
A Catalogue of Lightweight Visualizations

to Support Code Smell Inspection

Chris Parnin∗

College of Computing

Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

Carsten Görg†

College of Computing

Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

Ogechi Nnadi‡

College of Computing

Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

Abstract

Preserving the integrity of software systems is essential in ensur-
ing future product success. Commonly, companies allocate only
a limited budget toward perfective maintenance and instead pres-
sure developers to focus on implementing new features. Traditional
techniques, such as code inspection, consume many staff resources
and attention from developers. Metrics automate the process of
checking for problems but produce voluminous, imprecise, and in-
congruent results. An opportunity exists for visualization to assist
where automated measures have failed; however, current software
visualization techniques only handle the voluminous aspect of data
but fail to address imprecise and incongruent aspects. In this pa-
per, we describe several techniques for visualizing possible defects
reported by automated inspection tools. We propose a catalogue
of lightweight visualizations that assist reviewers in weeding out
false positives. We implemented the visualizations in a tool called
NOSEPRINTS and present a case study on several commercial sys-
tems and open source applications in which we examined the im-
pact of our tool on the inspection process.

Keywords: Code inspection, lightweight visualization, code
smells, refactoring.

1 Introduction

The software industry needs effective and practical tools to scaffold
the process of maintaining quality software. To regulate cost and
risks in software products, developers use a variety of techniques.
One widely practiced technique, software inspection, systemati-
cally reviews the quality of source code. When performing an in-
spection, developers use intuition guided by past exposure to prob-
lematic structures and common design mistakes to uncover flaws.
The use of checklists has been shown to be an effective approach
for assisting developers in reviewing common errors [Mays 1990].

Unfortunately, design problems and source code quality are often
considered to be less important than more pressing goals such as
fixing bugs and adding features. As a result, few resources are de-
voted to inspections or addressing their findings.

Researchers and software practitioners find it desirable to replace
the expensive human element with more automated methods of
discovering software flaws. Object-oriented metrics [Lanza et al.
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2005] offer a promising way of achieving this goal. However, met-
rics are not as forgiving or introspective as their human counter-
parts. The defects discovered by analysis have high false posi-
tives [Flanagan et al. 2002; Rutar et al. 2004; Kim and Ernst 2007]
and can be mis-aligned with human judgment [Mäntylä et al. 2004].

Metrics have reduced problems with manual inspection but they
also have created a new problem: inspecting the output of thou-
sands of defect warnings. In experiments with a bug finding tool,
ESC/Java [Flanagan et al. 2002], users complained about “exces-
sive warnings about non-bugs” to the extent that severely impacted
adoption. Rutar and colleagues [2004] noted in a comparison of dif-
ferent bug finding tools that the results contained “too many warn-
ings to be easily useful by themselves”. Kim and Ernst [2007] re-
vealed in an analysis of several software archives that less than 10%
of warnings were addressed and warning prioritization by tools of-
fered little predictive power. Overall, these observations were con-
sistent with our experience with professional developers at a com-
pany: frustration with warning systems generating too many results.

In this paper, we focus on code smells [Fowler et al. 2001], a set
of symptoms indicative (but not confirmatory) of the presence of
certain design problems. For each code smell, we design a sim-
ple light-weight visualization that can be used to complement an
instance of a code smell warning found by an analysis tool. The vi-
sualization provides additional evidence that can be considered by
a reviewer to determine the relevance, severity and accuracy of a
warning.

The main benefit of our approach is the compactness and trans-
portability of the visualizations: for example, an existing warning
report can improve confidence by simply embedding one of our vi-
sualizations alongside each warning. The visualizations can be used
in automated notification reports to provide summaries of recent
warnings found during continuous testing. Finally, code review-
ers can use our visualizations with defect analysis tools to assist in
screening defect warnings.

The main contributions of this paper are:

1. A novel approach for visually inspecting defect warnings that
allows developers quickly filter out false positives;

2. A catalogue of lightweight and coherent visualizations for
code smells;

3. A tool for detecting and visualizing code smells that was
tested on several commercial systems and open source appli-
cations.

In the next section, we describe background material and work re-
lated to code smells. In Section 3, we present results of a design
study to inform our techniques. In Section 4, we introduce a cat-
alogue of lightweight visualizations and we discuss a case study
describing the experiences in using our tool in Section 5. Finally,
in Section 6, we draw conclusions and discuss further research di-
rections.



