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Abstract 

The majority of software development today involves maintenance or evolution of legacy systems.  
Evolving these legacy systems while maintaining good software design principles is a significant chal-
lenge.  Research has shown the benefits of using software architecture as an abstraction to analyze qual-
ity attributes of proposed designs.  Unfortunately, for most legacy systems a documented software archi-
tectural description simply does not exist.  This work proposes a defined process to obtain a complete, 
consistent and useful description of a legacy system’s software architecture so these descriptions can be 
used for evolution or maintenance tasks.  This process is called the architectural synthesis process 
(ASP) and consists of four stages: extraction (obtaining opinions or perspectives about what the architec-
ture might look like), classification (deciding which aspect (view) of a system the perspective describes), 
union (combining all perspectives describing a single aspect of the system to obtain a complete view-
point) and fusion (comparing different viewpoints to insure consistency).  This work further introduces the 
use of domain terms as an approximation to semantic descriptions of architectural elements.  To aid in 
establishing process repeatability, a supporting toolkit called REMORA is provided.  REMORA uses lexi-
cal analysis, topological features of the representation and concept analysis to aid in matching elements 
from different perspectives.  This work will show that the proposed process is produces complete, consis-
tent and useful descriptions of a software architecture.  Validation will involve recovery of the architec-
tural description of the LINUX operating system kernel and a comparison of the results of ASP to the 
common understanding of the LINUX community and other published architectural descriptions. 



2 

Table of Contents 
ABSTRACT ...........................................................................................................................................1 

TABLE OF FIGURES............................................................................................................................4 

1.  INTRODUCTION AND MOTIVATION...............................................................................................5 

2.  GENERAL APPROACH ...................................................................................................................7 

3.  RELATED WORK.............................................................................................................................9 

3.1 SOFTWARE ARCHITECTURE .............................................................................................................9 
3.2 REVERSE ENGINEERING.................................................................................................................10 
3.3 ARCHITECTURAL RECOVERY STRATEGIES........................................................................................10 

3.3.1 Pattern Based Architectural Recovery ..................................................................................10 
3.3.2 Visualization Based Recovery...............................................................................................12 
3.3.3 Process Based Recovery .....................................................................................................12 
3.3.4 Summary..............................................................................................................................14 

3.4 SUPPORTING PROCESS TECHNOLOGIES ..........................................................................................14 
3.4.1 Inconsistency Management ..................................................................................................14 
3.4.2 Conflict Resolution................................................................................................................15 

3.5 SUPPORTING INTEGRATION TECHNOLOGIES.....................................................................................15 
3.5.1  Lexical Analysis...................................................................................................................16 
3.5.2  Topological Analysis............................................................................................................17 
3.5.3  Unification ...........................................................................................................................17 
3.5.4  Concept Analysis.................................................................................................................17 

4.  DETAILED APPROACH.................................................................................................................17 

4.1 THE ARCHITECTURAL SYNTHESIS PROCESS (ASP)...........................................................................17 
4.1.1 Extraction.............................................................................................................................19 

4.1.1.1 Preconditions : ...............................................................................................................21 
4.1.1.2 Process Steps:...............................................................................................................21 
4.1.1.3 Postconditions: ..............................................................................................................21 

4.1.2 Classification ........................................................................................................................21 
4.1.2.1:  Preconditions: ..............................................................................................................22 
4.1.2.2:  Process Steps:.............................................................................................................22 
4.1.2.3:  Postconditions: ............................................................................................................22 

4.1.3 Union ...................................................................................................................................22 
4.1.3.1 MATCHING USING LEXICAL ANALYSIS......................................................................23 
4.1.3.2  MATCHING USING TOPOLOGICAL ANALYSIS ..........................................................23 
4.1.3.3  MATCHING USING CONCEPT ANALYSIS ..................................................................23 
4.1.3.4  Preconditions: ...............................................................................................................26 
4.1.3.5  Process Steps:..............................................................................................................26 
4.1.3.6  Postconditions: .............................................................................................................26 

4.1.4 Fusion ..................................................................................................................................26 
4.1.4.1  System->Physical .........................................................................................................27 
4.1.4.2  Process->Physical ........................................................................................................27 
4.1.4.3  Conceptual->Module.....................................................................................................27 
4.1.4.4  Other Mappings ............................................................................................................28 
4.1.4.5  Summary ......................................................................................................................28 
4.1.4.6  Preconditions: ...............................................................................................................28 
4.1.4.7  Process Steps:..............................................................................................................29 
4.1.4.8  Postconditions: .............................................................................................................29 

4.2  REMORA TOOLKIT .....................................................................................................................29 



3 

4.2.1 User-Interface Module ..........................................................................................................29 
4.2.2 Import Tools Module.............................................................................................................31 
4.2.3 Matching Tools Module.........................................................................................................31 
4.2.4 Graph Viewer Module...........................................................................................................31 
4.2.5 SQL Server DB Module ........................................................................................................31 
4.2.6 Text Analysis Module ...........................................................................................................31 

4.3 MAPPING P1471 TO ASP ..............................................................................................................32 

5.  CASE STUDY 1 : APPLYING ASP TO RECOVER THE ISVIS ARCHITECTURE..........................32 

5.1  EXTRACTION ...............................................................................................................................32 
5.1.1  Domain-Specific (Reference) Software Architecture. ...........................................................32 
5.1.2  DARE (Domain Analysis for Reverse Engineering) Model....................................................33 
5.1.3  ISVis Documented Architecture ...........................................................................................33 
5.1.4  ISVis Derived Architecture...................................................................................................33 
5.1.5  RMTool Representations .....................................................................................................33 
5.1.6  Call Graph...........................................................................................................................34 
5.1.7  Make Analysis .....................................................................................................................34 
5.1.8  Summary.............................................................................................................................35 

5.2  CLASSIFICATION...........................................................................................................................35 
5.3  UNION ........................................................................................................................................35 

5.3.1  Choosing the Base Representation......................................................................................36 
5.3.2 Using the Union Algorithms ..................................................................................................36 
5.3.3 Summary of Union Phase.....................................................................................................39 

5.4  FUSION.......................................................................................................................................39 
5.5  SUMMARY OF LESSONS LEARNED ..................................................................................................39 

6. CASE STUDY 2: LINUX KERNEL RECOVERY USING ASP ..........................................................40 

6.1 EXTRACTION ................................................................................................................................40 
6.1.1 Domain Specific Software Architectures (DSSA) ..................................................................40 
6.1.2 Portable Bookshelf ...............................................................................................................40 
6.1.3 Rigi.......................................................................................................................................41 
6.1.4 DALI.....................................................................................................................................41 
6.1.5 Text Documentation .............................................................................................................41 
6.1.6 Call Graph Data....................................................................................................................41 
6.1.7 RMTool ................................................................................................................................41 

6.2....................................................................................................................................................41 
CLASSIFICATION .................................................................................................................................41 
6.3 UNION .........................................................................................................................................41 
6.4 FUSION........................................................................................................................................41 
6.5 SUMMARY.................................................................................................................................41 
6.6 CONCLUSIONS .........................................................................................................................41 

7. CONCLUSIONS ..............................................................................................................................41 

8.  VALIDATION..................................................................................................................................41 

9.  SCHEDULE ....................................................................................................................................42 

10.  DELIVERABLES ..........................................................................................................................43 

11.  FUTURE WORK...........................................................................................................................43 

12.  REFERENCES .............................................................................................................................43 

APPENDIX A : ALLOY DESCRIPTION...............................................................................................47 



4 

APPENDIX B: GLOSSARY .................................................................................................................49 

APPENDIX C: REMORA DATA MODELS...........................................................................................50 

APPENDIX D : LINUX PERSPECTIVES .............................................................................................51 

APPENDIX E: SAMPLE VIEWPOINT AND VIEW ...............................................................................52 

Table of Figures 
 
Figure 1:  The Multiple Perspective Problem .......................................................................................5 
Figure 2:  Sources of Architectural Information for ASP.....................................................................7 
Figure 3:  The Architectural Synthesis Cycle.......................................................................................8 
Figure 4:  ASP Context Level Diagram ...............................................................................................18 
Figure 5:  ASP Top-Level Process Diagram .......................................................................................19 
Figure 6:  Simple Perspectives to Combine .......................................................................................24 
Figure 7: Simple Example Concept Lattice ........................................................................................25 
Figure 8: REMORA Conceptual Architecture .....................................................................................29 
Figure 9: REMORA User Interface.......................................................................................................30 
Figure 10: ISVis Design .......................................................................................................................33 
Figure 11: Dynamic Trace Extracted Architecture .............................................................................34 
Figure 12: Information Space Mapping for ISVis Extraction .............................................................35 
Figure 13: EXACT match for Model, Resolving Edges ......................................................................37 
Figure 14: Final ISVis Top-Level Logical View...................................................................................38 
Figure C.1: Low-Level Remora Data Model ........................................................................................50 
Figure C.2: High-Level Data Model .....................................................................................................50 
Figure D.1: A Domain Specific Architecture for Operating Systems ................................................51 
Figure D.2: Another Domain Specific Architecture for Operating Systems .....................................51 
Figure E.1: Sample View for the Data Viewpoint ...............................................................................52 
 

Index of Tables 
Table I: Term Equivalences.................................................................................................................10 
Table II: Comparison of Architectural Recovery Strategies ..............................................................13 
Table III: Some Typical Sources of Potential Perspectives by Viewpoint .......................................20 
Table IV: Simple Architecture Formal Context ..................................................................................25 
Table V: ASP to P1471 Mapping .........................................................................................................32 
Table VI: Extraction Phase Results Summary ...................................................................................34 
Table VII: Case Study Plan .................................................................................................................41 



5 

1.  INTRODUCTION AND MOTIVATION 
There is a need for a defined process for obtaining software architectural descriptions from legacy sys-

tems.  Although the exact percentage varies, most researchers agree that somewhere between 40 and 
80 percent of development activities are focused on maintenance, enhancement or evolution of existing 
systems[16].  Historically, software engineers working on these legacy systems try to recover information 
from the source code or documentation to understand the system well enough to make required repairs 
or enhancements.  Usually these changes are made with minimal understanding of the impacts they 
have on system quality over time.  This led to the characterization of most legacy systems’ structure as 
“spaghetti code.”  Recently the emphasis in reengineering of legacy systems has shifted to applying 
more of an organized forward engineering approach to their modification or enhancement[9]. 

