
Mission-Oriented Legacy System Evolution Through Architectural Recovery
and Evaluation

G. Abowd, A. Goel, M. McCracken, M. Moore, C. Potts, S. Rugaber, and L. Wills1

Georgia Institute of Technology, Atlanta, GA 30332

A. Introduction: MORALE
An important consideration in evolutionary design is to understand what drives the need for

change. A common driver is a change in the purpose, or mission, of the system. The MORALE2

project focuses on support for such mission-oriented evolution. There is an unexpected symmetry
between requirements analysis, software architecture and reverse engineering that can be
exploited to improve the process of mission-driven system evolution. Effective system evolution
requires understanding of both the way that an existing system accomplishes its tasks and also the
mission-oriented rationale for any changes that feed the evolution. Understanding the higher level
structuring, or architecture, of an existing system aids in predicting the impact of change that is
mandated by new mission-oriented requirements. We use requirements analysis techniques to
suggest what concepts are most useful in understanding how an existing system works and how it
should be evolved. We use reverse engineering techniques to extract high level architecture, both
in terms of static and dynamic behavior, of legacy systems. The MORALE suite of tools and
techniques will harness this symmetry by growing a common model of the architecture for
multiple versions of a system or system family. The common model is a basis for assessing the
effects of proposed changes and the extent to which legacy code can be reused.

The MORALE acronym summarizes our goals:
• Mission ORiented: We want the legacy system enhancement process to be driven by the mis-

sion to be accomplished rather than by purely technical criteria. Moreover, we want to ascer-
tain the applicability of the old system to the new requirements, thereby avoiding unnecessary
work.

• Architectural: The most time-consuming and costly alterations to software are those that distort
architecture, by which we mean its structure and patterns of component interaction. We want to
provide a mechanism for predicting the impact of architectural changes so that the risks of
making those changes can be ascertained early in the evolution cycle.

• Legacy Evolution: We are concerned with the evolution of legacy systems. The most expen-
sive phase of the software development life cycle is maintenance/enhancement, and the most
time consuming part of these activities is analyzing and understanding existing software. We
want to provide a cost effective way of analyzing existing software, and once analyzed,
extracting those parts of it which can be used in the new version.

To accomplish these goals, MORALE is integrating the following innovative technologies.
• A mission-directed requirements determination process that, through a systematic process of

inquiry and refinement, turns mission-oriented goals into specifications of the desired behav-

1. Point of contact: linda.wills@ece.gatech.edu.
2. Effort sponsored by the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force Mate-

riel Command, USAF, under agreement number F30602-96-2-0229. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency,
Rome Laboratory, or the U.S. Government.

iors of architectural components. The MORALE requirements determination strategy is
extending our previous work on Inquiry-Based Requirements Analysis (IBRA) [1][2][13] and
the use of schematic scenarios [11] [15] to understand requirements.

• An architectural assessment process that can ascertain the impact of new requirements on an
existing system’s architecture. Our interest here is in the analysis of architectural descriptions
in order to determine how well they satisfy a large class of quality criteria. We are extending
our scenario-based evaluation technique, the Software Architecture Analysis Method (SAAM)
[3][7][8], to perform this analysis.

• A reverse engineering process for extracting architectural information from an existing system.
Beyond the traditional structural analyses provided by existing commercial and research tools,
MORALE will extract behavior information derived from dynamic analysis of the message
flow among architectural components. This work builds on our experience with cliche recogni-
tion (detection of common occurring patterns in code) [14][17], interleaving detection (deter-
mination of situations in which code implements more than one design goal or requirement)
[16], and visualization of the dynamic behavior of software [6].

• An incremental adaptation process which supports the adaptation of a system after the analyses
are made by the three processes above. Control techniques are needed for interleaving the pro-
cesses of generating and evaluating architectural changes so that the evaluation guides the gen-
eration as well as the requirements analysis [4].

• A user interface evolution process to support UI migration. Using knowledge-based tech-
niques, we are automating the process of reverse engineering user interfaces to detect, isolate,
and extract user interface components and model them as abstract, technology- and language-
independent forms [9]. This will significantly simplify and reduce the cost of user interface
maintenance and migration.

B. The MORALE Process
The MORALE process integrates requirements analysis, architectural evaluation, and reverse

engineering. The relationships between these activities and the artifacts relied upon and produced
are depicted in the data flow diagram shown in Figure 1. The initial inputs to evolution are the
existing system in the form of legacy source code and test data, a statement of the new
requirements that the system must meet in the form of mission-oriented goals, and (desirably) an

New Mission
Requirements

Architectural
Impact Analysis

Reuse
Candidates List

Legacy Source
 and Test Data

Requirements
Analysis

Architectural
Assessment

Reverse
Engineering

Figure 1 MORALE inputs, activities and outputs

Evolutionary

Requirements
Validation Report

Design Journal

initial architecture
mappings

actual architecture

architectural representation of the existing system. Requirements analysis uses the mission-
oriented statement to suggest concepts of importance in the overall structuring of the system; that
is, it provides a suggested taxonomy for an initial architectural description of the system in the
case where no such architecture exists. Requirements analysis also provides a collection of
scenarios that represent a complete description of the new system requirements. These will serve
as the basis for the architectural impact analysis. Architectural assessment includes the
application of the SAAM methodology for architectural evaluation to predict the impact a set of
scenarios will have on an architecture. Reverse engineering provides techniques for assuring that
the architectural representation, the basis for the impact analysis, is an accurate reflection of the
actual system under scrutiny. The three pieces work together to predict the extent to which the
architecture of the old system can be adapted to meet the new requirements.

Besides this assessment, MORALE produces and uses several other artifacts in planning
system evolution: a list of candidate code components from the old version that may be reused in
the new version and the ability to enhance impact analysis by considering requirements on the old
version of a system that must still be supported in the new system (a sort of regression suite for
architectural evaluation). The entire MORALE suite provides an evolutionary design journal that
incorporates items such as system goals and problems, traceability information between
requirements and code, design alternatives and rationale. The result of the MORALE process is
the development of instantiated architectural components together with a record of design
decisions and the mission-oriented goals that were met or traded off to develop the new system.

C. The Role of Architecture Recovery and Assessment
Most systems built today do not have a well-documented software architecture. More likely,

the architectural information that exists for these systems is in the form of glossy presentation
slides with box-and-line diagrams that bear little resemblance to the code. Or the architecture may
simply be a collection of organization principles that sits in the head of a few senior designers,
many of whom may no longer be available.

Before any impact assessment of the architecture can proceed, MORALE will have to generate
high-level models of the systems that are an accurate reflection of the actual systems. The
MORALE method proceeds by iterative refinement that engages a designer in approximating the
architecture of the existing system. An architectural approximation identifies active or passive
components and the data and control relationships between those components. The initial
approximation could come from the glossy presentation slides, or from goal-refinement
techniques used to predict major domain concepts that will drive an architectural description.

Simple rules (such as suggesting how to map code units and files to the various components in
the suggested architecture) are fed into the MORALE reverse engineering tools and used to
compare the actual system structure to the input approximation. This activity extracts static
structural and more dynamic behavioral information from source code using static and dynamic
analysis techniques and visualization techniques. The extracted architecture is then compared to
the input approximation. The feedback is in the form of a confidence measure, indicating the
extent to which MORALE could map all of the source into the various suggested components and
whether the suggested data and control relationships were detected. A high confidence measure
from MORALE means that the actual system is structured as suggested by the architectural
representation and further assessment can proceed. A low confidence measure can result for a
number of reasons. For instance, MORALE may be unable to assign parts of the legacy code to
any architectural component, or MORALE may uncover data and control relationships between

architectural components that differ from those suggested. The feedback is used to suggest
alternate structuring strategies for understanding the actual architecture, providing impetus for
iterative discovery of the actual architecture.

When confidence is high that the architectural representation is an accurate reflection of the
actual system, then that architecture can be evaluated to determine the extent to which it will
support the new mission-oriented requirements. Our belief at present is that there are no simple
(scalar) absolute measurements for evaluating abstract quality attributes, with the possible
exception of metrics for maintainability. In the absence of absolute metrics, we suggest that there
are only context-dependent measures that we can represent as scenarios of expected uses of a
system, representable as natural language event flows similar to use-cases [5]. Scenarios are
concrete, so they are appropriate gauges for evaluating a system (similar to benchmarks) Another
advantage of scenarios is that they implicitly express overlapping concerns between abstract
software qualities. Often what is most important in evaluating a system would be to show for
example that the system was scalable while remaining portable.

The analyst using MORALE breaks down high-level mission-oriented requirements into
structured scenarios. The MORALE architecture assessment tool then uses these scenarios to
evaluate the fitness of the suggested architecture (that is, whether the architecture or components
directly support the scenario or could do so indirectly after stated modifications). The MORALE
architecture tools simulate the effect of direct scenarios on the architecture, collecting coverage
statistics to determine how much of the architecture is being exercised by the scenarios, and
compile the results from indirect analyses to predict the cost of transforming the architecture to
meet the new requirements.

D. Case Study
 Much of our previous work in requirements analysis, architectural analysis, and reverse engi-

neering has been carried out by conducting large scale case studies. We have articulated our
approach to conducting research as one in which Industry (or Government) is our laboratory[12].
An important tenet of this approach is that the case study is a first-class research vehicle, not
merely a sanity check or validation exercise. Our experience shows that the conceptual complex-
ity of evolving software systems cannot be reproduced in toy examples and that the feedback pro-
vided by early case studies is well worth the practical difficulties. For the short term, we have
started a case study in which we explore several evolutionary episodes of the Mosaic World Wide
Web browser [10]. Longer-term case studies are currently being planned in collaboration with
industry and government partners, for example, in the areas of advanced distributed simulation
and downloader/verifiers for embedded systems. We have placed a high priority on choosing an
application area that has representative architectural problems and challenges.

E. Conclusion: Integrating Principles
The MORALE framework portrayed in Figure 1 shows several processes as if they were

disjoint, only coming together through their influence on architecture models, but this is a
simplification. Two integrating principles pervade the processes but are not revealed explicitly in
the figure:
• Design decision support. The MORALE approach to decision support extends IBRA and Syn-

chronized Refinement and integrates the representation of decisions with the artifacts (models,
scenarios, requirements or code fragments) that they affect. A common hypertextual annotation
mechanism supports both decision making and finding the rationale for earlier decisions.

• Scenario analysis. Scenarios play a major role in architectural evaluation and in allocating

behavior to architectural components. In MORALE, we manage scenarios at varying levels of
abstraction (from mission-oriented narratives to architectural event traces). Scenarios are an
important adjunct to the architectural model and are managed accordingly.
The tight integration of requirements analysis, architectural assessment and reverse engineer-

ing is the major contribution of MORALE. Ultimately, all of the research and tools developed in
MORALE will contribute to a much richer account of evolutionary design than has previously
been possible. We will be able to ground the evolution in a set of common goals that have per-
vaded the design, made concrete by scenario fragments. Recurrent issues in the design will be
documented together with candidates for resolving them. Over time, and across different versions
of the same system, canonical architectural patterns will emerge and we will be able to capture the
rationale behind those patterns, documenting what requirements motivate the structure and behav-
ior and how resilient the architecture is to changing requirements.

References

[1] Anton, A., McCracken, M. & Potts, C. (1994) “Goal Decomposition and Scenario Analysis in Business Process
Engineering”. Proceedings CAiSE: Conference on Applied Information Systems Engineering, Utrecht, Nether-
lands, Springer-Verlag.

[2] Anton, A. Identifying and Analyzing Goals for Requirements Elaboration, submitted for publication, 1995.

[3] Clements, P., Bass, L., Kazman, R., and Abowd, G. Predicting software quality by architecture-level evaluation. In
Proceedings of the Fifth International Conference on Software Quality, Austin, Texas, October 1995.

[4] Goel, A. and Prabhakar, S. A Control Architecture for Model-Based Redesign Problem Solving. In Proc. IJCAI-
1991 Workshop on AI in Design, Sydney, Australia, August 1991.

[5] Jacobson, I. Object-Oriented Software Engineering: A Use Case Oriented Approach, Addison Wesley, 1992.

[6] Jerding, D. and Stasko, J. Using visualization to foster object-oriented program understanding. Technical Report
GIT-GVU-94-41, Graphics, Visualization and Usability Center, Georgia Institute of Technology, July 1994.

[7] Kazman, R., et al. “Scenario-based Analysis of Software Architecture” IEEE Software, to appear.

[8] Kazman, R., Bass, L., Abowd, G., Webb, S.M., “SAAM: A Method for Analyzing the Properties of Software
Architectures”, Proceedings of ICSE 16, Sorrento, Italy, May 1994, 81-90.

[9] Moore, M. “Rule-Based Detection for Reverse Engineering User Interfaces,” Proc. 3rd Working Conference on
Reverse Engineering, Monterey, CA., November, 1996.

[10] “Mosaic” home page. http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/.

[11] Potts, C. Using Schematic Scenarios to Understand User Requirements. Proceedings DIS’95: Symposium on
Designing Interactive Systems, Ann Arbor, MI: August 23-25 1995, ACM.

[12] Potts, Colin, “Software Engineering Research Revisited.” IEEE Software, September 1993, pp. 19-28.

[13] Potts C. “Supporting Software Design: Integrating Design Methods and Design Rationale”, in T.P. Moran & J.M.
Carroll (Eds.) Design Rationale: Concepts, Techniques and Use. Lawrence Erlbaum Associates (in press) 1995.

[14] Rich, C., and Wills, L. “Recognizing a Program’s Design: a Graph-Parsing Approach,” IEEE Software, Vol 7, No
1, Jan 1990.

[15] Rosson, M.B. & Carroll, J.M. Integrating Scenario Evolution with Application Development, IBM Research
Report RC 19290 (82428), April 29, 1993.

[16] Rugaber, S. Stirewalt, K. and Wills, L. “Understanding Interleaved Code” Automated Software Engineering, Vol.
3, No. 1-2, pp. 47-76, June 1996.

[17] Wills, L. “Using Attributed Flow Graph Parsing to Recognize Cliches in Programs” in Graph Grammars and
Their Application to Computer Science (edited by J. Cuny, H. Ehrig, G. Engles, G. Rozenberg), Lecture Notes
in Computer Science, No. 1073, pp. 170-184, Springer, 1996.