2 Related Work

Several tools have been proposed to assist developers with in-
specting the quality of source code. Early examples such as
LINT [Johnson 1978], detected static errors common in code but
focused only on low-level implementation flaws. In response, re-
searchers attempted to find more design-oriented measurements.
Dromey [1995] proposed a set of quality metrics based on the struc-
tural form of code to allow classification and automation of qual-
ity defects. Riel [1996] defined a set of object-oriented guidelines
for monitoring the quality of code design, and Fowler and col-
leagues [2001] introduced code smells.

Code smells are structural indications of larger design problems
lurking in the code. Experienced developers may notice the smells
emerge as they are making modifications to source code and find
more than undue resistance to their efforts. Other smells origi-
nate from the code structure: a large class, for example, may con-
tain several concepts that should be abstracted and reused in other
places. Other times, faulty composition and coordination of classes
and features suggest reconsiderations in assigning responsibilities.

Mäntylä et al. [2003] break down the different code smells into
general classes of problems:

Bloaters: The code structure begets system entropy;

OO-Abusers: The code violates object-oriented principles;

Change Preventers: The code structure prevents changes;

Dispensables: The code structure contributes no value;

Couplers: The communication patterns of classes are problematic.

Several inspection systems have addressed the detection aspect by
automatically detecting design flaws [Crespo et al. 2005; Slinger
2005] or by supporting querying for code smells [Tourwé and Mens
2003]. Additionally, many systems also use visualization to assist
presenting metric data. For example, Demeyer et. al. [1999] used
CODECRAWLER to visualize code quality metrics.

Generic metric visualizations offer some assistance, but neither
scaffold the inspection process nor offer a checklist approach let-
ting the reviewer check for a specific type of flaw. The reviewer is
expected to see a problem in the metric representation rather than
weigh evidence for or against a specific design flaw.

Keeping the human in the loop follows Fowler’s advice of using hu-
man intuition for detecting code smells [Fowler et al. 2001]. Tech-
niques that allow exploration and queries, such as the REFACTOR-
ING BROWSER [Tourwé and Mens 2003], incorporate this advice.
JCOSMO [Emden and Moonen 2002], a system to visualize code
smells in source code, displays the code structure as a graph and
maps code smells onto the attributes of that graph. This approach
can be problematic for several reasons. The visualization is built
assuming that code smells are concentrated in a particular region of
the code and that metrics will point reviewers there. This assump-
tion does not always hold; many code smells require understanding
the relationships between many interacting components and thus
are spread throughout the program. These relationships cannot be
represented by a simple mapping between code structure and color.
In addition, the reviewer must explore this structure without any
semantic guidance, smell-specific scaffolding, or checklists.

Other researchers designed visualizations for specific code smells.
Simon et. al. [2001] tackle coupling smells with a 3D visualization
of feature associations. This approach is sound; however, it has
trouble scaling to more than a few classes. Micro-prints [Ducasse
et al. 2005] are designed to represent elements of code statements as
pixels. In an evolution matrix [Lanza 2001], class change patterns

are visualized to reveal interesting trends in how classes change
over time. Both visualizations reveal interesting patterns but are
very specialized in what problems they solve.

In summary, although attempts have been made to visualize code
smells, they handle few smells, fail to address imprecision in the
metrics, and do not design the visualizations with software inspec-
tion in mind. Furthermore, these approaches also fail to scale down.
They are intended for a system-wide view instead of also being ca-
pable of illustrating one design problem. In our work, we handle
more code smells from a variety of categories and engineer our vi-
sualizations to be suitable for use in software inspections.

3 Design Study

In this section, we describe different facets of software inspection
observed in practice and the different challenges they pose. From
these challenges, we compose a set of requirements that a software
inspection tool should satisfy. In our study, we measured the nature
of warnings reported by an automated analysis tool in comparison
with our observed peer reviews.

3.1 Software Inspection Study

The following observations are drawn from the collective experi-
ences of the authors and four other employees participating in over
40 peer reviews when working at a software company.

3.1.1 Code Peer Review

A common code inspection technique is to perform a desk-check,
where a peer examines code on their own time. After a desk-check,
findings can be discussed in person or at a peer review meeting (in
contrast to a more strenuous structured walk-through).