Coincident with this shift of emphasis, the area of software architecture research has enjoyed a resur-
gence of interest [39]. Researchers have focused on improving systems development by providing tech-
niques for analysis of system’s designs at the architectural level.   Examples of these techniques include 
Rapide[45] that provides event simulations based upon a system’s architectural description and the soft-
ware architecture analysis method (SAAM) [34], which performs impact analysis on similar architectural 
descriptions.  While each architectural analysis technique differs in its benefits and goals, they all have 
one thing in common, the need for an accurate architectural description as input. 

The importance of using architecture as a vehicle for guiding a reengineering effort has recently been 
emphasized by the SEI.  In describing the ten most important reasons that reengineering efforts fail, fail-
ure to take an architectural approach is identified as one of the most critical errors[8]. 

Unfortunately, software engineers have a real problem in focusing on the architecture of a legacy sys-
tem.  The bulk of forward engineering analysis tools and techniques usually produce a software architec-
tural description, while the legacy system to be evolved usually has none.  The problem of how to get 
there from here is shown graphically in Figure 1.  There are many ways to get an opinion (or perspective) 
of what the architecture of a system might look like.  These are shown on the left side of the figure.  On 
the right side of the figure is a sample of analysis techniques used by an analyst in evolving a legacy 
system.  The big question mark represents the void that currently exists: The need for a repeatable proc-
ess that produces complete and consistent architectural representations from raw architectural informa-
tion.  This need is reiterated in section 4.3.3 of IEEE P1471[3], which states: “…a process for reverse 
engineering an architecture from an implementation is needed.”  It is meeting this need that motivated 
the research for ASP. 
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Figure 1: The Multiple Perspective Problem 
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One might be tempted to assert that developing a software architecture is already a solved problem.  
After all, do not all projects develop an architecture at one time or another?  Alexander Ran, project ar-
chitect of the ARES project summed up the state of the art when he said[19], ”…the major problem is 
managing information about software from various sources.  There is a need for creation, management, 
and use of a software information base, for multiple views of software systems and … most often a sin-
gle, non-representative view is adopted.  Consequently the view is not useful and is not used.”  Many 
projects may develop a software architecture, but few develop anything actually useful. 

The fundamental thesis of this work is: 

We use the terminology from the Capability Maturity Model [53], which specifies five levels of process 
definition.  Any type process (including chaotic or random) is at the initial stage.  The next step is to have 
a specification of how the basic tasks are to be performed.  This is the defined level.  Once the process is 
defined, it can be further enhanced to become repeatable.  Once a process is defined and repeatable, it 
can be measured and optimized.  For purposes of this proposal the initial research goal is to put the 
process at the defined level.  Later research will move the process further towards the optimizing level by 
making it repeatable and finding appropriate metrics to measure its accomplishment. 

An architectural description is fully informed if it uses all available information about the legacy system 
and its domain.  An AD is consistent if it has accounted for conflicting or inaccurate information.  An AD 
is useful if it provides the necessary information for the analyst to effectively use it for his objective.  Us-
ing terms from the finance and accounting domain can also help define usefulness of the developed 
architectural description.  In the financial domain, various artifacts are used to describe the business 
state of a corporation.  These artifacts include the balance sheet, cash flow statement and income 
statement.  When determining which artifacts to use to describe a business, accountants use the criteria 
of usefulness that they define as having four components: relevance, reliability, comparability and 
consistency.  Relevance implies the artifacts are timely and are necessary to influence decision-making.  
Reliability means they are verifiable and neutral (that is they are not slanted to favor a single set of 
stakeholders).  Comparability means that artifacts are prepared using a common standard while consis-
tency means the same method of preparation is used each time.  These same four factors should guide 
the development of any defined process so that its products will be useful to the people who invest the 
time and resources to use that process. 

With such a large percentage of software development focused on reengineering and evolution ef-
forts, defining this process will make a significant impact on the software engineering field by dramati-
cally helping practicing software engineers. 

The major contribution of this work is development of a process for developing conforming architec-
tural descriptions from legacy systems.  This process involves: 

• An overarching conceptual model into which all current reverse architecting research can be 
placed. 

• A practical methodology through which practitioners can recover a useful set of representations 
of the architecture of an existing system. 

• A definition of the extraction information space and a description of its use in guiding choice of 
information extraction methods. 

• A technique for semantic approximation of architectural elements using domain terms and con-
cept analysis. 

• A toolkit to support the process. 
• Validation of the process through a detailed case study of a non-trivial system. 

Other supporting contributions are discussed in section 4 of this proposal. 

A defined process for obtaining a software architecture description (AD) from 
a legacy system can be specified in sufficient detail to be usable by practicing 
software engineers, and the products produced by the process are fully in-
formed, consistent, useful, and conform existing standards (such as IEEE 
P1471). 



7 

2.  GENERAL APPROACH 
The first step in formulating an overall solution to developing conforming architectural descriptions for 

legacy systems is to develop a conceptual model of architectural recovery onto which the process details 
can be mapped. 

Up until now, we have used the term software architecture without providing a definition.  In section 3, 

several formal definitions are provided.  For purposes of this proposal, we use the P1471 description that 
states that architecture is the highest-level conception of a system in its environment.  This conceptuali-
zation of a system includes consideration of both its functional and non-functional requirements.   

Architectural information exists in many locations and can be derived from many sources.  Unfortu-
nately, current reverse engineering and architectural recovery techniques focus mainly on code-based 
recovery strategies.  While these approaches use the most authoritative source (the code itself), they do 
not lend themselves to identifying the original high-level abstractions the designers intended the system 
to have.  This problem is commonly referred to as the concept-assignment problem.  Figure 2 depicts 
what we call the extraction information space.  This labels on the graph come from a paper by 
Egyed[23].  General sources of architectural information provide various amounts of coverage over the 
information space.  For example, architectural meta-models provide abstract concepts such as the idea 
of components, connectors and viewpoints, which are also generic across domains.  On the other hand, 
interviews with human experts about the system can span a variety of topics and thus might cover both 
generic and specific topics about the system at an abstract of concrete level.  Examining the information 
space graph helps reinforce the idea that code analysis alone is not sufficient to provide the high level 
concepts associated with software architecture.  Architectural information lives in the upper half of the 
graph, while code-based information is in the lower half.   Spanning that gap is the concept-assignment 
problem. 

IEEE Standard P1471 states that any conforming architectural description must contain one or more 
views.  A view is defined as a representation of a whole system from the perspective of a related set of 
concerns.  The rules for what a view means is called a view template (or in P1471 a viewpoint).  The 
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Figure 2: The Extraction Information Space 
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Figure 3: Architectural Synthesis Process (ASP) 

 

process developed must therefore accommodate and use the idea of viewpoints and their corresponding 
views.  This again reinforces the need for multiple sources of information as described above, since it is 
unlikely that a single recovery technique would adequately address multiple sets of concerns.   

Finally, if we have multiple views of an architecture, all derived from multiple sources, it is unlikely 
that they would all be initially consistent.  Section 5.5 of P1471 requires a conforming architectural de-
scription to contain an analysis of the consistency across all views provided.  This places the requirement 
on any process description that it addresses some type of consistency checking for the recovered de-
scription.  Its important to note that P1471 is similar to the CMM in that it states what has to be in a con-
forming AD, but not how to derive or even to present the AD. 

In designing a process for architectural recovery, there are two fundamental options.  The first is to 
adopt a strategy of identifying the weaknesses of existing extraction tools and then building a new “ulti-
mate” extraction tool to address them.  This approach is similar to one proposed by Mendonca and 
Kramer[47].  The other approach recognizes that there will always be new approaches developed with 
their own strengths and weaknesses.  A general process that can integrate the different recovery frame-
works would be the most extensible and useful. 

Given these high-level requirements, the Architectural Synthesis Process (ASP) was developed.  It 
consists of four phases that are shown graphically in Figure 3.  The extraction phase allows for the use of 
multiple tools and techniques to obtain raw architectural information.  In the classification phase, this raw 
information is categorized based upon the viewpoint (stakeholder concerns) to which it refers.  In the un-
ion phase, all information related to each viewpoint is combined into a complete representation (or view).  
At the end of the union phase, the architectural description will have one or more views (depending on 
the amount and diversity of information obtained).  Finally, the fusion phase allows for consistency 
checking between views.  There is no requirement that a conforming architectural description resolve 
inconsistencies that are detected, only that they are detected and identified in the description. 

The process is shown as a cycle (following the red arrows), since inconsistencies that must be acted 
upon typically require obtaining more information and incorporating it into the existing architectural de-
scription.  The central part of the puzzle is the Software Architectural Description.  This represents the 
conforming P1471 AD which is being produced by the synthesis process. 

We now have defined the overarching conceptual model and the general process phases forming the 
methodology to be followed.  Before detailing the specific process steps, we need to examine what other 
researchers have accomplished that supports the ASP. 
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3.  RELATED WORK 

To understand the theoretical underpinnings of ASP, it is first necessary to understand principles of 
software architecture and reverse engineering, other approaches to recovering architectures from legacy 
systems and finally supporting techniques for the various phases of the process.  One can think of this 
related work discussion as flowing from the most abstract to the most concrete information needed to 
understand the ASP approach.   

 
3.1 Software Architecture 

To understand both the benefits of architectural synthesis and the complexities of architectural recov-
ery, one must first understand what a software architecture is.  Two seminal papers were published in the 
early eighties that attempted to define the phrase software architecture.  Garlan and Shaw [29] define a 
software architecture as comprising components (elements which provide computation services), con-
nectors (elements which provide interactions between the components) and configuration (the topology 
of the system).  The authors also introduce the ideas of architectural styles.  Styles are commonly occur-
ring configurations in which the components and connectors interact according to a set of constraints.  
Common styles include pipe and filter, implicit invocation and layered. 

Perry and Wolf [54] take a slightly different approach to the definition of a software architecture.  Their 
definition couches software architecture as a triple consisting of elements, form and rationale.  Elements 
encompass the components and connectors of the Garlan and Shaw view.  Form is similar to the idea of 
configuration, but also includes the idea of constraints similar to those in Garlan and Shaw’s idea of 
styles.  Rationale is not explicitly accounted for in the Garlan and Shaw notion of architecture and em-
bodies the design choices made in defining the architecture. 

For whatever historical reasons, the Garlan and Shaw notion of architecture has become the generally 
accepted one.  Most author’s today use the Bass et al. [6] definition (which is based on the Garlan and 
Shaw definition) in their work:  “The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software components, the externally visible properties of 
those components, and the relationships among them.”   

