
A Case Study of Domain-based Program Understanding

Richard Clayton, Spencer Rugaber1, Lyman Taylor
College of Computing

and
Linda Wills

School of Electrical and Computer Engineering
Georgia Institute of Technology

Abstract
Program understanding relates a computer program to the goals and requirements it is designed to
accomplish. Understanding techniques that rely only on source code analysis are limited in their ability to
derive this relationship. Application-domain analysis is another source of information that can aid program
understanding by guiding the source analysis and providing structure to its results. This paper describes the
application of a domain-based program understanding process, Synchronized Refinement, to the problem of
reverse engineering the Mosaic World Wide Web browser software. It discusses the domain analysis
undertaken, the corresponding source code analysis we plan to perform, and the strengths and limitations of
available automated tools.

I. Introduction

A. Goal
Program understanding is a crucial part of software development and maintenance, yet it is a

largely manual activity that begs for tool support. Some simple tools, such as structure chart gen-
erators and cross referencers, do exist, but more can be done. In particular, most existing tools are
derivatives of the kinds of language-based analyses that compilers perform. Significant progress
in automating program understanding must also use knowledge of the goals of the program being
understood [15] [6]. This knowledge takes the form of an application-domain description. The
Domain Analysis and Reverse Engineering (DARE) project2 3 at the Georgia Institute of Technol-
ogy is exploring how best to use domain knowledge to understand programs.

B. Approach
DARE is using the Synchronized Refinement (SR) program understanding technique [14], the

Software Refinery tool set [13], and a domain representation based on object oriented frameworks
[9] to explore an intermediate sized software system, the Mosaic World Wide Web browser [10].
SR coordinates the simultaneous activities of bottom-up program analysis and top-down applica-
tion-domain model elaboration. The Software Refinery is an integrated set of program analysis
and transformation tools that includes an object oriented repository to hold the results of analysis.
The domain representation we are using takes advantage of the repository and the underlying

1. Point of contact: spencer@cc.gatech.edu.
2. Effort sponsored by the Army Research Laboratory under contract DAKF11-91-D-0004-0055.
3. Effort sponsored by the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force

Materiel Command, USAF, under agreement number F30602-96-2-0229. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

Refine language to describe the application domain as an object oriented framework (a collection
of cooperating abstract classes). As program exploration proceeds, the framework is instantiated
with concrete information concerning how the abstract domain ideas are actually implemented.

C. Case Study
The case study described in this paper concerns the analysis of the Mosaic internet web

browser. The source code for Mosaic consists of approximately 100,000 lines of code written in
the C programming language. The code is readily available, easily testable, and documentation is
available. The research described in this paper explores the specific issue of how to relate the
implementation-independent domain description to various architectural-level analyses per-
formed on the source code itself.

II. Synchronized Refinement
Synchronized Refinement is a technique for reverse engineering software for documentation,

reengineering, or reuse. Reverse engineering produces a high-level representation of a software
system from a low-level one, typically the program itself [5]. Synchronized Refinement constructs
such a representation of a system from its source code. It proceeds by detecting design decisions
in source code and relating the detected decisions to the corresponding element of the application-
domain description. Figure 1 describes the flow of data through the various activities that com-
prise SR.

Synchronized Refinement takes as input the source code of a software system (labelled Origi-
nal source code in Figure 1) and a description of the application domain that the system supports
(Original application description). In addition, various sources of programming knowledge may
be available to the analyst to aid the understanding process. These are labelled Architectural
style library and Design decision library in Figure 1. The output comprises three parts: an elab-
orated and instantiated domain description (Application description), an abstracted program
description (Abstract program description), and a description of how the code realizes the
application (Mapping/annotations).

The SR process consists of two parallel activities, roughly corresponding to the top and bot-
tom halves of Figure 1: analysis of the program (on the bottom) and synthesis of the application-
domain description (on the top). Analysis consists of detecting the implementation of domain
concepts in the code and replacing them by abstracted versions. In this way, the program descrip-
tion becomes smaller and more abstract. Synthesis begins with the domain description expressed
as abstract object oriented classes. These are instantiated as more is learned from the source code.
The two parts of the diagram communicate in terms of expectations. That is, domain concepts
must be ultimately realized in terms of code constructs, and by navigating the domain description,
expectations are established for what should be found in the source code. Likewise, the process of
code analysis confirms or denies that certain expectations are satisfied.

As code analysis proceeds, implementation constructs are detected that relate to an expecta-
tion. An annotation for each detected construct is recorded together with the relevant expectation,
specifying the type of the design decision motivating the choice of construct and the correspond-
ing sections of the program. During the SR process, certain expectations are confirmed and others
refuted. A confirmed expectation raises other expectations of the code. Gradually, a hierarchical
description of the structure of the program emerges. As the program source code shrinks, the
domain description expands.

Figure 1: Data Flow Diagram for Synchronized Refinement

III. Case Study
As our case study, we chose to examine the Mosaic internet web browser, specifically version

2.4. We chose it because of its familiarity and accessibility. Our examination began with the build-

Abstract program description

Original source code

Original application description

Application description

Mapping/annotations
Reverse Engineer

Detection

Expectation generation

Design decision library

Architectural style library

Elaboration

Abstraction

Expectations

External
information

source

Data
repository

Process

step
Dataflow

Legend

ing of an initial application-domain model as described in subsection A. Subsection B discusses
our plans for code analysis. The issues raised by this study and our approach in general are
described in Section IV.

A. Application-Domain Model
Application-domain modeling [12] constructs a model of a problem’s application domain. The

nature of the model depends on its intended use. Synchronized Refinement uses the application-
domain model as a high-level guide for program understanding. In the Mosaic case study, the
application-domain model starts as an abstract model derived from existing textual descriptions of
the World Wide Web and evolves toward more specialized models by incorporating more detailed
information.

We create an application-domain model for the World Wide Web in three steps. First, various
descriptions of the World Wide Web are analyzed to extract relevant information about the
domain. Second, the extracted information is organized into a coherent application-domain model
by applying the Object Modeling Technique (OMT) [16]. Third, the OMT Object Model is instan-
tiated in a machine-manipulatable model using the Software Refinery tool suite.

The first step in creating the application-domain model is to extract objects from descriptions
of the World Wide Web. The best descriptions are specifications, which should be authoritative
and fairly complete. Unfortunately, the existing specifications for the World Wide Web are frag-
mented and concentrate on lower level details such as protocols (e.g. HTTP [7]) and fine-grained
semantic definitions (e.g. style sheets [17]). Higher-level specifications, when they exist, are usu-
ally given in unhelpful forms, such as binary-only reference implementations (e.g. Arena [1]).

The alternative to formal specifications are informal descriptions; there are many such infor-
mal descriptions of the World Wide Web available both on and off the Web. All the considerations
that make a description informative also make it a good source for domain analysis: conciseness,
completeness, clarity, and so on. In addition, to allow for machine-aided object analysis, it is help-
ful if the material is available in machine-readable form. For the case study, we chose Chapter 1
from [2].

With World Wide Web descriptions in hand, object analysis can begin. Object analysis is bro-
ken into two parts: word frequency analysis and object extraction. Frequency analysis is a first
pass over the descriptions to determine the important words. After eliminating noise words such
as “the”) the remaining words are counted; more frequently occurring words are assumed to be
more important than less frequently occurring words. To get a feel for the larger structure of the
descriptions, we also looked at digram (e.g. “server sends”) and trigram counts. Table 1 shows
some frequency analysis results. We performed a noun and verb analysis on the World Wide Web

Word Count Noun-verb digrams Count

server 61 server sends 3

script 36 data return 3

browser 24 you receive 2

client 23 views HTML 2

user 14 user views 2

Table 1: Some word frequency analysis results

descriptions to extract possible objects and associations. The analysis resulted in 25 objects, and 6
associations; see Figure 2.

The second step in creating the application-domain model is to take the objects and associa-
tions found in the first step and organize them into a coherent model. We chose to organize around
the Object Modeling Technique (OMT) [16] because of its familiarity in the software engineering
community. OMT includes several graphical notations for specifying models. Its Object Model
expresses the important domain objects and the inter-object associations. Figure 2 shows the
OMT Object Model for the Internet web browser domain model.

Figure 2: OMT Object Model Diagram for the Web Browser Domain Model

The third step in creating an application-domain model is to realize the OMT Object Model of
the World Wide Web in a machine accessible form. There are a number of motivations for this
step. The most important is one of the primary hypotheses of this project: that an object-oriented
framework is a powerful and useful representation for application-domain information in reverse
engineering. Other motivations include the ability to automate various parts of model construction
and validation and the flexibility with which the model can be handled once placed into machine
readable form.

We chose the Software Refinery tools as our base modeling tool. The Software Refinery is a

information 12 server receives 2

scripts 11 server delegates 2

output 11 script called 2

Word Count Noun-verb digrams Count

Table 1: Some word frequency analysis results

UserUIBrowserServer

Connection

Protocol

PageWidget

Reply Request

Content-type
Header

File

Delivered
Page

Static

Bookmarks History

CGI

TextHTTP

ParametersHeader URL

Link

Text

File Requests

A

BA

BA

A B

Object Class A

A has X association with B

A Contains B

A is a specialized B

Uses

Speaks

Provides Requests

Controls

X

Name

large, Lisp-based suite of programs oriented towards program analysis and transformation. The
Software Refinery is well suited to supporting Synchronized Refinement because it can be used to
represent both the application domain and the code under analysis. The World Wide Web Object
Model shown in Figure 2 is represented using the Object Base, the Software Refinery subsystem
responsible for representing software information. In addition, we use the Dialect subsystem to
build parsers that translate between Software Refinery internal and external textual representa-
tions of the Object Model.

The Software Refinery representation, particularly in the form provided by Dialect, does not
map directly to the OMT Object Model. The Dialect representation is oriented towards attributed
syntax trees, while the OMT Object Model is oriented towards more general graph structures.
There are several approaches possible for resolving the mismatches between the Software Refin-
ery representation and the OMT Object Model. The first is to ignore the Dialect parse trees and
represent OMT Object Model associations as objects instead of as tree links. Using an object
instead of a tree link to represent an association solves some of the more immediate representa-
tional problems: an object can easily represent association attributes, many-to-many attributes,
and role names, things which are difficult to represent with just tree links. However, the more
complicated problem of representing the relation between OMT Object Model objects and associ-
ations still remains. In addition, many of the Software Refinery tools for manipulating and analyz-
ing Dialect trees are of little or no use for models that ignore tree links.

The second approach to resolving the mismatches is to modify the Software Refinery and Dia-
lect representations to a form more appropriate to the OMT Object Model, which involves chang-
ing the Software Refinery and Dialect representations to allow arbitrary graphs. The open nature
of the Software Refinery makes these kinds of changes possible, but the amount of machinery
involved requires some degree of certainty before proceeding.

To illustrate the points made in the preceding paragraphs, we end this section with a brief tour
through the current implementation of the Software Refinery representation of OMT Object Mod-
els. Our Software Refinery representation has two parts: an internal representation and a parser for
translating between an external representation and the internal representation. We consider each
part in turn.

We chose to resolve the mismatch between the trees provided by the Software Refinery and
the graphs found in the OMT Object Model by ignoring the trees. An OMT Object Model is rep-
resented as a complete binary tree of three nodes. The root represents the whole model; one of the
children represents the set of all classes appearing in the model; the other child represents the set
of all associations used in the model. Annotations among the two child nodes describes Object
Model structure.

There are four Refine objects defined to represent OMT Object Model entities:
var omt-om-entity: object-class subtype-of user-object
var omt-om-root: object-class subtype-of omt-om-entity
var omt-om-class: object-class subtype-of omt-om-entity
var omt-om-association: object-class subtype-of omt-om-entity

Omt-om-entity is the superclass for all other representation entities. Omt-om-root repre-
sents the whole Object Model; omt-om-class represents a class in the Object Model, and
omt-om-association represents an association in the Object Model.

There are four mappings defined among the Refine entities given in the previous paragraph:
var omt-om-classes: map(omt-om-root, set(omt-om-class))
var omt-om-associations: map(omt-om-root, set(omt-om-association))

var omt-om-name: map(omt-om-entity, string)
var omt-om-associates: map(omt-om-association, set(string))

Omt-om-classes maps a root entity to the set of class entities defined in the Object Model
represented by the root; similarly, omt-om-associations maps the root to the set of associa-
tion entities defined in the Object Model. Omt-om-name maps a string name with an entity
(which, via inheritance, could be a root, class, or an association). Omt-om-associates gives,
for each association entity, the names of the class entities that are part of the association.

Refine needs to distinguish between mappings that structure the representation (such map-
pings are called attributes) and mappings that annotate the representation:

form declare-omt-om-tree-attributes
 define-tree-attributes(
 ‘omt-om-root, {‘omt-om-classes, ‘omt-om-associations})

In this representation, only the omt-om-classes and omt-om-associations mappings
provide structure (and do so relative to the root); the omt-om-associates and omt-om-
name mappings provide annotations.

The second part of our Software Refinery representation is a parser for translating from an
external, textual representation of an OMT Object Model to the internal representation developed
in the previous paragraphs. The external representation of a object-model class is the keyword
class followed by a string giving the class name; for example

class “a”

The Dialect rule to recognize a class is
omt-om-class:= [“class” omt-om-name] builds omt-om-class

Mappings may be used as non-terminals in the grammar; Dialect uses the range of the map to
determine the parse type (a string in this case). The builds clause indicates that the parser
should build an omt-om-class entity when the rule is successfully applied; the parser insures
the given string is associated with the new omt-om-class entity via the omt-om-name map.

The external representation of an object-model association is similar to that of an object-
model class:

association “x” (“a” ; “b” ; “c”)

The string “x” is the association’s name; the other strings are the names of the object-model
classes that are part of the association. The Dialect rule for recognizing an association is

omt-om-association ::=
 [“association” omt-om-name “(“ omt-om-associates + “;” “)”]
 builds omt-om-association

The Dialect rules can use extended regular expressions; in this case the rule specifies one or more
associates (that is, object-model class names) separated by a semicolon.

Finally, the Dialect rule for recognizing an external representation of an object-model is
omt-om-root ::=
[“(“ omt-om-classes + “;” “)” “(“ omt-om-associations + “;” “)”]
builds omt-om-root

When successfully applied, this rule also constructs the internal representation for the Object
Model.

B. Code Analysis
High-level models are useful in the description and comprehension of complex constructs

such as programs. Their utility is due primarily to their abstraction of the complicated details of
the systems they describe. In contrast, the source code of a program is full of such details. A rough
analogy between the high-level models of an application program (in terms of a domain model,
design decisions, and a prototypical architectural model) and the field of building architecture is
the difference between the blueprint of the classical Frank Lloyd Wright “Prairie House” and a
particular instance of it. For example, there may be differences in the instantiation that are derived
from pragmatic concerns due to the location site peculiarities.

Through Synchronized Refinement, a body of source code is matched to application-domain
models. Through code analysis, an abstraction of the code is developed that is resolved with the
expectations generated by the models. This is a iterative process reflected by the dataflow cycle in
Figure 1 that flows from the Abstraction process to Abstract program description to the Detec-
tion process to the Mappings/annotations and finally back to the Abstraction process. Addi-
tionally, the high level model is also enhanced to fit the source code. In reference to the building
architecture analogy, SR also constructs a blueprint of this particular instantiation of “Prairie
House” that incorporates the peculiarities of this instantiation (i.e., the deviations from the “classi-
cal”). The following is a discussion of several code analyses that we are evaluating for application
to the Mosaic source code.

1. Reflexion
A software reflexion model [11] compares an architectural model of a program to its actual

implementation. It does this by using a map between source code and an architectural model that
is suggested by the analyst. A reflexion model can be used to incrementally refine an architectural
model. The process begins with an analyst specifying what the suspected architectural model is
for the source code. By incrementally adapting the mappings between major structural elements
of the source code (e.g. file names, directories, name fragments), an architectural model is
matched to the source code. The differences between the specified and derived models reflect mis-
matches between the two models. The mappings may be modified to construct a closer conver-
gence between the two.

SR incrementally matches source code to domain concepts. This is a large conceptual gap to
cross, and an architectural description can serve as an intermediate point. The architectural
description must include both the important domain concepts and the major software constructs
designed to implement them. Because of the incremental nature of SR, reflexion can serve a mon-
itoring role, gauging the fidelity of the match.

2. Invocation Analysis
One way to construct an initial architectural model is to analyze invocations. Invocation (or

call graph) analysis determines which functions invoke others in a program. For some languages
this may prove problematical. In C for example, a function may be invoked indirectly through a
function pointer that has been assigned the value of the invoked function. In polymorphic lan-
guages, determination of the most appropriate version of a function may not be known until runt-
ime. Even with these limitations, invocation analysis can still be useful in generating abstract
program representations.

For example, if functions are grouped into modules, then the invocation between functions in
different modules can be used to represent communication between modules. Also, if a compari-
son between intra- and inter- function invocations is developed, the module coherence can be
evaluated. If the modules represented architectural components, intercomponent communication
is represented. Finally, from a domain model perspective, the interobject communication serves to

indicate associations among objects.
One advantage of using the Software Refinery is that analyses like the above are easily

expressed in terms of Refine language data structures. A relatively straightforward pattern match-
ing procedure can be used to translate analysis constructs into instantiations of domain or archi-
tectural objects. Because both are represented and stored inside the Software Refinery Object
Base, the analysis process is more tightly integrated.

3. Type Analysis
Analysis of source code data types may be used to develop an object oriented representation

of the code. This may be done even if the source language doesn’t natively support object oriented
constructs [4]. Part-of associations (aggregation data structures) may be derived from analysis of
the hierarchical structure of the types. This may be supplemented by invocation analysis. For
example, a datatype’s subcomponent may refer to a collection. If a member function associated
with the datatype retrieves elements from the collection, that would indicate a part-of association.
This deduction can be made if the selector interface to the object (or abstract datatype) in question
returns the elemental type of the collection instead of the collection itself and there are no selec-
tors which do return the collection. In this case the elements of the collection have a relationship
to the object. The collection is a manifestation of this relationship’s many-to-one property. This
analysis involves observing the functions’ formal arguments and return types and associating
functions to the abstraction interface of one particular type. Additionally, datatypes serving as col-
lections have to be identified. Implementation of this in the Software Refinery requires interaction
with both the low level (parse tree/symbol table) and high level (who-calls, etc.) representations of
the program. The Refine language makes both representations manipulable by many of the same
operations and transformations.

4. Coupling
The amount of communication between modules can be used as a measure of the strength of

the association between them. In short, a measure of the coupling between two modules or objects
is indicated by the strength of this association [2]. As noted earlier, invocation analysis can be
used to represent intermodule communication. Additionally, access and modification of object
state information is also a measure of the strength of the communication. If a particular program
uses abstraction this access may be represented by a function call. Or it may be represented by a
slot or field access of a structure or object.

5. Problems of Pragmatic Decisions
The above analyses may be used in various ways to cluster and abstract a high-level represen-

tation of a program. However, these analyses may be subverted by artifacts inserted during pro-
gram implementation. For instance, a designer may have interleaved two logical modules into
one, or used one function with an interleaved design to construct functionality for two different
modules. This confounds the analyses done above unless elements of the design decision can also
be incorporated into the abstraction process. This is the justification for why design decisions also
feed into the abstraction cycle in SR through the detection process. Decisions that might confound
the derived representation are synchronized with the architectural and domain expectations to
derive reflexional mappings for the abstraction process.

IV. Issues Raised
The key to domain-driven program understanding is bridging the gap between the conceptual

domain model (the application description) and the results of code analysis. We believe an archi-

tectural description of the program can bridge this gap. This raises three primary issues:
1. What is the relation between the application-domain model and the architecture?
2. How can architectural styles be connected to program descriptions resulting from standard

code analyses?
3. What annotation mechanisms should be used to make these relationships explicit and allow

them to evolve as the domain model is refined and program descriptions emerge?

A. The Relationship between the Application-Domain Model and the Architecture
In mature domains, application programs have a typical set of nonfunctional properties, such

as performance, cost, reliability, and security. The primary agents interacting with these programs
expect certain sets of behaviors and functions to be provided by the programs. A useful way of
expressing these nonfunctional properties as well as the expected behaviors and functions is by
using usage scenarios [8] that are described in reference to the architecture.

In application-domain programs, there are sets of architectural mechanisms that typically
implement these properties, behaviors, and functionality. For example, these might be caching,
password protocols, and priority schemes. The issue in connecting the application-domain model
to the architecture is one of identifying these architectural mechanisms. What are the typical
architectural components related to the primary agents of the domain, what are their behaviors,
and which protocols do they use in communicating with each other? We need to create a catalog
of these architectural models and styles and provide appropriate indexing mechanisms to connect
them to the domain concepts. These can be used to generate expectations from the domain model
about what architectural structures are likely to be found in the application software.

B. Architecture Style and Program Descriptions
In the other direction of analysis, program analyses can provide some structural and behav-

ioral information to produce a rough architectural description of the program. For example,
extracting the call graph can provide an initial description of a program’s architecture. Object
detection techniques can also identify primary components and how they interact. Recognition
techniques are needed to detect the use of standard architectural styles and mechanisms that in
turn suggest the implementation of some domain concept or domain-specific nonfunctional prop-
erty.

Some of the key issues in extracting architectural information from program descriptions are
the following.
• What representations of programs and architectural styles are appropriate?
• Is there a single representation that spans the continuum from code-level to architectural-level

descriptions, or do we need a hybrid, layered representation?
• How do these representations relate to the application-domain model representation?
• What extraction techniques are useful?

C. Annotation
As the domain model, architectural description, and program description emerge and evolve,

how are their relationships captured in annotations? What representations are useful for annota-
tions and what types of inferencing on annotations are needed?

During the refinement and elaboration of the domain, architecture, and program models,
expectations are generated about how they are connected. It is likely that a truth-maintenance (or
reason-maintenance) system will be needed to handle confirmation and refutation of expectations.

References
[1] Arena. http://www.w3.org/pub/WWW/Arena/.

[2] Grady Booch. Object-Oriented Analysis and Design with Applications, second edition. Benjamin/Cumings, 1994.

[3] Steven E. Brenner and Edwin Aoki. Introduction to CGI/PERL. M & T Books, 1996.

[4] Eric J. Byrne and Gokul V. Subramamian. “Deriving an Object Model from Legacy Fortran Code.” Proceedings of
the International Conference on Software Maintenance, Monterey, California, November 4-8 1996, 3-12.

[5] Elliot J. Chikofsky and James H. Cross II. “Reverse Engineering and Design Recovery: A Taxonomy.” IEEE Soft-
ware, 7(1):13-17, January 1990.

[6] Jean-Marc DeBaud, Bijith M. Moopen, and Spencer Rugaber. “Domain Analysis and Reverse Engineering.” Pro-
ceedings of the 1994 International Conference on Software Maintenance. Victoria, British Columbia, Canada,
September 19-23, 1994, 326-335.

[7] HTTP. http://www.w3.org/pub/WWW/Protocols/.

[8] I. Jacobson. Object-Oriented Software Engineering: A Use Case Oriented Approach. Addison Wesley, 1992.

[9] R. E. Johnson and B. Foote. “Designing Reusable Classes.” Journal of Object-Oriented Programming, 1(2):22-
35, June/July 1988.

[10] Mosaic. http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/.

[11] Gail C. Murphy, David Notkin, Kevin Sullivan. “Software Reflexion Models: Bridging the Gap between Source
and High-Level Models.” ACM SIGSOFT 95 Symposium on the Foundations of Software Engineering, October
1995.

[12] Rubén Prieto-Díaz and Guillermo Arango. Domain Analysis and Software Systems Modeling. IEEE Computer
Society Press, Los Alamitos, California, 1991.

[13] Refine User's Guide. Reasoning Systems Incorporated. Palo Alto, California, 1990.

[14] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeBlanc, Jr.” Recognizing Design Decisions in Programs.”
IEEE Software, 7(1):46-54, January 1990.

[15] Spencer Rugaber. “Position Paper Domain Analysis and Reverse Engineering.” Software Engineering Techniques
Workshop on Software Reengineering, Software Engineering Institute, Pittsburgh, Pennsylvania, May 3-5,
1994.

[16] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen. Object-Oriented
Modeling and Design. Prentice-Hall, 1991.

[17] Style sheets. http://www.w3.org/pub/WWW/Style/.