During our study, desk-checks were routinely scheduled as part of
the development process. Many reviews were scheduled after de-
sign phases focusing on revealing architectural issues. Reviews
were also scheduled after the completion of a module or before
a delivery. Finally, desk-checks were scheduled by supervisors to
monitor less experienced employees or to investigate an abnormally
faulty module. Manually monitoring was difficult to manage, often
causing mistakes not to be caught until much later in development.

The time allocated for desk-checks was constrained by the project
budget and employee availability. Experienced employees were
sought for reviews, but had limited time to devote and added ad-
ditional expense onto a project budget. These factors resulted in re-
viewers typically spending between one and four hours and rarely
one work day. Review meeting sessions were limited to two hours
in length, with no review meetings lasting more than three sessions.

The outcome of peer reviews varied. Reviews addressing correct-
ness of algorithms and implementations produced effective results.
Design reviews suffered from limited time to comprehend large de-
signs and lack of a shared vocabulary to discuss design flaws. The
number of accepted findings ranged from 0 to 200 but was typically
under 50.

3.1.2 Continuous Testing

Continuous testing is the process of automatically creating software
builds and running tests in a frequent manner. This process is de-
signed to bring immediate attention to integration problems, bugs,
and quality problems.

During our study, several software teams made use of continuous
testing. One problem we observed related to the notification of vi-



Figure 1: Warnings can be made more informative by embedding mini-visualizations.

olation of quality metrics. Warnings were being issued at a low
volume but high frequency. The project managers were receiving
daily warnings but did not know how to trust the veracity of the
warnings or how to precede with delegation. In many cases, the
notification was eventually disabled.

We draw the following implications for design from our study:

1. Reviewers typically have less than four hours to review.

2. Monitoring is a common activity.

3. Reviewing design quality is difficult to perform manually in a
short period of time.

3.2 Automatic Design Warnings Experiment

To understand how automatic tools worked in comparison with
manual peer reviews, we conducted a study on a commercial sys-
tem with 140 KLOC (668 classes) using an open-source tool called
GENDARME.1

The tool used 109 rules and reported 5038 defects in an html re-
port. 1467 locations were affected with defects. The html report
contained 21366 non-blank lines of text. This is roughly half the
47293 non-blank lines of text in the epic novel “War and Peace”.2

The largest category with 2031 defects belonged to duplicated code
rule. Other defects included 157 large classes, and 88 long meth-
ods. This number of defect warnings is in contrast to the 50 findings
typically accepted in our observations of peer reviews.

When applying existing visualization techniques to these findings,
we had several observations. In one example, a treemap was useful
in viewing the distribution of the 157 detected large classes across
the code base (see Figure 2). But it was difficult to assess the sever-
ity or accuracy of warnings. The tool uses multiple criteria to detect
defects, such as the number of member variables in a class or the
size of a method. However, appropriate values for these attributes
vary depending on several factors, such as the type of a class (do-
main class versus UI class). This important information was not
observable in the treemap. Finally, we noted that the visualization
did not assist in tracking visited problems and managing fixes.

4 Catalogue of Code Smell Views

In this section, we present a catalogue of code smell visualizations.
We divide the smells into four different categories: statement, class,
method, and collaboration code smells. In each category, we first
discuss the common insights and visualization elements that this
category of code smells shares. Then we describe the code smell,
present its abstract representation, and illustrate it using a set of
examples drawn from actual code produced by industry.

1http://www.mono-project.com/Gendarme
2http://www.jus.uio.no/sisu/war and peace.leo tolstoy/plain.txt

Figure 2: Traditional visualizations excel in showing distribution
of metrics across a code base. But when false positives can be as
high as 90%, users need more detail to understand the warnings.

4.1 Design

Considering the the nature of the warnings, we sought to design
visualizations that could handle large number of warnings while
maintaining the necessary level of information fidelity needed to
assess a warning. The design criteria used in creating the code smell
visualizations focus on information fidelity, scalability, and ability
to discuss trade-offs. This decision was further motivated by the
fact that many software developers may not be familiar with code
smell terminology or reach consensus on the presence of a smell.

We also considered multiple usage scenarios when designing our
visualizations. In one scenario, a report generated by an defect anal-
ysis tool such as GENDARME can include a visualization alongside
the warning to provide more context (see Figure 1). In another sce-
nario, project managers receiving daily notifications of warnings
could use the visualizations to screen the warnings (see Figure 3).
Finally, code reviewers can use the visualizations as part of a code
inspection tool. We examine this aspect later in our case study in
Section 5.

The motivation for using a simple set of visual elements was to ac-
commodate the diverse nature of warnings types. The basic visual
symbols used in our design are shown in Figure 4.

Class Method

Variable Frequency(n)

Figure 4: These basic symbols are the building blocks for our visu-
alizations.

4.2 Statement Code Smells

Certain design problems are only demonstrated when examining
the code statements inside method bodies. Traditional code metrics



Figure 3: A simple health screen can allow project managers to quickly and frequently gauge the health of their projects.

such as cyclomatic complexity do reveal potential problems with
overly complex code; however, many more design problems exist
besides statement complexity.

Design problems are often not identifiable by viewing a design el-
ement in isolation but rather need to be examined in context. For
example, sometimes keeping data in a seemingly innocuous loca-
tion inadvertently becomes a problem when data requests must nav-
igate a convoluted path to acquire that data. This problematic path
is often referred to as a Message Chain.

Two important facts are relevant in diagnosing design problems
symptomatic of statement code smells: the spread of the code smell
throughout the program, and the frequency of the same code smell
instance. The spread of the code smell allows a reviewer to consider
how widespread and how difficult a problem may be to fix.

In our visualizations, we denote spread by showing how many
classes a smell resides in using the visual element shown in Fig-
ure 5. The number of classes give a better measure of spread than
the methods because with only methods, the reviewer cannot dis-
tinguish smells occurring in many methods in the same class versus
a smell occurring in several methods across many classes. Spread
is displayed graphically because we want to support code reviewers
incorporating this criterion when visually scanning the code smells.
Code reviewers are more likely to notice the graphical representa-
tion due to faster perceptual response to shapes than to text. Fre-
quency of occurrence is considered secondary and thus is denoted
by a numerical value.

Occurs in:

Figure 5: The spread shows the classes where the code smell oc-
curs.

Finally, when examining a specific instance of a statement code
smell, the most important aspect is the text of the code statement.
The text contains essential semantic clues for the reviewer when
weighing whether a metric is a false alarm or a serious problem.

4.2.1 Message Chain

(n)   A.B.C.D ()
Occurs in:

Smell: A message chain is a statement that contains a long se-
quence of method invocations or instance variable accesses.
Long message chains are problematic because they expose un-
necessary dependencies and may introduce data access bugs.

Context: The reviewing task is discover to problematic accesses
to data and to consider alternative mechanisms for storing and
retrieving data.

View: All message chains found in a project are grouped according
to their constituent objects in a list. The dots on the left indi-
cate the length of the chain (number of involved variables or
methods called), the number in parentheses shows how often
the chain occurs, and the dot-separated characters represent
the chain itself. The spread is displayed on the right.

Review: In Figure 6, the first two message chains should be in-
vestigated. Both appear to be accessing potentially volatile
information: the chains are accessing data through user inter-
face elements that may be destroyed or become inactive. This
may lead to crashes or deletion on incorrect data.

The third message chain is long. Although at first glance this
may be alarming, this type of statement is typical for XML
processing. Because the occurrences are relatively low and
isolated, this smell is a low priority problem unless its fre-
quency or spread increases.



Figure 6: The third message chain is problematic but low-priority.

4.2.2 Data Clumps

( … T1 x, T2 y, T3 z, … ) (n)
Occurs in:

Smell: A data clump is a group of variables that is often passed
to methods together. For example, a graphics program could
have methods that commonly use parameters (int red, int

green, int blue) to represent a color.

Context: The reviewing task is to find similarly named groups of
variables in parameter lists and to replace them with one pa-
rameter variable. Thus, in the example above, we would find
all methods that use int red, int green, int blue as pa-
rameters and replace them with a variable of type Color.

View: Each data clump is listed and shows the types and names of
the data clump members, the number of clump occurrences,
and the spread.

Review: We did not find occurrences of this smell in our case
study. Figure 7 illustrates the concept.

Figure 7: Color object should be created: in 8 classes, 34 methods
pass around r,g,b.

4.2.3 Primitive Obsession

T id (n)    op1 (n)   opn (n)
Occurs in:

Smell: Sometimes a variable with a primitive type is used to en-
code data that would be better stored in the fields of a class.
For example, a string could be used to represent an amount of
money, such as “$500”; however, it would be better to store it
as an object with currency and amount variables.

Context: The reviewing task is to find instances of a primitive on
which the same extraction operations are performed repeat-
edly.

View: The primitive variable is shown with the frequent operations
performed on the variable. The spread of occurrences shows
how many classes are concerned with the data in that variable
(potential aspect?).

Review: In Figure 8, the first two primitives are acceptable. The
first primitive holds a line of text obtained via parsing an in-
put file, so naturally many operations must be performed on
its content. The second primitive holds a file name and lim-
its operations to file processing – nothing wrong. The third
primitive appears to be involved with logging and recording
notes. The message is combined with other data but it is not
unpacked. This smell should be investigated to see if a com-
mon message class would help.

Figure 8: Should a message class be used to better handle messag-
ing?

4.3 Class Code Smells

Class code smells typically involve mishandled domain concepts.
The developers have created code that poorly represents a con-
cept or contains too many concepts. Examining the methods and
fields of the class offers insight into possible problems. In Figure 9,
we show how we represent classes and its methods and field vari-
ables. However, detecting problems is not as clear-cut as putting
limits on size since there are always exceptions. For example, user-
interface classes are more likely to contain many field variables be-
cause those are often auto-generated for each user-interface element
such as a Label or a TextBox. To distinguish these two types of
fields we color user-interface derived fields blue and other fields
red.

Figure 9: Class symbols can contain other symbols. This class has
three field variables and six methods.

4.3.1 Data Class

Importable methods:

Smell: A data class stores many public instance variables but does
not provide much functionality. Methods from other classes
could be moved into this class to make it more useful.

Context: The reviewing task is to know the number of instance
variables and methods in a class to decide whether the class is
performing enough work (getters and setters—methods that
only return or set the value of an instance variable—do not
count as useful methods). We use the following heuristic to
find methods that would be good candidates for inclusion into
the class: the methods take the class as a parameter and do not
reference any instance variables of the class in which they are
contained.



View: All project classes are listed and show the number of vari-
ables and methods for each class and a list of candidate meth-
ods for inclusion into the class.

Review: In Figure 10, the first class should no doubt be checked.
Even if it is not a data class, the large number of variables hint
at some design problem. The second class exhibits signs of a
classic data class. There are many instance variables, but only
one method. In addition, there are many external methods
processing data from the Marker class that should probably
be imported into the class. The third class has more instance
variables than the second class, but it also has more methods;
overall, the class appears relatively healthy.

Figure 10: The Marker class should start acting like a class and
import some methods.

4.3.2 Large Class

Class

Smell: A class that is too large to work with.

Context: The reviewing task is to determine if a class is too large.
Metrics for determining the size of a class include the number
of instance variables, the number of methods, and the method
size distribution.

View: The classes in the project are listed in decreasing order of
lines-of-code. The dots display the instance variables and the
bars displays each method’s length allowing the reviewer to
notice anomalies with the method size distribution.

Review: In Figure 11, the first class has a few field variables and
several long methods but nothing really stands out. The sec-
ond class is a classic example of a kitchen-sink class, many
utility methods are thrown into a single class instead of the
class modeling a specific concept. The third class is a regu-
lar class. The class only has a few real instance variables, the
blue fields are user-interface fields such as a TextBox.

4.3.3 Refused Bequest

ChildClass : ParentClass

throw null 0 throw null 0

null throw

throw null 0 throw null 0

null throw

Smell: A class manifests a refused bequest if it inherits methods
but does not use them. Fowler et al. [2001] consider this a
weak smell. In our definition, we instead focus on cases where
a class assumes an interface, but does not properly support
the interface by either throwing a not implemented exception,
returning Null, or returning a constant.

Figure 11: Too much clutter has built up in a kitchen-sink class
(second class).

Context: The reviewing task is to determine the ratio of imple-
mented to “stubbed out” interface methods in order to judge
the severity of a smell.

View: For each class all implemented interface methods are listed.
“null”, “0”, and “throw” indicate a refused bequest wheres a
green bar indicates regular behavior. This kind of highlighting
allows the reviewer to discern easily whether a large number
of methods have been stubbed out.

Review: The first class in Figure 12 is a well-behaved child
class. The second class in contrast wants to be considered
a Project but it does not actually implement the required
methods. This behavior suggests some conceptual abuse of
the project concept is occurring. The third class is on the
fence, further manual inspection is needed.

Figure 12: There are some conceptual modeling problems when
classes start borrowing interfaces (second class).

4.4 Method Code Smells

Method-level code smells are relatively easy to understand. Classic
code metrics and line-based visualizations have long been used to
representing them. Unfortunately, line-based visualizations take up
too much vertical screen real estate that makes it virtually impossi-
ble to display the method name without a detail-on-demand query
or sideways text. We believe that the ability to see the method name
outweighs the benefits of the mental model offered by line-based
visualizations. Thus, we turn the lines sideways.



4.4.1 Long Method

Method: n

Smell: A method that is too long to work with. The method is
often difficult to understand and may contain duplicate code.

Context: The reviewing task is to determine the number of lines
of code in the method and to understand its cyclomatic com-
plexity.

View: The length of a method is mapped to a gray bar. For every
control flow statement, conditional statement, and comment
in the method, a line is drawn at the corresponding position
along the bar’s length to give a sense of the structure of the
method. Each line is marked with a color to indicate its type:
light blue denotes conditions, blue denotes iterations, green
denotes comments, and gray other statements. The number of
lines of code are also shown numerically after the colon.

Review: In Figure 13, the first method is very long; however, it
is an auto-generated method for creating user interface ele-
ments. Normally this would be fine, but there might be too
many user interface elements lumped into this one class. The
second method is of moderate length and mild complexity.
In the third method, neither the length, nor the complexity is
particularly alarming; the fact that this code is for parsing lon-
gitude and latitude values has such a complex implementation
is alarming. The code is likely duplicating the logic for han-
dling longitude and latitude, and might be better if replaced
with regular expressions to extract the values instead.

Figure 13: Why is parsing longitude and latitude values (third
method) so complex? Use regular expressions?

4.4.2 Long Parameter List

Method (   , ,   ,   , , )

Smell: A parameter list is too long to work with.

Context: The reviewing task is to determine if the parameter list is
justified.

View: Parameter lists are represented by a row of circles, one for
each parameter in the largest overload for that method. The
number of filled circles corresponds to the number of param-
eters in the shortest overload of that method. All parameter
lists are displayed and sorted in descending order of length.

Review: In Figure 14, the first method contains an extraordinar-
ily long list of parameters. Furthermore, the data appears to

be unpacked into arrays. Something fishy is going on. The
second method is moderately long; however, a simpler sin-
gle parameter version is available, the longer version is most
likely providing customizable options. The third method has
a typical method signature.

Figure 14: A method with a long parameter list has a more conve-
nient overload (second method).

4.5 Collaboration Code Smells

Collaboration code smells occur when classes interact in a strange
fashion. The root cause is usually a mis-allocation of responsibility.
Understanding the situation usually requires understanding a class
and its interaction with clients and services.

4.5.1 Middle Man

Smell: A middle man is a class that delegates most of its work to
other classes. Middle men can often be removed and their
functionality placed in the classes that they were mediating.

Context: The reviewing task is to determine the contribution of the
middle man’s functionality in comparison with its delegation
to external classes. Knowing about clients and services gives
better context to the usefulness of the middle man.

View: The middle man is the class in the middle. The methods on
the bottom of the class are regular methods. The transparent
methods on the top however, are not contributing anything and
instead are just making requests to other classes. Clients are
the classes on the left and servers are classes on the right.

Review: In Figure 15, the first class is not a middle man; however,
the class seems to have a large number of methods that access
a large number of services. An investigation should examine
if smaller classes should be extracted from this class. The
second and third classes both provide a type-safe collection
class. However, in each case only one single client is using
the class. Thus, these two classes may be eliminated.

4.5.2 Feature Envy

MethodClass

Smell: Amethod that makes many calls to other classes rather than
calling methods within its own class is considered to be envi-
ous of other classes features.



Figure 15: Is the developer being over zealous in creating a type-
safe collection class (second and third class)? The collection is
only used by one class.

Context: The reviewing task is to determine for a given method the
number of referenced members from other classes in compar-
ison to referenced members in its own class.

View: On the left side, referenced members of the method’s class
are shown. On the right side, referenced members in external
classes are shown. In our implementation, the external mem-
bers are fields and getter/setter methods. Because of the lim-
ited space for showing members, a class is highlighted in red
if its features exceed the capacity of the class representation.

Review: In Figure 16, the first method is not using any features
of its class while accessing the features of other classes. The
second method is using features internal to the class as well
as several other classes. After examining these two methods,
it is curious that both methods are processing tree information
outside of a tree class. The third method looks normal.

Figure 16: Why are navigation trees being operated on outside of
a tree class?

5 Application

We implemented a suite of tools for supporting software inspec-
tion. We developed a byte-code scanner and source code scan-
ner for detecting code smells, and a Visual Studio plug-in called
NOSEPRINTS for displaying and reviewing code smells. We per-
formed a case study with three industrial projects and two open
source projects. In the study we examined the scalability of our ap-
proach on real world projects and the feasibility of using our tool in
a design peer review.

The examples shown in Section 4 are real problems drawn from
these projects. Many of these problems were serious enough to be
addressed and did contain actual bugs caused by design flaws.

5.1 NosePrints

NOSEPRINTS is a Visual Studio plug-in for inspecting code smells.
To detect the code smells, we use a combination of source code
analysis and byte-code analysis [Parnin and Görg 2008] to obtain
both type-rich analysis and the syntax information necessary in cal-
culating metrics for code smells.

NOSEPRINTS is easy to use and to embed into an existing work
flow: the reviewer first loads the analysis results and then follows
the checklist of code smells to study each code smell one by one.

For example, if a reviewer wants to inspect code for any Feature
Envy smells, then the tool provides the visualization shown in Fig-
ure 17. The developer then visually scans the results for something
that catches their attention.

The reviewer can mark a warning to save for later review or choose
to ignore it entirely. Later, the reviewer can access the code smells
saved for review and take a more in-depth look by clicking on the
code smell to see more details and links for inspecting the source
code. If manual inspection is immediately desired, then clicking
on the code smell displays links to relevant code sections in a code
editor window in Visual Studio.

5.2 Large Projects

We examined how the code smells views scale for large projects
produced industrially: one project had 80 KLOC (111 classes), the
other 140 KLOC (668 classes).

We were concerned with how well the code smells views worked
with code from real programs. Practical concerns included the
questions: Would names fit within the view? How many occur-
rences of a potential smell would a reviewer have to examine? How
many views fit on a screen? Does the representation of classes,
methods, and variables fit within the allocated space? Was the right
scope chosen for framing the smell?

Names were surprisingly long. In practice, the length of method
names and classes makes it impractical to display for anything other
than essential elements. In general, by wrapping names that were
too long, we were able to display most names that we encountered.
A frequent reason for longer names are common prefixes of classes.
Trimming prefixes could save more space.

The number of occurrences a reviewer would have to examine is
largely dependent on the unit of code structure that a code smell
could exist in. For example, to find large classes, in the worse case
the number of views the reviewer inspects is equal to the number
of classes in the program. However, several factors contribute to
a more moderate number of examinations needed by the reviewer.
First, sorting quickly pushes irrelevant cases to the bottom. In the
example of Large Class, the distribution of class size is such that
there are fewer medium-to-large classes than small classes. Sec-
ond, the nature of a code smell eliminates many candidates. For
example, in Refused Bequest only classes that inherit or implement
an interface are eligible.

In our implementation, using a size of 300 by 50 pixels for a view
allowed 48 views to be displayed on a 1268 by 1048 resolution
display. This allowed 43% of the 80 KLOC program’s classes
and 7% of the 140 KLOC program’s classes to be examined per
screen. With large wall-mounted monitors or projection screens,
many more views can be accommodated and examined by multiple
reviewers.

An interesting issue was discovering how well the representations
responded to overflow when the default space for displaying data



Figure 17: A list of methods being screened for Feature Envy code smells.

was exceeded. In general, the visualizations allows representations
such as variables to overflow into other parts of the view and still
make sense. Furthermore, because of the design of the views, it is
rare for other representations to exceed their space. For example,
in the Data Class view (see Figure 10), when a class has more
than about 150 data members, then the data members overflows into
the space for methods. The methods are still visible, and then the
capacity can handle over 300 data members. On the other hand, it is
not much of a concern for methods to overflow their bounds because
the class would have far too many methods to be considered a data
class.

In our last question, some initial choices in scope of framing smells
became apparent. For example, in the Long Method view two prob-
lems were observed. First, the wrong level of abstraction was cho-
sen: by default, it showed classes and their long methods. The
resulting views gave too high of an overview, making selecting the
longest method difficult. Second, complexity information was not
visible – the reviewer could not easily distinguish test cases and
auto-generated code from real problems. We incorporated these in-
sights in our current implementation.

Finally, we found further improvements that could be made to the
underlying metric analysis. Most cases involved taking more ad-
vantage of the type and attribute information to better understand or
filter out certain cases. In one example, highlighting field variables
that are constant would better identify classes that are declaring
many values versus storing properties. In another example, iden-
tifying which types associated with Primitive Obsession variables
would allow reviewers to identify where the value was originating
from (file, object, UI). Lastly, highlighting common fragments of
message chains would improve measuring severity and identifying
root causes.

5.3 Peer Review

One of the authors was invited to perform a peer review on a re-
cently completed project. The project was relatively small, contain-
ing 7000 LOC (39 classes). The author examined the project along
with five other reviewers. Each reviewer only had a limited amount

of time (two hours) they could charge to the project. The author
used NOSEPRINTS to structure the inspection process, whereas the
other reviewers manually inspected the code.

Using the tool, a total of 22 findings were reported by the author
using NOSEPRINTS. All findings were accepted at the meeting to
be addressed. One remarked that this code review was one of the
most useful code reviews they had experienced. The other five re-
viewers reported from zero to two problems. This does not prove
that the tool is better than manual inspection, but demonstrates ev-
idence that the tool can be used within the constraints of a typical
peer review.

6 Conclusion and Future Work

In this paper, we present a catalogue of code smell visualizations
to support code inspections. As more sophisticated metrics are de-
veloped, new techniques are needed for handling the results of the
metric analysis. Furthermore, it is not sufficient to directly visualize
the code structure and expect insight to emerge from that picture.
Visualizations need to be crafted to piece together a coherent story
specific to underlying problems that the metrics were measuring.
Many software engineers are not familiar with the vocabulary and
insights of the more sophisticated metrics. The role metric visual-
ization systems have is in part educational and part communicative.

In some sense, our visualizations depart from traditional software
visualization approaches: instead of using an exploratory interface,
we advocate self-contained views that display contextual informa-
tion without requiring interaction. We find our approach scalable
enough for use in typical real-world systems and useful in perform-
ing a peer review of a medium-sized project.

Our catalogue does not cover all the code smells described by
Fowler et al. [2001]. NOSEPRINTS does cover Temporary Fields,
Inappropriate Intimacy, and Parallel Inheritance Hierarchy—we
did not include them in our catalogue due to space constraints.
Other smells are either overly broad or require a more special-
ized detection method. For example, the smell Duplicate Code is a
symptom of a deeper problem; after examining a possible visualiza-



tion, we think a more fine-grained classification is needed to break
down the task of detecting duplicated code. The smells Divergent
Change and Shotgun Surgery are best detected by examining sev-
eral revisions of the source code because these smells are only de-
tectable after it has proven difficult to modify code. Finally, the
smells Dead Code and Lazy Class are different extremes of Specu-
lative Generality which in itself is subjective in terms of how code
may be used in the future.

We are exploring how to better integrate our visualization into the
software development process. We are currently working on inte-
grating our views with CRUISECONTROL, a continuous integration
system, so that users can be notified of possible quality problems.
We experimented with a technique [Parnin and Görg 2006b] for
applying usage contexts [Parnin and Görg 2006a] taken from de-
velopers’ interactions with an integrated development environment
to favor the display of recently visited or edited methods when re-
turning code search queries. Finally, we have explored ways of
getting overview with summaries and stacking views into piles (see
Figure 18) and improving navigation. With this additional support,
developers can have a better overview and also focus on inspecting
more relevant code.

Figure 18: Stacking allows warning instances to be grouped by
different attributes such as under same class.
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