Just as a building architect needs multiple diagrams to describe the structure of a complex building, a 
software architect needs multiple descriptions of a software system. Architectural views reflect a set of 
specific interests that concern a given group of stakeholders[18, 43] Perry and Wolf also discuss the 
need to provide multiple views of an architecture.  Typical views include: 

• Physical (Hardware):  This view maps software onto hardware.  Physical views are especially use-
ful for depicting the context of the software architecture as part of the overall system’s architecture.  
Components in this view are typically hardware devices such as processors, while connectors are com-
munications paths. 

• Logical (Conceptual, Functional): This view depicts the software as a set of cooperating compo-
nents to fulfill the functional requirements of the system.  Components in this view usually provide either 
active computation services or passive data storage.  Connectors are typically data or control flows be-
tween the components.    

• Module (Development, Code): This view depicts the actual implementation structure of the soft-
ware system.  Components in this view are usually source file directories and code modules.  Connectors 
represent “uses” or “depends on” relationships. 

• Process (Coordination, Execution, Runtime): This view depicts the run-time behavior of the sys-
tem.  Components are processes or threads and the connectors are inter-process communication (IPC) 
mechanisms. 

IEEE Standard P1471, Recommended Practice for Architectural Description, defines architecture as 
the highest-level conception of a system in its environment.  This definition is also the one that we use 
for our work.  P1471 avoids using the traditional Garlan and Shaw definition—considering it to be too 
structurally biased. The standard also refines the idea of Krutchen’s view into a view and viewpoint.  A 
viewpoint is the same as the idea of views described above.  A view in P1471 is the representation of a 
specific viewpoint.  For example, a data viewpoint might be supported with an ER diagram as a view.  So 
the viewpoint is basically a model that can be visualized through one or more views.  Appendix E pro-
vides a sample viewpoint definition and a supporting view.  We will use terminology consistent with the 
standard for the remainder of the proposal.  Table I provides a quick reference for term equivalences. 
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3.2 Reverse Engineering 
Chikofsky and Cross [16] define hardware reverse engineering as: “the process of developing a set of 

specifications for a complex hardware system by an orderly examination of specimens of that system.”    
Unlike hardware reverse engineering, the main objective of the software reverse engineering process is 
not to duplicate the system under study but to gain sufficient design-level understanding for redocumen-
tation, design recovery or restructuring.  For the remainder of this proposal, unless otherwise noted, the 
phrase reverse engineering will refer specifically to software reverse engineering. 

The implementation of a software system is the embodiment of some set of human-oriented concepts 
that represent the original specification.  Biggerstaff et al. [10] describe the problem of discovering the 
original human-oriented concepts and assigning them to their realizations within a specific program as 
the concept-assignment problem.  They argue that code analysis alone cannot get at these human con-
cepts.  There must also be some way to get at the domain concepts and relationships that exist at ab-
straction levels higher than the source code.  Since software architecture exists at a level of abstraction 
just below specifications, the concept-assignment problem is especially pronounced during architectural 
recovery activities.  These findings support our assumption that code analysis alone is insufficient for 
developing an architectural description. 

 
3.3 Architectural Recovery Strategies 

We now examine various approaches being taken to recover software architectures from legacy sys-
tems.  Each of these approaches will be discussed in terms of their underlying support for assumptions 
about architectural recovery, architectural views developed, visualization support, sources of information, 
and ability to make claims about completeness and consistency.  These approaches can be classified 
into three broad categories: Pattern-based recovery, Visualization-based recovery and Process-based 
recovery. 

3.3.1 Pattern Based Architectural Recovery 
One group of techniques is centered on variations in the idea of pattern detection—the premise that 

we can find the architecture of a system by finding standard styles or patterns that were used to originally 
develop the software.  Techniques in this category include CANTO, ManSART, DALI and ARM.  We now 
examine each of these techniques individually. 

The Code and Architecture Analysis Tool (CANTO)[4, 26, 27] looks at the detection of clichés in the 
source code. Clichés are recurring patterns in implementation which represent commonly used pro-
gramming abstractions. For instance C programmers writing a server might create a socket, then call the 
listen function to wait for connections and finally use an accept function to handle client connection re-
quests.  If we could find these sequences of instructions in a code module, it would indicate a server cli-
ché and we could infer a higher-level architectural structure.  CANTO uses the Refine code analysis tool 
to extract an abstract syntax tree (AST) that is then traversed and analyzed to find the clichés necessary 
to build up the architectural description.  Not surprisingly, the intermediate representation for architectural 
analysis is an annotated AST.  A CANTO representation is made up of two views—a module view depict-
ing major code module relationships and a task view that gives a runtime or dynamic view of the archi-
tecture.  These views are presented visually through use of the ATT dotty graph layout program.  Since 
dotty is primarily non-interactive, this technique of visualization limits user interaction with the graphically 
displayed architecture. 

CANTO has several shortcomings that impact its ability to be a total solution for recovering conform-
ing architectural descriptions.  First it develops only two of the four principle architectural viewpoints.  
The physical and logical views are not supported.  Secondly, it depends totally on the Refine toolkit for 
code analysis, and all representations are derived from this code analysis.  This limits its completeness 
in that input from the original human designers or design documentation is not considered.   Third, the 
use of an AST as an intermediate representation necessarily limits CANTO’s analysis engine to opera-

Table I: Term Equivalences 

Traditional P1471 SEI 
View Viewpoint View Template 
View (Overloaded meaning) View View 
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tions on code-like structures.  Finally, there is no direct support within the CANTO tool for attempting to 
maintain consistency between views. 

The Mitre Software Architecture Recovery Tool (ManSART)[14, 15, 67] shares many of the same 
characteristics as CANTO.  ManSART uses recognizers to recover architectural features that then serve 
as abstractions within the architectural representations created.  Like CANTO, ManSART uses the Refine 
toolkit to build an AST representing the source code for the system.  The recognizers then traverse the 
AST looking for patterns of control and data flow that might indicate architectural-level information.  
ManSART supports several views of an architecture—although many (like the call-graph) are more for 
program understanding in-the-small rather than architectural level understanding.  The principle architec-
tural views supported by ManSART include what they call the task-spawning (process) view, repository, 
service-invocation and abstract data type views.  Some combination of these last three would provide 
the standard logical viewpoint of an architecture.  After an initial automated analysis by ManSART the 
architecture is visualized as a graph.  Like CANTO, the graph visualization is basically a static view.  Ac-
tivating user-defined functions (like containment operators) does manipulate the architecture on the dis-
played graph, albeit not interactively.  To manipulate the visualization a function is applied to the repre-
sentation, the graph is recalculated and then redisplayed.  The intermediate representation for ManSART 
is called analysis module interfaces (AMI).  AMI is an ADL-like language that allows for the hierarchical 
specification of analysis results.  Like CANTO, ManSART’s representations are derived solely from 
source code artifacts and ManSART’s built-in recognition rules.  Unlike CANTO however, ManSART 
does attempt to provide consistency between its developed representations by allowing views to be 
merged. 

Most of ManSART’s shortcomings are identical to CANTO’s, which is not surprising given the similar-
ity of their design philosophies.  ManSART provides no support for arbitrary or user-defined viewpoints of 
an architecture.  It does provide a view that merges the module and logical viewpoints of the architec-
ture.  It is interesting to note that both CANTO and ManSART stress the importance of the process (or 
runtime) view of the architecture, yet both use only static code analysis techniques to derive their infor-
mation. 

DALI [36, 37] (which by the way doesn’t stand for anything in particular) takes a different tack than ei-
ther CANTO or ManSART.  DALI recognizes the limitations of tying yourself to a specific tool for extract-
ing architectural information and thus uses the philosophy of an open workbench that can possibly inte-
grate any tool into its functionality.  DALI uses a database as the integration mechanism—and thus its 
intermediate representation is the database tables that record the information from the tools it uses.  
Standard DALI extraction tools include the Lightweight Source Model Extraction (LSME) [51], gprof, Re-
flexion Model Tool (RMTool) [50], and IAPR [35].  The Rigi environment provides DALI visualizations.  
Unlike CANTO and ManSART, Rigi allows an analyst to directly manipulate the architectural visualiza-
tion and creates new views via drag-and-drop interactive manipulations.  Like ManSART, the analyst 
manipulates the architecture primarily by invoking functions to be performed on the current view.  These 
functions are typically SQL and RCL (Rigi Control Language) scripts which describe how to retrieve and 
consolidate architectural information stored in the database.  DALI primarily provides logical views of the 
architecture, but this is driven primarily by the types of tools integrated into the workbench.  DALI is suffi-
ciently open that any given view could be presented within the workbench using a technique the author’s 
call view fusion.  By supporting fusion, DALI is able to at least allow consistency verification between dif-
ferent views of the recovered architecture.  

DALI attempts to overcome the shortcomings of depending on a single tool, but still fails to account 
for all possible sources of architectural information.  Like CANTO and ManSART, it is tied completely to 
source-code derived information.  The effectiveness of DALI is further limited to the experience of the 
analyst and his ability to create the scripts and queries that will reveal the needed architectural informa-
tion. 

The Architecture Recovery Method (ARM)[31] is an extension of DALI by an integrated methodology.  
The open workbench concept of DALI is still there, but is supplemented by prepared scripts and heuris-
tics that allow a more inexperienced analyst to achieve adequate results with the tool.  ARM encapsu-
lates common design patterns into standard SQL and RCL queries allowing semi-automated recovery of 
architectural views.  ARM, like DALI, however is still source-code bound and thus does not take advan-
tage of all available architectural information. 

If we were to project these techniques onto ASP, they all share some commonality.  For extraction, 
they use a limited set of tools that emphasize various types of code analysis.  Classification is inherent in 
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the different tools rather than being explicit.  This limits the number and types of views that can be sup-
ported.  Consistency checking is also implicit in the use of the tools.  They are consistent primarily be-
cause they obtain information from only one source (the source code of the system) and use that to de-
velop only one or two views. 

3.3.2 Visualization Based Recovery  
Rather than looking for common patterns semi-automatically as the first group of tools and methods 

did, this next group of tools feels visualization of the information is critical.  These authors feel that if in-
formation is presented in the proper format, a human is the best pattern detector possible.  FEPPS, ISVis 
and the Software Bookshelf best typify this category of tools. 

The Flexible and Extensible Program Comprehension and Support System (FEPPS)[44] provides a 
three-dimensional (3D) viewing and manipulation interface to architectural information.  Using this sys-
tem, an analyst recovers the architecture by viewing complex relationships between elements of archi-
tectural information.  This information comes from AST’s, program slicing, control-flow graph (CFG) and 
data-flow graph (DFG) analysis.  This information is stored in a multi-layer, multi-representation (MLMR) 
graph format.  The fundamental elements of FEPPS data are the function elements and file elements 
within the source code.  These are then presented visually for manipulation based upon analyst-specified 
commands entered in a navigation control.  FEPPS appears to support both a module and logical view-
point of the architecture.  As we have seen in all the other tools so far, FEPPS suffers from a lack of 
completeness because it fails to use any information other than code-based information in the recovery 
process. 

The Interaction Scenario Visualizer (ISVis)[33] is the first of the recovery tools that tries to incorporate 
dynamic code information with static information.  An analyst first instruments the system’s source code 
and then executes the program to capture an event trace.  A static analyzer such as ctags is used to ex-
tract static code information, which is then used to correlate the event traces.  The event trace and static 
information are then imported into the ISVis visualization environment.  The analyst uses the ISVis visu-
alization to extract architectural components and connectors based upon the captured events from the 
system’s execution.  ISVis uses an object-oriented (OO) data model as its internal representation.  Its 
visualization technique is one of the only ones that does not use a graph model.  Instead the event traces 
are displayed in a custom 2D widget called an information mural.  The analyst cannot directly manipulate 
the visualization, but rather manipulates the OO model, which then updates the mural.  ISVis provides a 
single architectural view of the run-time organization of the application.  Its overall effectiveness is highly 
dependent on an analyst’s ability to interpret and effectively use the mural to interpret the event data. 

The final visualization-intensive technique is the Software Bookshelf (SBS)[59].  SBS uses a web-
browsing paradigm to present architectural information.  An analyst can then select any of the elements 
displayed, which then takes him through a hypertext link to the appropriate place in the architecture.  
SBS is populated using static code analysis tools.  The visualization technique is a combination of a 
graph representing the architectural structure and textual information supporting the nodes and edges of 
the graph.  The internal representation is in relational tables, which is accessed via GCL (a query lan-
guage for information retrieval).  SBS can export and import information using a storage scheme known 
as TA (for tuple algebra).   SBS supports a single architectural viewpoint corresponding most closely to 
the module view.  Since SBS develops a single viewpoint consistency is implicit in the technique. 

3.3.3 Process Based Recovery 
All of the method and tool strategies mentioned so far have had the same weakness—dependence on 

the source code of an application as essentially the sole source of information for architectural recovery.  
Process-based approaches try to incorporate explicitly information from other sources in Figure 1.  The  
principle examples in this category are Krikhaar’s Reverse Architecting Approach, SAAM, ARF and Hy-
brid. 

Krikhaar’s Reverse Architecting Approach (RAA) [41], consists of three phases, extraction, abstraction 
and presentation.  After obtaining architectural information from source code, documentation and human 
experts, the information is grouped and filtered to obtain a relevant subset of the information.  Finally the 
information is presented to the analyst in prototype visualization environment called Teddy.   

Information extraction from the source-code uses a lightweight method to obtain information focused 
on code relations such as imports, part-of and uses.  This information is then stored and manipulated in 
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the relation partition algebra.  This algebra then allows the analyst to use specific operators to abstract 
(or lift) the information to obtain a view of the architecture that seems to correspond closest to the mod-
ule view.  The Software Architecture Analysis Method (SAAM) while not primarily an architectural recov-
ery strategy, does produce architectural descriptions in a human-centric fashion.  A facilitator leads key 
stakeholders in the development of an architectural representation.  Extraction is primarily performed 
though shared consensus building.  The representation is usually a diagram drawn on a white board or 
easel.  Usually a single viewpoint is developed which corresponds most often to the logical viewpoint.  
The degree of consistency of the architectural information is dependent on the quality of the knowledge 
of the stakeholders participating in the SAAM session. 

 The architectural recovery framework (ARF)[7, 24] attempts to build a single view representation of 
an architecture by integration of information from multiple sources.  It represents information internally 
using the DARWIN ADL.  The view recovered seems to support predominately the logical viewpoint of 
the architecture.  This technique is essentially a manual one, so the visualization is constructed by dis-
playing the DARWIN model using a specialized tool.  There is no interactive capability yet, so the analyst 
must modify the model off-line and then use the DARWIN display tool to redraw the view.  ARF has a 
clear methodology and therefore should be usable by practitioners in the field without extensive training. 

ARF tries to build a single view of the architecture normally expressed in terms of some quality attrib-
ute such as safety or security.  It tries to build as complete a model as possible of this one area.  There is 
no attempt to make any statement about the overall completeness of the AD.  While ARF looks at multi-
ple sources of information, it builds only one viewpoint, which limits its ability to check for inconsistency 
in the AD. 

 

Table II: Comparison of Architectural Recovery Strategies 

Recovery 
Strategy 

Information 
Sources 

Internal 
Representation 

Viewpoints / 
Views Supported 

Visualization 
Support 

Consistency 
Mechanism 

CANTO Source Code Annotated AST Module 
Task 

Dotty Implicit 

ManSart Source Code Analysis 
Module 
Interfaces  
(AMI) 

Task Spawning 
Repository 
Service-Invocation 
ADT 

Static Graph Implicit 

DALI 
ARM 

Source Code Database Logical Rigi Patial 

FEPPS Source Code Multi-Layer 
Multi-Graph 
(MLMG) 

Module 
Logical 

Custom 
3D Display 

Implicit 

ISVis Source Code 
Execution Traces 

Internal OO Logical 
Runtime 

Information 
` ` ` ` ` ` `
` ` �` �õ�õ

Implicit 

SBS Source Code 
Some Documenta-
tion 

GCL Relations 
Tuple Algebra 

Module Browsing / 
Graph 

Implicit 

RAA Source Code 
Human Experts 

Relational 
Partition 
Algebra 

Module Teddy Graph Implicit 

SAAM Human Experts Paper / 
White Board 

Any based on 
Participants 

Paper Graph Implicit 

ARF Source Code 
Documentation 
Human Experts 

DARWIN ADL Centered around 
Specific NFR 

Darwin ren-
der 

Implicit 

Hybrid Source Code 
Human Experts 

See SBS Module See SBS Developer 
Interviews 
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The Hybrid process[62] combines source code derived information with developer interviews to produce 
a representation of the recovered software architectural description.  They define an iterative process, 
supported by SBS that consists of the following steps:  
 

• Choose a domain model.  This step in the language of P1471 is to determine which viewpoint 
you are interested in recovering. 

• Extract facts from source code.  This corresponds to the extraction phase of our conceptual 
model. 

• Cluster into subsystems.  In the language of P1471, this step builds the components and connec-
tions for the view that will support the viewpoint chosen in step 1. 

• Refine clustering using information derived from developer interviews. 
• Refine the layout to accommodate new information. 

Since the tool support appears to be based off of SBS (described in 3.3.2), the internal representation is 
also the TA.  Consistency in the Hybrid approach is obtained manually by discussing the emerging archi-
tectural description with the human experts on the system. 

3.3.4 Summary 
Table I summarizes each of the recovery strategies based upon the elements of our conceptual 

framework.  All have an equivalent extraction phase using either custom-designed or open toolkits.  
None have an overt classification phase since each strategy is oriented towards developing a specific set 
of views rather than being a general-purpose technique such as ASP.  In this case, the designer of the 
recovery strategy has performed the classification task by designing the extraction task to get informa-
tion focused on particular views.  The union phase is also fairly constrained in most of the approaches, 
since information is extracted from a single source to support a single view.  Finally, with the exception 
of DALI, fusion of views for consistency is either implicitly accomplished by the tool by constraining the 
types of views and information sources or it is accomplished by simply discussion the views with human 
experts.  

Architectural recovery strategies are therefore highly influenced by the preconceived ideas of the 
original developer.  When a particular strategy constrains the information sources and the developed 
viewpoints, the ability of the strategy to produce conforming architectural descriptions becomes con-
strained.  Almost none of architectural recovery strategies reviewed support explicit techniques for con-
sistency checking or development of arbitrary views/viewpoints.  Likewise, very few provide explicit cov-
erage of the extraction information space.  This explains why some people liken architectural recovery to 
an art form.  Those who are good at creating architectural descriptions usually have knowledge and ex-
perience that cover the three quadrants that do not involve specific code-based knowledge.  ASP seeks 
to make this knowledge use explicit within the process to remove architecture recovery from an art form 
and make it a standard task. 
 
3.4 Supporting Process Technologies 

We now break from the discussion of architectural recovery to consider supporting elements for ASP.  
These research areas impact directly on ASP, but are not normally associated with software architecture 
research. 

3.4.1 Inconsistency Management 
In the early stages of architectural recovery, it is unlikely that the information an analyst initially ob-

tains is consistent.  Drift and erosion [54] result in the current implementation differing—sometimes 
significantly—from the original design documents.  Any process developed, must be able to move 
forward in the face of inconsistency.  The requirements engineering field has coped with this problem for 
years.  During early analysis, it unlikely that stakeholders will provide unambiguous, consistent 
requirements, yet the requirements process must proceed forward.   

The ViewPoint framework of Easterbrook and Nuseibeh [22] provide a prototypical approach to han-
dling inconsistency.   Nuseibeh proposes the following set of activities to manage inconsistency: 

• Detection:  This activity involves processes that help determine if and when an inconsistency oc-
curs.  An inconsistency occurs in specifications when both X and not X are found to hold.  Any synthesis 
process developed for software architectures must also be capable of detecting inconsistencies. 
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• Classification:  This activity tries to determine what type of inconsistency has occurred.  The clas-
sification may involve categorizing inconsistency based upon its cause or by a domain-specific classifica-
tion scheme. 

• Handling: This activity tries to deal with inconsistency.  Finkelstein [Finkelstien, 1994 #171] de-
scribes the following taxonomy for handling inconsistency: 

• Ignore:  If the inconsistency is minor or isolated, it may be possible to simply ignore it.  The au-
thor’s recommend it be tracked, but no corrective effort be expended. 

• Delay:  If there is further information required to understand and resolve the inconsistency, then its 
resolution may be delayed.  Two different situations may occur because of delayed handling.  Either the 
inconsistency will resolve itself as more information is developed and other inconsistencies are elimi-
nated or it will interfere with other aspects of the development and it can no longer be delayed, but must 
be resolved.   

• Circumvent:  If there is a specific rule that was broken, it may be possible to disable that rule 
thereby removing the inconsistency.  It does not appear there is a parallel to this option when handling 
architectural inconsistency. 

• Ameliorate:  If there are steps which can be taken to improve the situation while not fully removing 
the inconsistency then the overall situation can be improved.  This is similar to an incremental resolution 
process. 

• Resolve:  If necessary, actions can be taken to immediately repair and remove the inconsistency. 
ViewPoints then “… are loosely coupled, locally managed, distributable objects which encapsulate 

partial knowledge about a system and its domain, specified in a particular, suitable representation 
scheme, and partial knowledge of the process of development.”  There is a close analogy between the 
idea of a ViewPoint in requirements and an architectural perspective. 

3.4.2 Conflict Resolution 
Like all other aspects of software development, architectural recovery is a task that intimately involves 

human beings.  Anytime humans are involved in a process, there is the opportunity for conflict.  In an 
architectural recovery task, analysts may disagree with not only concrete artifacts such as design and 
code documentation, but with each other.  The requirements engineering community has been struggling 
with this problem for some time.  One promising solution derived from management theory is called 
“Win-Win” [11].  In Win-Win, negotiations are conducted which try to satisfy each participant’s “win” con-
ditions.  Certain architectural artifacts and views may have significant organizational impacts and thus an 
easy resolution may not be achievable.  This implies the need to incorporate negotiation activities in any 
complete recovery process.    

 
3.5 Supporting Integration Technologies 

The previous sections have looked at research supporting the overall process for ASP.  This final sec-
tion will look at specific research technologies that might be applied to the automated matching of archi-
tectural elements in different perspectives.  These techniques include matching on lexical information 
like names, on topological information based on configuration, using type-theoretic approaches or using 
mathematical approaches like concept analysis.  Before discussing these three technologies in detail, it 
would be useful to discuss the reasoning behind why these technologies might be applicable. 

There are many underlying characteristics of software architectures that lead to the consideration of 
these three technologies.   First consider the characteristics of software architectures from Bass et al [6]: 

• Architecture defines components.  At its topmost level, an architecture is an abstraction of the major 
components (and connectors) which make up the system.  Bass et al also describe the architecture as 
the earliest embodiment of system design decisions.  All these characteristics imply that at its topmost 
level the architecture contains information about how the architecture relates to its problem space (or 
domain).  Each element has some relationship to specific concepts in the problem domain.  This leads to 
the possibility that concept analysis is an appropriate technology to examine.  The fact that architectures 
form hierarchical abstractions creates some challenges for the use of concept analysis.  In traditional 
concept analysis there is generally one level of abstraction that is being examined.  This means we will 
have to extend concept analysis somewhat to allow it to address the idea that some elements are con-
tained inside another.  



16 

• Systems may have more than one structure.  The topology (or structure) of the architecture typically 
forms a graph.  Using some type of topological matching is a logical approach to comparing two architec-
tures.  One the other hand, there are complexities that complicate the use of topological matching.  First, 
the information in each perspective is potentially incomplete.  This leads to problems using techniques 
such as sub-graph isomorphism since connectors (edges) might be present in one perspective, but not in 
another causing false positive or negative indications.  Secondly, architectures may represent different 
aspects of the system.  For instance, if we compare a graph representing the physical aspect with one 
that represents the logical aspect we may have a difficult time understanding the results using topologi-
cal information alone.  Different aspects of the same system can have very different graphs (Consider 
the degenerative case where a complex processing system runs on a single machine.  The physical 
graph has a single node and no edges, while the logical graph may have many nodes and edges in a 
complex layout.). This particular problem can be overcome at the process level by comparing only 
graphs representing the same aspect.  Finally, architectures have multiple levels of abstraction. This in-
troduces the problem of multiple graphs representing not only different aspects, but also different levels 
of abstraction of the same system. 

• Every software system has an architecture.  This characteristic actually helps us in that no matter 
how badly designed the legacy system is, there is some architecture to recover.  This idea supports the 
use of almost any technology that can help in the recovery effort—not just the three detailed here. 

• The behavior of each component is part of the architecture.  This implies that elements (components 
and connectors) do things (and therefore have a semantic as well syntactic property).  Behavior is usu-
ally described in terms of the problem domain.  This supports the idea that by relating terms in the prob-
lem domain to elements, we are accounting for the description of the basic behavior of the element.   

We also know that elements in the architecture have properties [54].  One such property is the lexical 
name of the element.  Names are typically given to elements to reflect their function or purpose.  This 
implies that doing some type of lexical analysis would aid in the comparison process. 

3.5.1  Lexical Analysis 
The idea of matching differing elements by their names is nothing new.  In database schema integra-

tion, name matching can be a primary technique for combining various schema descriptions [25].  Within 
the reverse engineering community, recent work has focused on matching names in code libraries to 
promote reuse [48].  Michail’s approach involves three different steps: 

• Changing names in different libraries to a common name.  This involves making the following 
names equivalent: TopWindow, top_window, and topWindow. 

• Calculating metrics to help find naming matches when the names don’t reduce to a common term.  
Michail refers to this as similarity matching.  These metrics include: 

• Inverse Document Frequency (idf): This measure relates how important a term is in the library.  It 
is computed by the equation: 

idf(t)=log2( (N/df(t)) - 1) 
where t is a term, N is the number of components in the library, and df(t) represents the number of 

components which have term t in them. 
• Within Document Weight (wdwi): This measure describes how important a term is within a particu-

lar component. 
        wdwi(t)=∑ (dci(t)+ici(t)) 
        where dci(t) is the direct contribution calculated by: 
  dci(t)=a1(i,t)+ a2(i,t)+ a3(i,t) 
                     where each of the a1, a2, and a3 terms represent three sources: the name,  
                         class/function, or comments. Each ak(i,t) is defined by: 
                         ak(i,t) = { Ak/2

b
k
(i,t)-1 if term t is in source k or 0 otherwise } 

         and ici(t) is the indirect contribution calculated by: 
                        ici(t)=  ∑  dcj(t)/2

d(D
i,

D
j
) +1 

                                                                   Dj∈Ri 

                                     where d(Di,Dj) is the shortest distance between two classes or functions in a call- 
                        graph or class inheritance graph. 
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These formulae should be adaptable with minimal effort to architectural name comparisons as op-
posed to library name comparisons. 

3.5.2  Topological Analysis 
Most architectural perspectives can be represented as a graph.  Matching elements then involves try-

ing to determine if part of one perspective is a subgraph of another.  Unfortunately, this problem—also 
known as subgraph isomorphism—is NP-complete [21].  Kazman and Burth [35] developed a technique 
called Interactive Architecture Pattern Recognition (IAPR).  By annotating the architectural graphs, they 
turned sub-graph isomorphism into a constraint satisfaction problem as presented in Woods and Yang 
[66].  IAPR tries to match predefined architectural patterns to a given architecture.  This technique 
should be adaptable to matching the elements in different perspectives by substituting an architectural 
perspective for the pattern. 

Girard and Koschke [30] present a method to extract components from call graphs via dominance 
analysis.  This technique might also be useful in detecting abstractions within a dense perspective. 

3.5.3  Unification 
Knight [38] gives a excellent overview of unification theory as applied to many different disciplines.  If 

one considers elements as some type about which we know partial information, then unification might 
provide a mechanism similar to type-inference [49].  Unification from computational linguistics might also 
be applicable.  If we considered perspectives as sentences about which we know certain words (ele-
ments), then we might be able to use feature-set unification to match the elements.  

3.5.4  Concept Analysis 
A very promising technology for matching elements amongst perspectives is concept analysis [64].  

Concept analysis allows groupings to be formed based upon maximal sets of common attributes.  Sev-
eral other software engineering researchers are looking into concept analysis for module identification 
[58] and configuration management [42]. 

A formal context is a triple  {O, A, R} where O is a set of objects, A is a set of attributes and R is a re-
lation, a subset of O X A that relates objects to the attributes they possess such that (o,a)∈R if object o 
has attribute a.  We can then produce two important functions: 

Let X⊆ O and Y⊆ A then: 
σ (X) = { a∈A|∀ o∈ X: (o,a) ∈ R } (The set of common attributes of X) 
τ (Y) = {o ∈ O | ∀  a ∈ Y: (o,a) ∈ R } (The set of common objects of Y) 
These functions lead to the fundamental theorem of concept lattices: 

∪(Xi, Yi) = (τ (∩Yi ) , ∩Yi ) 
i∈I                         i∈I           i∈I 
If we assign architectural elements of different perspectives as objects and develop a set of common 

attributes across all perspectives, then it might be possible to compare two different perspectives based 
upon their concept lattices. 

4.  DETAILED APPROACH 
This section presents the details of a proposed solution to the problem of obtaining a complete and 

consistent set of architectural representations from a legacy system using a repeatable process.  The 
overall process is called architectural synthesis.  This section is divided into two parts—a more detailed 
discussion of ASP, introduced initially in section 2, and a description of the tool that will provide auto-
mated support.  Implementation details of the process will be illustrated in the context of concrete case 
studies detailed in the sections 5 and 6.  Figure 4 presents the overall context of the ASP process. 
 
4.1 The Architectural Synthesis Process (ASP) 

ASP is fundamentally an information-processing task.  Information is obtained about the architecture 
using some set of tools and techniques.  We refer to a collection of information obtained from a single 
source or technique as a perspective.  This information is then processed to filter out incorrect or incon-
sistent information and produce a subset of the total information that is consistent.  This of course raises 
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the question how much information needs to be obtained to ensure we have enough to make this a con-
sistent subset?  A standard formulaic answer to this question is not possible.  Every legacy system varies 
as to its size, complexity and architecture.  Most legacy systems are poorly documented, or the system 
has been modified so often that the existing documentation is inaccurate.  Even interviewing designers 
or implementers may not provide adequate information because their individual understanding is usually 
limited to the portion of the system they were involved with. 

It was stated earlier that a goal of this research was to produce complete and consistent representa-
tions.  How then do we make a claim about completeness?  Clearly we can never know with 100% confi-
dence that we have uncovered every scrap of information because there is no “oracle” against which we 
can compare our information.  The key to understanding the notion of complete is to think about the 

other goal of the process, useful.  A representation is complete if it contains sufficient information for the 
analyst to accomplish his goal.  This leads to the situation where a representation considered complete 
for a Rapide simulation may not be complete for a SAAM evaluation and vice versa.    

This notion of completeness is consistent with current thought in the software architecture community.  
It is an accepted principle that there is no one true software architecture.  Rather we can prepare an ar-
chitectural description that supports some goal of the preparer.  This matches our intuition since if I were 
going to discuss the performance of the system; I would sketch a representation that emphasized the 
architectural elements that deal with performance.  

Consistency is also an important concept.  There are two aspects to consistency that we seek to en-
sure during the synthesis of architectural information.  First we want to be able to eliminate erroneous 
information from consideration by the analyst.  Secondly, we want to identify information that is in con-
flict with other information that has been collected.  This conflict can have two causes: we may be miss-
ing information necessary to remove the conflict or a piece of the conflicting information may be in error.  
This is similar to the idea of database consistency.  A frequent problem in legacy information systems is 
that the same information is entered multiple times and resides in multiple places in the database.  This 
information often gets out of sync and gives inconsistent results.  Architectural information suffers from 
the same problem.  Information comes from many sources and some of those sources are outdated and 
have minor errors while other sources may be grossly in error. 

From the preceding discussion, we can infer several requirements that any synthesis process should 
possess: 

• It should provide a method for combining information obtained from a variety of sources. 
• It should provide a mechanism for finding inconsistencies in architectural information 
• It should support iteration so that inconsistent or missing information can be resolved. 

 

Figure 4: ASP Context Level Diagram 
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Figure 5: ASP Top-Level Process Diagram 

Zave and Jackson studied the problem of combining formal specifications from multiple sources to 
produce a single coherent specification.  In their well-know paper[69] on composing these specifications, 
the authors present three primary goals that their solution must meet.  These goals are adapted here for 
ASP: 

• ASP should accommodate a wide variety of architectural recovery paradigms and techniques. 

• It should be possible for ASP to combine partial architectural representations regardless of 
overlaps or gaps in coverage; regardless of which paradigms they represent, and regardless 
of where boundaries between techniques and representations are drawn. 

• Intuitive expectations of a combined architectural representation should be met.  ASP should 
not define as inconsistent sets of partial representations that are intuitively consistent and 
meaningful.  It should not map intuitively interdependent properties or elements in a represen-
tation onto spuriously independent ones.  

Figure 5 presents the top-level process diagram for ASP. 

4.1.1 Extraction 
The first step in performing the synthesis process is to obtain the perspectives to be synthesized.  

These perspectives may come from existing documentation, source code analysis, domain analysis, in-
terviews with human experts, or any other source that may provide an idea of what the legacy system’s 
architecture might be. 

Following the philosophy of DALI[34], there is no prescribed set of extraction mechanisms that must 
be used to develop a set of perspectives.  It is unclear at this time whether there might exist a set of ex-
traction methods which could be prescribed that would give an adequate set of perspectives from which 
to derive a set of representations which are complete, consistent, useful, and have the desired content.  
It is unlikely that such a general set would exist given the wide range of domains which legacy system’s 
support.  This increases the motivation to accommodate as many extraction methods and information 
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sources as possible.  In general, it is desirable to get some type of coverage across the extraction infor-
mation space (Figure 2) to obtain the widest range of data sources for the architecture. 

The principle requirement, and thus limitation, of ASP extraction is that the output of any extraction 
technique must be expressible as an attributed graph.  Components become nodes and connectors be-
come edges.  Any other architectural information extracted is attached to the nodes, edges or to the 
graph as a whole as attributes.  This is not however a major limitation of the technique.  Architectures are 
typically described as a graph where the nodes are components, the edges connectors and the 
configuration the topology of the graph.   

Architectural elements (components and connectors) can be analyzed and compared to one another 
using either syntactic or semantic information.  Syntactic information about an architecture includes such 
superficial items as the element name and topological information.  Semantic information about an archi-
tecture specifies the function of the element.  Traditionally, semantic specification has been done using 
formal methods such as Z or VDM.  For ASP however, a more lightweight specification needs to be 
found.  I coin the term semantic approximation to denote a lightweight, easy to use method that provides 
enough information about the semantic meaning of elements to make matching decisions about them.  
(Lightweight implies both minimal effort and minimal training required to use the technique.) 

One informal, lightweight method of recording the semantics of an element would be to write a short 
description of its function in plain text.  While lightweight, this method does not easily lend itself to auto-
mation and matching.  Since an architecture is a high-level description of the design solution to a prob-
lem in a specific domain, we can make a simple approximation to the semantics of an element by using 
a subset of the description in the form of key domain terms.  By associating domain terms with the ele-
ments which have some relation to them we can form an approximation of what the full semantic de-
scription of an element might be. 

We can then use these semantic approximations as attributes so that later in ASP we can consider not 
just structural but behavioral characteristics of graph elements when processing architectural information.  
Our approach to semantic approximation using concept analysis is presented in section 4.1.3.3.  The use 
of concept analysis for semantic approximation of architectural elements is a supporting contribution of 
this work. 

We also must determine the relevant viewpoints that must be addressed to meet the purpose to which 
the architectural description will be put.  We can generally limit our selection to the four major viewpoints 
(physical, logical, process and module).  In larger systems, or in specialized domains, the number of 
viewpoints may need to be expanded to include other concerns.  For instance, the logical viewpoint 
might be separated into a data and control view if this is necessary to better understand a complex sys-
tem.  In certain domains, security or performance views might also need to be constructed.  The ultimate 
decision about which viewpoints are significant and what views need to be prepared is a function of the 
domain and the purpose to which the architectural description will be put. 

Finally, after the viewpoints are chosen, any mappings between the viewpoints must be identified.  
These mappings are important because they indicate what information we must extract about elements 
so that we can perform fusion in a later stage of the process.  For instance, for the standard four view-
points we have the following mappings: 

• A component in the process view maps to a component in the physical view via the runs-on 
relation.  (We must determine which processors a given process or thread runs on).  A con-

Table III: Some Typical Sources of Potential Perspectives by Viewpoint 

Viewpoint Source 

Physical (Hardware) System Inventory, Design Documents, Interviews 
Process (Runtime, Execution) Design Documentation, Dynamic Execution Traces, ManSART, 

Interviews, Makefile analysis 
Module (Code, Source) MakeDepend, Makefile analysis, File System Examination,PBS, 

Rigi,Project Documentation (Work breakdowns) 
Conceptual (Logical, Func-
tional) 

Rigi, DALI, Interviews, ManSart , Call-Graph Generator, DSSA, 
Domain Models 
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nector in the process view maps to either a processor or communications path via the runs-on 
relation. 

• A component in the module view maps to a component or connector in the logical view via 
the implements relation. (We must determine which logical elements are implemented by 
which code modules). 

If the analyst selects other viewpoints, similar mappings must be selected so that the proper informa-
tion is extracted for the fusion phase. 

4.1.1.1 Preconditions :   
Recognize the need to develop an architectural description of a legacy system.  

4.1.1.2 Process Steps: 

• Determine the purpose of the architectural description that ASP is being used to develop.  The 
purpose will drive many of the subsequent decisions that must be made.  Write a short statement 
of the purpose to focus and guide the effort. 

• Determine the viewpoints that must be represented (understanding the purpose to which the AD 
will be put) in order to produce a complete AD for the task.  Usually, it is best to recover all four 
of the basic viewpoints (physical, process, module and conceptual) in order to have a basis for 
checking the consistency of the views and insuring that they are complete. 

• Determine the mappings (relationships) between the viewpoints that have been selected in the 
previous step. 

• Gather Legacy System Information: Stable Code Base, Design and Domain Information and a 
list of original designers and current maintainers for potential interviews. 

• Determine an initial set of tools to use for the extraction effort.  These tools should give you a 
range of information—from low-level code constructs to high-level abstractions.  Table II pre-
sents a summary of some possible sources of perspectives based upon the viewpoints chosen. 

• Follow the instructions for each tool that was chosen in the previous step to develop an initial 
perspective of the architecture.  (some of this data may be in electronic format, while other in-
formation will be in paper form) 

• Convert the information in the previous step into an attributed graph, with components being 
nodes, connectors being edges and associated information being attributes. 

• Dowse the available design and domain information to obtain a set of domain terms. 
• Assign a subset of these domain terms to the elements in the perspective graph as another at-

tribute. 

4.1.1.3 Postconditions:   

• Short statement of purpose of architectural recovery effort. 
• List of Viewpoints that are relevant for the recovery effort. 
• List of mapping relationships between the viewpoints. 
• Set of perspectives (attributed graphs) representing the architectural data that has been ex-

tracted. 

4.1.2 Classification 
The next step is for the analyst to group perspectives into their respective viewpoints (selected during 

the previous phase of ASP).  This helps an analyst to focus initially on reconciliation of perspectives that 
are intended to describe the same aspects (or concerns) of the system undergoing recovery.  Note that 
this is not necessarily a one-to-one function, as parts of an individual perspective may map to two or 
more viewpoints.   

To determine how to classify the information in a perspective, the analyst must use the type of view-
point, the source of the perspective and the attributes of the elements in the perspective to determine 
how to classify the perspective.  Some general rules for classification are: 

• If the perspective came from an object-model diagram (such as an OMT diagram) it is a logical 
view. 
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• If the perspective came from a call-graph representation then it is a logical view. 
• If the perspective contains hardware elements then it is a physical view. 
• If the perspective contains component names that can be matched to static source code entities, it 

is a logical view. 
• If the perspective contains names that can be matched to make targets it is a process view. 
• If the perspective came from a legacy “box-and-arrow” diagram, it is a logical view. 
• If the perspective contains information derived from the source code directory structure or de-

pends sections of the make file it is a module view. 

4.1.2.1:  Preconditions: 

• Identification of the Viewpoints that are of interest to the recovery. 
• A set of perspectives (represented as attributed graphs). 

4.1.2.2:  Process Steps: 

• For each perspective: 
o Examine the nodes and edges of the graph. 
o Classify either the whole graph or the appropriate subset of nodes and edges to a par-

ticular viewpoint using the attributes of each element and the perspective source to 
make the decision. 

4.1.2.3:  Postconditions: 

• Set of perspectives classified according to the viewpoints they represent. 

4.1.3 Union 
The union phase analyzes and combines all perspectives representing a specific viewpoint to build a 

view.  During this step we manipulate a perspective as a graph where nodes are components (boxes) 
and edges are connectors (lines).  We refer to components and connectors collectively as elements for 
convenience.  Each element within a perspective has some set of attribute values that describe proper-
ties of that element.  These attributes include the name of the component (or its domain synonym), topo-
logical characteristics such as port count, general attributes, and a set of domain terms that have been 
dowsed [14] from the available system artifacts.  Dowsing is a technique that scans textual artifacts such 
as source code, design documents and user’s manuals and extracts key words or n-grams.  A set of 
these is chosen by the analyst to represent the key terms in the domain.  Then a subset of these terms 
forms the set of domain terms to be associated with each element.  These n-grams act as our semantic 
approximation method for the synthesis process.  

General attributes consist of (attribute-value) pairs.  Some common examples of these general attrib-
utes are: 

• attribute = Abstraction Level  possible values = composite or atomic 
• attribute = Behavior Type   possible values = passive or active   
• attribute = Component Type  possible values = function or procedure 
• attribute = Connector Type possible values = shared_memory, socket or file 
The union phase derives its name from its similarity to the set union operation.  During union we com-

bine perspectives by matching elements or by recognizing new elements in the perspectives until we 
have combined all the perspectives into a single view.  We repeat the union process for each viewpoint 
into which we classified perspectives during the classification phase.  

Specifically, we combine perspectives in a similar manner to that used in basic database schema in-
tegration. First a perspective is selected as the base representation for the viewpoint being unioned.  
Then every other perspective (or partial perspective for those which were classified into more than one 
view) in the viewpoint is combined with the base representation, one perspective at a time.  After each 
combination is completed, the result becomes the new base representation.  When we have combined 
all perspectives, we have a view that encompasses all available architectural information pertaining to 
the viewpoint of the architecture being considered. 
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Although selection of a base representation is fairly flexible, in practice it is best to use a perspective 
that contains elements with a high level of abstraction.  We do this because it appears that it is easier 
conceptually to work top-down in building a view than to work bottom-up. 

The union process is an elaboration of the architectural element-matching problem—that is, given two 
perspectives, how can we determine when an element in one perspective matches some element in a 
second perspective, or an element is a new element to be added.  There are three major techniques that 
might be used to solve this problem: lexical, topological, and semantic approximation. 

4.1.3.1 MATCHING USING LEXICAL ANALYSIS 
The theoretical basis for this technique is founded on the idea that the names chosen for functions, 

code modules, source directories, etc. have a relation to their functionality.  This has been explored in 
other approaches to reverse engineering such as library analysis[48] and function name analysis[13].  
The basic technique is fairly simple, if the name of the architectural element in one perspective is the 
same as the name in the second perspective, they are considered to be a match. 

To make this technique more robust, we can use domain synonyms and substring comparisons rather 
than limit ourselves to exact lexical matches.  Thus we can match “model” to “Program Model”, “Data 
Model”, and other variations in addition to simply “model.” 

4.1.3.2  MATCHING USING TOPOLOGICAL ANALYSIS 
There are two possible approaches to using topological analysis for solving the element matching 

problem.  The first uses graph isomorphism.  In this technique, the perspectives are matched using a 
graph-theoretic technique to match elements based upon matching in and out degree of the nodes to 
determine parts of the graph that are isomorphic.   

Unfortunately there are two difficulties.  The first is that the general algorithm for determining isomor-
phic graphs is NP-Complete.  The second however is the more serious.  Since each perspective is 
potentially only partially complete, there may be nodes and edges missing between the two graphs. 
There is a potential for these two problems to be overcome using Kazman’s IAPR technique to solve the 
sub-graph isomorphism problem using constraints.  This might allow parts of different perspectives to be 
matched based upon their topological characteristics.   

The second use of topological analysis is as an informal support to guide matching activities in con-
junction with the lexical matching previously accomplished.  Once a component in the new perspective 
has been matched with one in the base perspective, then the edges can be used to select the next node 
to match.  Node matching also helps resolve the edge matching. 

4.1.3.3  MATCHING USING CONCEPT ANALYSIS 
Each architectural element has some set of attributes or properties that are associated with it as pre-

viously discussed.  Using context analysis terminology (introduced in section 3.5.4), we establish the fol-
lowing: 

•  P1, P2 are perspectives 
• O = { elements from P1 and P2 } 
• A = { domain concepts } 
• R ⊂ (O × A)  
• The projection of all common attributes of some set of objects is known as the sigma function.  

Sigma is defined as: for X⊆O, σ(X) = {∀a∈A | o∈X: (o,a)∈R} 
We can use this information to help in determining what relationships exist between an element in one 

perspective and an element in a different perspective.  We can first note that there are several possible 
relations that might exist between the elements of perspectives P1and P2.  These relations are pre-
sented from the strongest to the weakest confidence levels: 

• EXACT(e1, e2).  This relation is true if e1 is an exact match for e2—that is all attribute values of 
e1 are also attribute values of e2 and vice versa. Using our previous notation, EXACT(e1, e2)≡ 
�(e1)=�(e2). Note this relation is symmetric, i.e., EXACT(e1,e2) = EXACT(e2,e1). 

• SUBSUME(e1,e2).  This relation is true if e1 subsumes the description of e2.  This occurs when 
the set of attribute values of e2 is a proper subset of e1. More formally, SUBSUME(e1,e2)≡ �(e2) ⊂ 
�(e1).  Note this relation is asymmetric, that is SUBSUME(e1,e2) ≠ SUBSUME(e2,e1). 
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• CONTAIN(e1,e2).  Any component or connector within a specific representation may be decom-
posed into another representation made up of another set of elements.  We refer to this set of elements 
as a subsystem of the component or connector that was decomposed.  The CONTAIN relation is true if 
e2 is part of the subsystem of e1.  This occurs when we can match e2 using EXACT, SUBSUME or 
OVERLAP to an element in the subsystem of e1.  This relation is also asymmetric such that CON-
TAIN(e1,e2) ≠ CONTAIN(e2,e1). 

• OVERLAP(e1,e2).  This relation is true when e1 overlaps the description of e2.  This occurs when 
e1 has attribute values in common with e2, but has other attribute values that are different. OVER-
LAP(e1, e2) ≡ (σ(e1)∩σ(e2)≠∅) ∧ (σ(e1) − σ(e2)≠∅ ∧ σ(e2) − σ(e2)≠∅).  OVERLAP is symmetric thus 
OVERLAP(e1, e2) = OVERLAP(e2, e1). 

• NOREL(e1,e2).  This relation is true if e1 and e2 have no apparent commonality—that is they are 
not related by the EXACT, SUBSUME, OVERLAP or CONTAIN relations. NOREL(e1,e2) ≡ σ(e1) ∩ σ(e2) 
=∅.  NOREL is symmetric, that is NOREL(e1, e2) == NOREL(e2, e1). 

While our technique works equally well for components and connectors, for introductory example we 
will discuss only components as elements and ignore connectors.  This is done only for brevity in the de-
scription and not because connectors are deemed unimportant. We now have a set of objects and attrib-
utes that are used to build the concept lattice. What algorithm can we use to traverse the lattice and lo-
cate these relations in the lattice? 

We provide a simple example to illustrate the principles of element matching using concept analysis.  
Figure 6 depicts two simple perspectives of an architecture. In order to eliminate ambiguity caused by 
similar names in the two perspectives, we prefix the element names by their system names. Using dows-
ing, we build the formal context shown in Table III.  We then compute the concept lattice using the con-
cepts software package [41] to produce Figure 7.  For this simple example, we can examine the lattice 
and detect the relations manually as follows: 

The EXACT relation is the easiest to detect graphically.   The two architectural elements form part of 
the same concept, meaning they are members of a maximal set of elements sharing the same domain 
attributes.  This is shown in Figure 7 where Alphabetizer in system S1 and Sorter in system S2 map to 
the same concept in the lattice. 

The NOREL relation is the next easiest to discern.  Elements with a NOREL relation have no common 
attributes therefore their least upper bound (join) is the universal concept (or top) and their least lower 
bound (meet) is the empty concept (or bottom).  This is shown by the concepts Line and Database in the 
lattice. 

The SUBSUME relation means that one concept is a superconcept of another.  The S1.Input and 
S2.Input nodes in Figure 7 show this relation. 

Finally, the OVERLAP function can be found when two concepts have a least upper bound (join) that 
is not the universal concept.  This is shown by nodes Shifter and Rotate, which have the concept Lex-
eme as their least upper bound. 

To accomplish automated traversal of the lattice, we use the following algorithm that is implemented 
using the graph template library (GTL) [55].  This algorithm computes the EXACT, SUBSUME, OVER-
LAP, CONTAIN and NOREL relations from a concept lattice. 

1.  Set the start node to be the universal concept. 
2.  Run the depth-first search (dfs) algorithm provided by the GTL. 

Alphabetizer

Input

Database
Shifter

Sorter

Input

Rotate

Line

Perspective S1 Perspective S2
 

Figure 6:  Simple Perspectives to Combine 
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3.  Iterate through the node list in dfs order 
4.  For each node we check first whether the node has multiple element names in the node label.  If 

so, it is marked as an EXACT match and the node is marked as used. 
5.  If the node is not an EXACT, we check to see if the indegree of the node ==1 and its parent is not 

the start node.  If these conditions are true, we look at the parent to find if its label contains an element 
name.  If so, we have a SUBSUME relation.  If not we recursively check these conditions back up the 
node list until we either find an element name in a label or find the start node.  In the latter case the 

SUBSUME check fails.  
6.  If the node is not EXACT or SUBSUME, we look for the weakest condition, OVERLAP.  In this 

case we backtrack up the node list until we find a parent with an outdegree>=2.  In this case we follow 
the new portion of the tree to find the overlap condition. 

7.  After all nodes in the dfs visit list have been checked, then any that are not EXACT, SUBSUME, 
or OVERLAP are designated NOREL. 

The CONTAIN relation is inferred from the EXACT, SUBSUME, or OVERLAP relation by examining 
the node labels and recognizing which are subsystem names and which are top-level system names. 

We also compute two different metrics while checking for the OVERLAP relation.  The first is an over-
lap measure that is the number of common attributes divided by the total number of attributes.  For our 
example, the overlap measure for elements Shifter and Rotate would be .33.  We also compute a con-
cept distance by simply counting the intervening concepts between the nodes.  Again for Shifter and Ro-
tate the concept distance would be 1.  These measures provide a way for the analyst to determine 
whether the OVERLAP relation is significant enough to warrant a match. 

