent Interfaces

Workshop� pages ������ January 	����

�		� Pedro Szekely� Ping Luo� and Robert Neches� Be�

yond interface builders
 Model�based interface

tools� In Human Factors in Computing Systems


 INTERCHI���� pages �������� Addison Wes�

ley� April 	����

�	�� Jeannette M� Wing and Mandana Vaziri�

Farahani� Model checking software systems
 A

case study� In Third ACM SIGSOFT Symposium

on the Foundations of Software Engineering� Oc�

tober 	����

Appendix

This is the complete speci�cation for the peeking so�

lution with an instantiation for the WWW browser

History task hierarchy�

The MODULE leaf represents an interaction task�

MODULE leaf�parent�parevent� pexcl�

VAR

event � Null� Disable� Enable� Activate�

state � notready� ready� active�

ASSIGN

init�state� �	 notready�

init�event� �	 Null�

next�state� �	

case

�state 	 notready� 


�event 	 Enable� � ready�

�state 	 ready� 


�event 	 Disable� � notready�

�state 	 ready� 


�pexcl 


�event 	 Activate� � active�

state 	 active � notready�

� � state�

esac�

next�event� �	

case

�state 	 ready� 


�pexcl � Activate� Null�

� � Null�

esac�

next�parevent� �	

case

�state 	 ready� 


�pexcl 


�event 	 Activate� � Activate�

� � parevent�

esac�

DEFINE

BUSY �	 �state 	 active��

The MODULE alt enforces an alternative decom�

position between two subtask machines


Page 	�



MODULE alt�parent� pevent� pexcl�

child�� c�event�

child�� c�event�

VAR

event � Null� Disable� Enable� Activate�

state � notready� ready� active�

ASSIGN

init�state� �	 notready�

init�event� �	 Null�

next�state� �	

case

�state 	 notready� 


�event 	 Enable� � ready�

�state 	 ready� 


�event 	 Disable� � notready�

�state 	 ready� 


�event 	 Activate� � active�

�state 	 active� 


�child��state 	 notready� 


�child��state 	 notready� � notready�

� � state�

esac�

next�c�event� �	

case

�next�state� 	 ready� � Enable�

�next�state� 	 notready� � Disable�

�next�state� 	 active� 


�child��state 	 ready� � Disable�

� � c�event�

esac�

next�c�event� �	

case

�next�state� 	 ready� � Enable�

�next�state� 	 notready� � Disable�

�next�state� 	 active� 


�child��state 	 ready� � Disable�

� � c�event�

esac�

next�pevent� �	

case

�state 	 ready� 


�next�state� 	 active� � Activate�

� � pevent�

esac�

DEFINE

BUSY �	 �state 	 active� �

child��BUSY �

child��BUSY�

PAREXCL� �	 �pexcl � �child��BUSY���

PAREXCL� �	 �pexcl � �child��BUSY���

Since machines compose hierarchically with con�
nections to parent machines� we need a machine with
no parent to be the top of the hierarchy


MODULE top�cevent�

VAR

event � Null� Disable� Enable� Activate�

state � notready�ready� active�

ASSIGN

init�state� �	 notready�

init�event� �	 Enable�

next�cevent� �	

case

�state 	 ready� � Enable�

� � cevent�

esac�

next�state� �	

case

�state 	 notready� 


�event 	 Enable� � ready�

�state 	 ready� 


�event 	 Activate� � active�

� � state�

esac�

next�event� �	 Null�

DEFINE

PAREXCL �	 �state 	 active��

This MODULE main instantiates the History hi�

erarchy and the correctness invariants for alternative

tasks


MODULE main

VAR

Move�Forward � process

leaf�History�

History�event�

History�PAREXCL���

Move�Back � process

leaf�History�

History�event�

History�PAREXCL���

History � process

alt�root� root�event� root�PAREXCL�

Move�Forward�

Move�Forward�event�

Move�Back�

Move�Back�event��

root � process

top�History�event��

SPEC

AG ���Move�Forward�state 	 active� 


�Move�Back�state 	 active��

SPEC

EF��Move�Back�state 	 ready� 


�Move�Forward�state 	 ready��

Page 	�


