
Model-Driven Reverse Engineering
Spencer Rugaber (spencer@cc.gatech.edu)

Georgia Institute of Technology
Kurt Stirewalt (stire@cps.msu.edu)

Michigan State University

Managing software maintenance projects

is difficult. A manager typically has to deal
with a backlog of outstanding problems, a staff
battling numerous concurrent fires, and a cor-
porate profile in which failures have high visi-
bility and success is greeted by a deafening
silence. And when a project being managed
includes programs that were written by a dif-
ferent group or possibly a different company,
there is the additional problem of trying to
understand obscure foreign code.

Reverse engineering is the process of com-
prehending software and producing a model of
it at a high level of abstraction, suitable for
documentation, maintenance or reengineering.
How can reverse engineering be used to help
solve the problem of foreign code? Reverse
engineering technology has, in fact, proven
useful on many projects in helping a mainte-
nance team obtain a better understanding of
the structure and functioning of a software sys-
tem. But, from a manager’s point of view,
there are two painful problems: it is difficult or
impossible to predict how much time a reverse
engineering effort will require, and there are
no standards for how to evaluate the quality of
the reverse engineering work the maintenance
staff performs.

Model-driven reverse engineering (MDRE)
is designed to overcome these difficulties. A
model is a high-level representation of some
aspect of a software system. One popular use
of models by software engineers is to precisely
specify systems before they are built. In some
cases, modeling tools can even generate part or
all of the code without having to resort to
explicit and error-prone programming. MDRE
uses these features of modeling technology but

applies them differently to address the mainte-
nance manager’s problems.

Adequate reverse engineering
The maintenance manager’s uncertainty

arises from the fact that we do not really
understand when a reverse engineering effort
is adequate. The idea of adequacy comes from
the world of software testing where an ade-
quate test set is one that, when successfully
executed, indicates that the testing phase of
development is complete [13]. Testers use var-
ious adequacy criteria, such as ensuring that
tests exist to demonstrate that all requirements
have been exercised or that all program state-
ments have been executed. These criteria
derive their benefit from being deterministic
and measurable.

If adequacy criteria existed for reverse
engineering, then software engineers could
start collecting experience reports and building
databases of project statistics to help predict
reverse engineering time and effort.

For an adequacy criterion to be useful, it
must be objectively measurable. This implies
that there must be an artifact that is the subject
of the measurement. In the case of testing, the
artifact is the test suite. An adequate test suite
is one that provides confidence in the quality
of the testing it directs. In the case of MDRE,
adequacy is measured using the high-level
model produced by the software engineers
undertaking the reverse engineering.

What might adequacy criteria for a reverse
engineering model comprise? Two characteris-
tics seem essential: thoroughness and lucidity.
Thoroughness is the extent to which the
reverse engineering effort covers the entire

system being examined. By lucidity, we mean
the extent to which the reverse engineering
sheds light on the purpose of the system and
how that purpose is accomplished by the code.

Reverse reverse engineering
How can models help with measuring the

thoroughness and lucidity of a reverse engi-
neering effort? The answer comes from the
idea of reversing the reverse engineering pro-
cess—taking the result of the reverse engineer-
ing and using it to produce a second version of
the original system. In other words, reverse
engineering produces a high-level model of the
system being studied. If the model is expressed
in a formal specification language and if the
formal specification language is supported by
a code generation tool, then the code generator
can be used to produce another version of the
original system. If the generated version
proves close enough to the original, then we
can have confidence that we have done an ade-
quate job in our reverse engineering.

What does close enough mean? Several
definitions possible definitions come to mind,
corresponding to different degrees of ade-
quacy. At one extreme would be a stub genera-
tor that produced a compilable version of the
program including stubs for all of the subpro-
grams and external data structures, but that
produced no results when executed. Such tools
currently exist, but they provide only superfi-
cial insight into the workings of a program.

 At the other extreme would be a generator
that reproduced the original program on a line-
by-line basis. While this version may be ulti-
mately desirable, its seems unrealistic given
the current state of specification technology
and the allowable time available for reverse
engineering.

A middle ground that addresses these con-
cerns obtains if we can generate a program
capable of duplicating the output of the origi-
nal program on identical input without neces-
sarily generating the same code. That is, the

close-enough version may not run as fast or
use the same amount of memory, but it does
compute the same values. This is the target we
have used in our model-driven reverse engi-
neering efforts.

Model-driven reverse engineering
What sort of models can support reverse

reverse engineering? MDRE uses two sorts, a
program model and an application-domain
model, which roughly correspond to our target
adequacy criteria for thoroughness and lucid-
ity. In the example below, we describe both
models using an algebraic specification lan-
guage called SLANG. SLANG is part of a tool
called Specware [7], developed by the Kestrel
Institute, that includes a code generator capa-
ble of producing executable code from high-
level models.

The program model provides a high-level
rendering of the functions computed by the
program. That is, it provides a precise state-
ment of the values computed by the program
but at a higher level of abstraction than obtains
in the program source code. Algebraic specifi-
cations have proven popular precisely because
they support programming at a high level of
abstraction, thereby reducing effort at the pos-
sible expense of execution speed. And because
algebraic specifications are precise enough to
serve as a basis for code generation, they
enable the thoroughness of reverse engineering
to be measured.

In contrast with a program model, an
application-domain model expresses domain
concepts, their relationships, and their mean-
ings in a program-independent way. An appli-
cation domain is a set of related problems that
have engendered software solutions [1]. An
example is desktop publishing for which
numerous competing products have been
developed. When a program is a member of an
application domain, its users can expect a cer-
tain context, behavior, and terminology. More-
over, if the constructs in the program can be

Figure 1. Lineage for ZBRENT

Root finders

O pen
root finders

S ing le root
finders

M ultip le
root finders

Non-polynom ia l
root finders

Polynom ia l
root finders

Bracketed
root finders

ZBRENT
related to corresponding aspects of the domain
model, then the roles these constructs play in
achieving application domain goals can be
determined. In MDRE, because both the pro-
gram model and the domain model are present,
explicit connections between program con-
structs and the corresponding domain concepts
can be made. In this way, an application
domain model enables lucidity to be assessed.

Applicability of MDRE to other domains.
There are two prerequisites for using MDRE—a
mature domain and a code-generation tool
capable of compiling domain-specific applica-
tion specifications. An example of such a
domain is scheduling, for example, the sched-
uling of airline crews. The domain is mature
and circumscribed. Moreover, Specware has
been used to generate efficient scheduling
algorithms from schedule constraints
expressed in SLANG [12].

One recent technology, UML, suggest that
MDRE could be applied to a broader class of
problems making use of alternative tool sup-
port. UML (the Unified Modeling Language)
[8], provides an industry standard, semi-formal
design notation, which, although requiring
extra training and effort to use, has proved
popular. UML provides a variety of notations
that can be used for modeling domains. Its
graphical orientation, tool support, and early
detection of certain classes of errors, together
with the increasing popularity of the object-
oriented methods it supports, suggest that it
will provide some of the advantages claimed
by proponents of formal methods. Moreover, a
relatively recent addition to UML, OCL (the
Object Constraint Language), complements
UML's ability to describe structure with the
ability to formally model program functional-
ity. Together, these technologies provide
developers a path to more rigorous software
development practices. UML is frequently used
in the design of information systems and e-
commerce software. To apply MDRE in this
context requires substituting a UML-refinement
tool, such as UMLaut [6], for Specware and a
UML compatible language, such as OCL, for
SLANG.

Example
To illustrate the issue of adequate models,

we reverse engineered a numeric application
called ZBRENT, written in the C programming
language [11]. The application domain was
numerical computation, specifically, finding
the root of a real-valued function. A domain
model was constructed by collecting material
from textbooks on numerical analysis. Then
SLANG was used to model both the domain and
the program. We made use of the SLANG code
generator in Specware to produce an execut-
able version from our model of ZBRENT, which
was then compared with the original program
on a set of test functions.

Root finding. Finding the root of a nonlinear
equation is a well-understood problem in
numerical analysis [4][5]. That is, there is a

x

y f(x)

i0

i1

i2

i3

Figure 2. Iterative Interval Shrinkage
sufficiently large collection of programs for
finding roots that we can identify common
characteristics and use them as expectations to
guide the reverse engineering process.

As illustrated in Figure 1, at the top level,
the root-finding application domain can be
partitioned into polynomial and non-polyno-
mial families of algorithms. Within the latter, a
further distinction exists between algorithms
capable of finding multiple roots and those
capable of dealing with a single root only. For
the purposes of this example, we are con-
cerned with the latter class. Within single-root
finders, a final distinction is made between
those guaranteed to converge—bracketed root
finders—and those presumably more efficient
ones that do not—open root finders.

Single-root, non-polynomial root finders
work in the following way, as illustrated in
Figure 2. Input consists of a subprogram (f),
capable of computing a functional value at a
given real value (x), and an initial estimate of
the root in the form of a containing subinterval
of the real line, denoted by its end points.
Functional evaluation is typically expensive,
so root-finding algorithms try to reduce the
number of calls to f.

Root finding normally proceeds by select-
ing a trial point within the current interval,
thereby partitioning the interval into two
pieces; determining the piece containing the
root; creating a new, refined interval using the
chosen piece; and iterating. In the figure, inter-
val end points are indicated with dashed lines.
Increasing subscripts on interval names denote
the order of refinement. For example, interval
i2 is refined by the smaller interval i3. Brack-
eted root-finding algorithms have the property
that the interval gets smaller on every iteration.
Moreover, a stopping criterion determines
whether sufficient progress has been made to
warrant continuing the process.

Algorithms of this kind can be categorized
in two ways: first, by specifying the method in
which a refined interval is chosen and, second,
by the choice of stopping criterion. Variations
of the former sort include bisection (Bolzano's
method), linear interpolation (Regula Falsi),
inverse quadratic interpolation (Mueller's
method), Aiken's Delta Squared, Newton-
Raphson, and secant. Variations of the latter
sort include stopping when the functional
value is sufficiently close to zero, stopping
when the interval width is sufficiently narrow,
and stopping after a fixed number of iterations.
Of course, multiple methods can be combined
to improve robustness or efficiency.

ZBRENT. ZBRENT is production software that
has been in use for many years. It combines
several of the variations described above to
improve efficiency and robustness. We chose
the Brent variation, taken from [9], as the sub-
ject of our case study for several reasons.
• It features several choices of stopping cri-

teria.
• It features three interval shrinkage meth-

ods: bisection, secant, and inverse qua-
dratic interpolation.

• A variant of ZBRENT was used in an influ-
ential case study by Basili and Mills [2].
This allows us to more closely compare
our work with theirs.

As a consequence of the number of variations,
the code is complex and difficult to follow,
making it a good candidate for reverse engi-
neering.

(1) spec INTERVAL is
(2) import EXTENDED-REAL
(3) sort Interval
(4) sort-axiom Interval = Real, Real
(5)
(6) op mid-point : Interval -> Real
(7) definition of mid-point is
(8) axiom mid-point(a, b) =
(9) half(plus(a, b))
(10) end-definition
(11)
(12) op make-interval : Real, Real ->
(13) Interval
(14) definition of make-interval is
(15) axiom make-interval(a,b) = (a,b)
(16) end-definition
(17)
(18) constructors { make-interval }
(19) construct Interval
(20) end-spec

Figure 3. SLANG INTERVAL Specification
Algebraic specification. Algebraic specifica-
tions are composed using sorts (data types)
and the operations that manipulate them.
Operations are in turn defined via axioms (sets
of equations). Each axiom indicates how the
value computed by one sequence of operations
equates to that computed by another.

The equations that comprise an axiom can
also be thought of as rewrite rules; that is,
occurrences of the left hand side of an equation
can be replaced by the right hand side, possi-
bly including parameter substitution. In
Specware, the substitution can be automated in
such a way that code can be generated that
implements the operation in a programming
language.

As an example of an algebraic specifica-
tion, the SLANG code shown in Figure 3 pre-
sents the specification of an interval suitable
for use in building a domain model for root
finders. This specification for INTERVAL (lines
1-20) describes a sort called an Interval (line 3)
making use of a previously defined sort Real
that models x-axis values. Real is provided by
an imported specification called EXTENDED-
REAL (line 2). The structure of an Interval is
defined with a sort axiom (line 4) as being the
Cartesian product of two Reals.

In INTERVAL, two operations are defined
(mid-point and make-interval). Operation defini-
tions consist of a signature and one or more
axioms. For example, the signature for mid-
point (line 6) indicates that it takes as input an
Interval and produces as output a Real. The sin-
gle axiom defining mid-point (lines 8-9) asserts
that the output value it produces—when given
as input the Interval constructed from values a
and b—is equal to the value produced when
the half operation is applied to the results of
applying the plus operation to a and b. In a sim-
ilar manner, the make-interval operation is
defined on lines 12-16. Finally, lines 18-19
indicate that the make-interval operation pro-
vides a way in which new Intervals may be con-
structed.

SLANG support for adequate models. In
Specware, specifications are actual data values
that can be manipulated by high-level opera-
tors called morphisms. In particular, SLANG
provides three kinds of morphisms: import, for
including one specification inside another;
translate, for renaming the sorts and opera-
tions of a specification; and colimit, for com-
bining specifications in a structured way. By
writing atomic specifications and then using
morphisms to operate on them, complex sys-
tems can be cleanly modeled.

We employed one other Specware feature
called an interpretation, which Specware uses
to formalize design refinements. Refinements
relate abstract domain-model concepts to exe-
cutable code. Operationally, an interpretation
demonstrates how the sorts and operations in
one model are implemented using sorts and
operations in another model at a lower level of
abstraction. Interpretations enable a reverse
engineer to directly relate application-domain
concepts to program constructs. MDRE assesses
lucidity by requiring the use of interpretations
to connect domain and implementation.

ROOT-FINDER

INTERVAL
ROOT-

CONVERGENCE-
TEST

SECANT INVERSEQ BISECT

OPEN BRACKETED

CANDIDATE-
POINT-

GENERATION

BRACKETED-
INTERVAL

EQUALS-ZERO

NARROW

EXTENDED-
REAL

MACHINEEPS

REAL

d

Figure 4. Root Finding Domain Model
MDRE process. The reverse engineering of
ZBRENT consisted of three steps. In the first
step, we constructed a domain model by read-
ing descriptions in books and papers on root
finding and articulating them in SLANG. The
domain model provides a set of expectations
for concepts that might be realized in root find-
ing programs. In the second step, we con-
structed a program model by expressing the
ZBRENT source code as a specification com-
prising a set of SLANG operation definitions.
This step produces an abstract but comprehen-
sive representation of the program without
providing any insight into how the program-
ming constructs relate to application-domain

concepts. During the third step, we engaged in
an iterative process of defining SLANG inter-
pretations to connect the program-model oper-
ations to domain concepts. After a set of
connections are made, the Specware code gen-
erator is executed, producing an approximation
to ZBRENT. If the generated program produces
results identical to the original, then the
reverse engineering is thorough; if all the pro-
gram constructs have been connected with
domain concepts, the reverse engineering is
lucid.

Often, introducing an interpretation
required refactoring the implementation
model. We only allowed changes that main-

tained thoroughness; that is, ones for which
Specware could generate a program that was
testing equivalent to the original code for
ZBRENT. We stopped this process when we
were able to connect every implementation
specification to the appropriate domain speci-
fication.

The root-finding domain model. Figure 4
depicts the root-finding domain model as a set
of related Specware specifications. Boxes in
the figure denote specifications that represent
different concepts and relationships in the
domain. Filled boxes are not part of the root-
finding domain but provide resources to it
from other domains. For example, REAL is the
specification for real numbers.

The root finding domain model proper
consists of twelve specifications, which can be
organized into three groups: the iterative root
finding algorithm (ROOT-FINDER), termination
condition checks (ROOT-CONVERGENCE-
TEST, NARROW and EQUALS-ZERO), and
methods for interval shrinking (the remaining
unfilled boxes).

In addition to the twelve domain specifica-
tions, Figure 4 also illustrates several kinds of
morphisms. An unadorned line in the figure
denotes an import morphism, indicating the
textual inclusion of one specification within
another. This normally signifies a new specifi-
cation that builds on the features of an old one.
For example, the INTERVAL specification needs
to import from the REAL specification because
the interval end points are real numbers.

The bold lines in the figure correspond to
translate morphisms in which one or more
imported specification elements have been
renamed. In the root-finding domain model,
the renaming enables the ROOT-FINDER speci-
fication to be written using an abstract conver-
gence test which, in the ZBRENT algorithm, is
refined by the disjunction of the two concrete
tests specified in the figure (EQUALS-ZERO
and NARROW).

Finally, and most interestingly, are the two
colimit morphisms denoted by dashed lines

ending in a small circle. A colimit is a shared
union of the two source specifications. It is
particularly valuable because it allows inde-
pendent concepts to be separately modeled and
then explicitly combined. For example, in Fig-
ure 4, the ROOT-CONVERGENCE-TEST and
MACHINEEPS specifications are combined
using a colimit to produce the NARROW speci-
fication. ROOT-CONVERGENCE-TEST defines
properties of all mechanisms for terminating
root-finding iterations; MACHINEEPS describes
specific properties of floating point numbers.
NARROW then describes a test for termination
when the current interval has gotten so small
that no further progress can be made using
available floating-point operations.

The ZBRENT program model. In addition to
the root-finding domain model, a specification
must be given for the ZBRENT algorithm itself.
The intent is to render the details of the algo-
rithm into SLANG so that interpretations can
then be used to relate them to the domain
model. To illustrate how this step works, we
make use of the flow-chart shown in Figure 5.

compute
refined
interval

BEGIN
ZBRENT

root found END
ZBRENT

choose
method

secant

converged

check
interpolation

bisect accept
interpolation

END
ZBRENT

No

inverse
quadratic

interpolation

attempt
interpolation

possible to
interpolate Yes

bisect

No

update
interval

Yes

Yes

No Yes

No

Figure 5. Abstract Flow Chart for ZBRENT

Figure 5 contains a high-level flow chart
for ZBRENT. Although the box labels in the fig-
ure are expressed in terms of domain concepts,
no such labels occur in the source code. Con-
nections between source code constructs and
domain concepts only emerge through signifi-
cant iterative reverse engineering. The outer
loop of the source code wraps the shrinking
process and ensures termination by counting
iterations. Within this loop, it is possible to ter-
minate successfully if either the root has been
found (node labeled root found) or the inter-
val itself has grown too narrow (converged).
If termination is not warranted, a check is
made to see whether interpolation is promising
(possible to interpolate). In this case, either
secant or inverse quadratic interpolation is
chosen. If neither of these methods produces a
bracketed value, then bisection is used. Finally,
the interval is updated with the appropriately
chosen subinterval.

The SLANG specification of the ZBRENT
algorithm consists of a rendering of the flow
chart boxes with axioms. In essence, this com-
prises the following activities:
• Define operations corresponding to the

various computations performed, nesting
operation invocations where appropriate.

• Make use of a built-in SLANG construct for
rendering conditional statements.

• Use recursion to model iteration.
• Render assignments by passing the result-

ing state to subsequent operations.
During the course of performing these

steps, a software engineer is forced to pay
attention to each of the program constructs,
thereby increasing thoroughness. Moreover,
the various operations and axioms produced
become the targets of the interpretations
devised during the third step of the reverse
engineering process.

Figure 6a contains a segment of the origi-
nal program text for the box labeled inverse
quadratic interpolation in Figure 5. Figure 6b
contains the corresponding SLANG operation
definition for line (3) of Figure 6a, the second
computation of q. In Figure 6b, the (embold-
ened) phrase div(fa1,pToNZReal(fc1)) describes
the earlier computation of q on line (1) of Fig-
ure 6a; the (emboldened) phrase r(fb1,fc1)
describes the specification of (the program
variable) r on line (2) as an operation (also
named) r applied to two parameters, fb1 and
fc1.

Interpretations. Once the program model is
constructed for the ZBRENT algorithm, inter-
pretations can be defined to indicate how
domain concepts are mapped to program con-
structs. For the fragment shown in Figure 6, an
interpretation must be defined that maps the
domain specification of INVERSEQ to the set
of operations that realize it in the program
model.

The SLANG model of the ZBRENT algorithm
is thorough in the sense that a program equiva-
lent to the original can be generated from it.
However, by itself, it sheds no light on how the
algorithm accomplishes the goal of finding a
root. The SLANG interpretations are used for
this purpose. In particular, an interpretation
indicates precisely how an abstract domain

(1) q = fa / fc;
(2) r = fb / fc;
(3) q = (q-1.0) * (r-1.0) * (s-1.0);

Figure 6a. Source Code Fragment for Inverse
Quadratic Interpolation Computation

op q : Real, Real, Real, Real -> Real
 definition of q is
 axiom q(s,fa1,fb1,fc1) =
 times(minus(div(fa1,
 pToNZReal(fc1)),one),
 times(minus(r(fb1,fc1),
 one), minus(s,one)))
 end-definition

Figure 6b. SLANG Specification for Inverse
Quadratic Interpolation

concept is manifested in the program. For
example, an interpretation between the domain
specification EQUALS-ZERO and the program
model construct corresponding to the box
labeled root found gives a precise indication
of the purpose of the program construct (pro-
gram termination check). To the extent that
each aspect of the algorithm specification is
tied to an application-domain concept, the
combined domain and program models are
judged lucid.

Applying model-driven reverse engi-
neering

A fixed standard for thoroughness and
lucidity would enable the maintenance man-
ager to better control the reverse engineering
process. An analogy exists with tools like
COCOMO [3] and SLIM [10] that are used to
estimate project schedules. These tools use a
database of past experiences as a standard
against which current projects can be mea-
sured. Similar projects predict similar sched-
ules. Likewise, if adequacy standards for
reverse engineering efforts existed, then expe-
rience data could be collected and used to pre-
dict reverse engineering effort.

An additional benefit accrues to adequacy
standards. Currently, a variety of reverse engi-
neering tools exist in the commercial market-
place. But their benefits are hard to judge
because there is no agreed-upon standard for
the quality of the representations they produce.
An adequacy standard would allow direct
comparisons to be made, indicating, for exam-
ple, that one tool provides a more thorough
description than another.

Relative adequacy. The adequacy criteria pre-
sented above were relative rather than absolute
standards. For example, lucidity is relative to
the level of abstraction required of the reverse
engineering. Thoroughness is also relative to
the suite of tests used to determine equiva-
lence. Here, we leverage what is known about

adequate testing to provide an objective and
deterministic standard.

Amortizing the cost of domain modeling.
The process of reverse engineering ZBRENT

included the construction of a domain model
for root finding, requiring significant back-
ground research. Fortunately, this activity only
has to be done once regardless of how long the
program is maintained. And if other root find-
ing programs are being maintained, it is likely
that they can share the domain model. In other
words, domain modeling has a value that goes
beyond the reverse engineering of a single pro-
gram—its cost can be amortized across subse-
quent maintenance activities for the same and
related programs.

We have described a particular approach to
Model-Driven Reverse Engineering. The
approach uses a formal specification model
and code generator to reverse the reverse engi-
neering process. Models are used to describe
both the application domain and the program
being reverse engineered. Interpretations are
used to annotate the connections between the
two. Being able to generate a similar version
of a program allows managers to have a fixed
target for a reverse engineering effort. This, in
turn, can enable better effort prediction and
quality evaluation, thereby reducing develop-
ment risk.

Acknowledgement
Part of the work described here was sup-

ported by the National Science Foundation
under grants CCR-9708913, EIA-0000433 and
CCR-9984726. We also appreciate the contri-
butions of Terry Shikano to the development
of the example presented in this paper.

References
[1] Guillermo Arango and Rubén Prieto-Díaz.

Domain Analysis and Software Systems Model-
ing. IEEE Computer Society Press, 1991.

[2] Victor R. Basili and Harlan D. Mills. “Under-
standing and Documenting Programs.” IEEE
Transactions on Software Engineering, SE-
8(3):270-283, May 1982.

[3] Barry W. Boehm, Bradford Clark, Ellis Horowitz,
J. Christopher Westland, Raymond J. Madachy
and Richard W. Selby. “Cost Models for Future
Software Life Cycle Processes: COCOMO 2.0."
Annals of Software Engineering, 1, pp. 57-94,
1995.

[4] G. Dalhquist and Å. Björck. “Nonlinear Equa-
tions.” Numerical Methods, Chapter 6, Prentice-
Hall, 1974.

[5] G. E. Forsythe, M. A. Malcolm, and C. B. Moler.
“Solution of Nonlinear Equations.” Computer
Methods for Mathematical Computations.
Chapter 8, Prentice-Hall, 1977.

[6] Wai Ming Ho, J.-M. Jezequel, A. Le Guennec
and F. Pennaneac'h. “UMLAUT: An Extendible
UML Transformation Framework.” 14th IEEE
International Conference on Automated Soft-
ware Engineering, 1999, October 1999, pp.
275-278.

[7] Kestrel Institute. Specware User Guide, Version
2.0.3. March 1998.

[8] Object Management Group. “Unified Modeling
Language, Version 1.4.” OMG Document Num-
ber 01-09-67, http://www.omg.org/cgi-bin/apps/
doc?formal/01-09-67.pdf.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. “Root Finding and Nonlinear
Sets of Equations.” Numerical Recipes in C,
The Art of Scientific Computing, Second Edi-
tion, Chapter 9, Cambridge University Press,
1992.

[10] L. H. Putnam. “A General Empirical Solution to
the Macro Software Sizing and Estimation
Problem.” IEEE Transaction on Software Engi-
neering, Volume SE-4, Number 4, July 1978.

[11] Spencer Rugaber, Terry Shikano, and Kurt
Stirewalt. “Adequate Reverse Engineering.”
Proceedings of the Conference on Automated
Software Engineering, San Diego California,
2001.

[12] Douglas R. Smith and Subbarao Kambham-
pati. “Automated Synthesis of Planners and
Schedulers.” http://www.kestrel.edu/HTML/
projects/arpa-plan2/index.html.

[13] Elaine J. Weyuker. “Axiomatizing Software
Test Data Adequacy.” IEEE Transactions on
Software Engineering, SE-12(12): 1128-1138,
December 1986.

	Adequate reverse engineering
	Reverse reverse engineering
	Model-driven reverse engineering
	Applicability of mdre to other domains

	Example
	Root finding
	zbrent
	Algebraic specification
	slang support for adequate models
	mdre process
	The root-finding domain model
	The zbrent program model
	Figure 5. Abstract Flow Chart for zbrent
	Figure 6a. Source Code Fragment for Inverse Quadratic Interpolation Computation

	Interpretations

	Applying model-driven reverse engineering
	Relative adequacy
	Amortizing the cost of domain modeling

	Acknowledgement
	References
	[1] Guillermo Arango and Rubén Prieto-Díaz. Domain Analysis and Software Systems Modeling. IEEE C...
	[2] Victor R. Basili and Harlan D. Mills. “Understanding and Documenting Programs.” IEEE Transact...
	[3] Barry W. Boehm, Bradford Clark, Ellis Horowitz, J. Christopher Westland, Raymond J. Madachy a...
	[4] G. Dalhquist and Å. Björck. “Nonlinear Equations.” Numerical Methods, Chapter 6, Prentice- Ha...
	[5] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. “Solution of Nonlinear Equations.” Computer M...
	[6] Wai Ming Ho, J.-M. Jezequel, A. Le Guennec and F. Pennaneac'h. “UMLAUT: An Extendible UML Tra...
	[7] Kestrel Institute. Specware User Guide, Version 2.0.3. March 1998.
	[8] Object Management Group. “Unified Modeling Language, Version 1.4.” OMG Document Number 01-09-...
	[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. “Root Finding and Nonline...
	[10] L. H. Putnam. “A General Empirical Solution to the Macro Software Sizing and Estimation Prob...
	[11] Spencer Rugaber, Terry Shikano, and Kurt Stirewalt. “Adequate Reverse Engineering.” Proceedi...
	[12] Douglas R. Smith and Subbarao Kambhampati. “Automated Synthesis of Planners and Schedulers.”...
	[13] Elaine J. Weyuker. “Axiomatizing Software Test Data Adequacy.” IEEE Transactions on Software...

	Model-Driven Reverse Engineering Spencer Rugaber (spencer@cc.gatech.edu) Georgia Institute of Tec...
	Figure 1. Lineage for zbrent
	Figure 2. Iterative Interval Shrinkage
	Figure 3. slang INTERVAL Specification
	Figure 4. Root Finding Domain Model