Unfortunately, in a real system the lattice is much more complex than the one shown in Figure 7.  (For 
an example of a real-world lattice see section 5).  There are two potential options for scaling the lattice.  
One is a mathematical approach using decomposition as proposed by Snelting [28].  The other is an in-

Table IV:  Simple Architecture Formal Context 
 Change IO Data Persistent Lexeme Reorder Order File Lexical Access 
S1.Alphabetizer       X  X  
S1.Shifter X    X      
S1.Input  X      X  X 
S1.Database    X       
S2.Rotate     X X     
S2.Line   X        
S2.Sorter       X  X  
S2.Input  X         

S2.Input  IO

S1.Alphabetizer S2.Sorter  Order Lexical

S2.Line  Data

S1.Database  Persistent

S1.Shifter Change  

S2.Rotate Reorder

S1.Input   File Access

Universal Concept

Empty Concept

Lexeme

 
Figure 7: Simple Example Concept Lattice 
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formation grouping and filtering strategy as proposed by [20].  Further study must be completed to de-
termine which of these is best for complementing the synthesis process. 

Our inconsistency handling during union uses the delay strategy.   We expect some inconsistencies to 
resolve themselves during union of later perspectives.  Any remaining inconsistency is removed during 
the Fusion phase. 

4.1.3.4  Preconditions:   
A set of perspectives classified according to the viewpoints they represent. 

4.1.3.5  Process Steps: 

• For each viewpoint in the recovery: 
• Select a perspective to be the base representation. 
• For each remaining perspective in this viewpoint: 

o Union the elements in the new perspective to the base representation using the following 
technique: 

• Lexical Matches:  First attempt to use the element name to match the first com-
ponent in the union.   

• Topological: Use the connectors from this first match along with lexical informa-
tion to continue the matching/union effort. 

• Semantic Approximation:  Use concept analysis to complete the union effort and 
resolve any unknown elements that are not topologically or lexically matched. 

4.1.3.6  Postconditions:  

• A set of views—One supporting each viewpoint that has been selected by the analyst. 

4.1.4 Fusion 
We adopt this term from DALI [34] but use it to represent analysis across multiple viewpoints to check 

for commonality and create compositions of views.  Fusion serves two purposes: first it provides a check 
on the consistency of the views [33, 34] and secondly, it provides additional information about the archi-
tecture through the composition of related views.  

Our approach to view fusion is through the use of mappings.  We define a mapping as simply a rela-
tion between an element in one viewpoint and an element in another.  The nature of this relationship var-
ies depending upon the semantics of the architectural elements in each viewpoint.  For some viewpoints 
there is a close correspondence between the views that represent them.  For other combinations of view-
points, the relationship is primarily transitive.  For example, there is no direct mapping between the 
physical and module (or code) viewpoints.  To get a mapping between them, we can transitively use the 
process view as an intermediary.  First we map the process view to the physical view, then the module 
view to the process view thus arriving transitively at a module to physical mapping. 

It is also desirable to map between smaller views, for instance a security view and a performance view 
of a legacy system’s architecture.  We accomplish these types of subview mappings by first abstracting 
them up to a top-level viewpoint and then doing the fusion.  For instance the security view is usually a 
subset of the conceptual or logical viewpoint.  We would then use the mapping rules for the conceptual 
view to check the security view for consistency. 

Meta-information about potential mappings and the semantics of a given set of viewpoints might come 
from multiple sources of information.   Figure 2 depicts sources of information that we use for fusion, 
mapped onto a portion of Egayed’s conceptual framework.  Information about what constitutes a view-
point and general semantics is derivable from existing architectural metamodels.  More specific informa-
tion about the meaning of components and connectors in a specific domain comes from information con-
tained in domain-specific architectures and so on.    

A complete description of our consistency checking approach and mappings using the Alloy language 
is presented in appendix A.  The following paragraphs discuss mappings between the four basic view-
points. 
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4.1.4.1  System->Physical 
While the system view is not one part of the basic four viewpoints, it is a commonly available view 

that provides valuable information about the environment in which the legacy system operates.  A sys-
tem’s diagram (or view) is normally found in design documentation or product brochures and typically 
consists of a top-level representation of all hardware components in the legacy system, whether they 
have software associated with them or not.  The systems view in legacy documentation may often be 
referred to as the systems architecture.  

The Physical view can frequently be checked for consistency against the overall System’s architec-
ture. Since the system’s architecture by definition should contain all the hardware system components 
and the physical view contains only the hardware components that host software, the physical view 
should be a subset of the system view. 

The actual process of mapping the system to the physical view is fairly trivial.  There should be a cor-
respondence between the elements in each view.  Additionally, since these elements are of the same 
type, we should be able to match them using basic lexical analysis and attribute comparisons. 

An inconsistency exists if we have any elements in the physical view that do not exist in the system 
view or if there are elements in the system view which we know to host software, yet is missing from the 
physical view. 

4.1.4.2  Process->Physical 
Mapping the processes to the physical view is much more difficult.  Components in the process view 

represent runtime processes or threads while the connectors represent some type of inter-process or in-
ter-thread communication.  Information about the physical devices that processes exist on at run time 
must be obtained from design documentation, human interviews or dynamic trace information obtained 
during system execution.   For this mapping, trying to match names or topology is not effective.  We 
would not expect the names of processes to have much in common with the names of processors or 
communications paths.   Topologically, many of the connectors in the process view do not map onto 
connectors in the physical view, but rather onto processors (components) in the physical.  This phe-
nomenon is caused by the ability of multiple processes to run on a single processor; therefore the inter-
process communication (IPC) connectors would also be mapped to that processor.  It is the case how-
ever that any IPC between processes on different processors must map onto a physical communications 
connector.  This illustrates why a simple graph-matching algorithm is inappropriate.  Nodes (components) 
in one graph do not necessarily map to nodes in another, they might map to edges (connectors)! 

Since elements in the physical view are not included unless they host software, we would expect that 
all processors have some process running on them.  An inconsistency exists if there are processors that 
have no processes or processes that have no processor to run on.   

4.1.4.3  Conceptual->Module 

Mapping of a conceptual viewpoint to a module viewpoint requires information about which code 
modules implement the various components and connectors in the conceptual view.  Often the connec-
tors in views supporting these two viewpoints provide information that is not related to consistency is-
sues.  For instance, the connectors in a module view usually represent a “uses” or “contains” relationship 
between the components, which represent actual source code modules.  While providing important in-
formation within the module viewpoint, they do not bear any relation to information in views supporting 
the conceptual viewpoint.  

Likewise in the conceptual viewpoint, the connectors often represent aggregations of function calls, 
message passing or other semantics that are implicitly implemented in software rather than explicitly im-
plemented by the code base.  Another complication is caused by the use of COTS (commercial off-the-
shelf) components.  Some of these may be used by the software system in a third-party binary format, 
and thus they have no corresponding implementation in the module view.  For this reason, during extrac-
tion we must identify components and connectors in the logical views as internal or external based upon 
whether the element is COTS.   

An inconsistency is detected when there are internal components and connectors that have no code 
modules that implement them.  Likewise, we have an inconsistency when there are code modules that do 
not implement any elements in the logical view. 
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4.1.4.4  Other Mappings 

We did not consider all possible combinations of views because the other combinations have transi-
tive mappings that allow them to be derived from the ones presented.  For instance, what consistency 
considerations are there for the physical to code module view?  None, except transitively through the fact 
that processes run on processors, and processes are made up of portions of logical components that are 
themselves implemented by code modules.  

Besides these transitive considerations, we also have the situation where the “basic four” views are 
not sufficient or are not used in the domain.  For instance in some information systems environments, it 
might be necessary to create views supporting the Zachman Framework[68] which contains views sup-
porting up to 30 different viewpoints.  Within the Department of Defense, views might be generated con-
forming to the C4ISR architecture that would put them into three major categories: Operational, Techni-
cal or Systems.  While there are mappings which can be derived between these views, unfortunately, 
each mapping is unique to the semantics of the given viewpoint/view combination. 

4.1.4.5  Summary 
It is useful at this point to address a couple of key questions about view fusion and inconsistency de-

tection.  First, we might ask what kinds of inconsistencies can be detected?  Clearly using the approach 
of mapping, most of the inconsistencies we find are related to a mismatch between viewpoints.  This 
mismatch is most commonly caused by an architectural element in one view failing to have a corre-
sponding match in another view.  For example, in the code module view, we might have a source file 
which implements functionality that is not represented by anything in the conceptual view.  Conversely, 
we might have a logical component in the conceptual architecture which has no code module associated 
with it (and the logical component is not an external or COTS piece of the system). 

This leads us to the second question, what kinds of inconsistency cannot be found.  Clearly, if we 
have missing information from multiple views, then inconsistencies that are actually there might not be 
found.  In ASP, we attempt to overcome the problem of missing information by deriving information from 
the entire spectrum of sources shown in Figure 1, rather that just source code alone.  While missing in-
formation is generally an issue of completeness rather than consistency, it does impact on our method of 
consistency checking.  In an ideal world, we might wish for an oracle that had complete knowledge of 
every viewpoint for a legacy system, but sadly this oracle does not exist.  For this reason we strive for a 
relative consistency between the views/viewpoints rather than some utopian absolute consistency meas-
ure. 

Another question that might be asked is how inconsistent are views in practice?  The degree of incon-
sistency is usually directly related to the diversity of information sources used for extraction.  If we re-
cover an architecture based solely on source code analysis, we will probably have a small set of views 
that are very consistent (although their completeness and accuracy might be less).  As we diversify the 
extraction sources to cover the information space presented in Figure 2, we begin to uncover information 
that reflects differences between the design documents, interviews and code that do introduce inconsis-
tencies in the different views.   

Finally, we might ask how are inconsistencies handled? Is any of this detection even important?  
Again, as P1471 states, there is no requirement that all inconsistencies be resolved in an AD, only that 
they are identified.  This acknowledges the fact that for any given situation, the resolution of an inconsis-
tency is left to the discretion of the analyst conducting the architectural recovery.   If we are conducting a 
SAAM session to evaluate the impact of changes on the code structure, an inconsistency in a physical 
view might be unimportant and would not need to be addressed.  On the other hand, if we were preparing 
an architectural description to evaluate extensive new functionality to be implemented in a distributed 
fashion, then it would be critical to resolve any inconsistencies between the physical view and the proc-
esses specifically running on the physical devices in the view. 

4.1.4.6  Preconditions: 

• Set of Views representing viewpoints of interest for the recovery. 
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Figure 8: REMORA Conceptual Architecture

4.1.4.7  Process Steps: 

• For each pair of views: 
o If there is a mapping between the views, then check the views for consistency by using 

the defined mappings.  
o If any inconsistencies are detected,  

4.1.4.8  Postconditions: 

• List of inconsistencies between views 
• List of inconsistencies which must be resolved 

 
4.2  REMORA Toolkit 

Two things enhance developing a repeatable process.  First we can define a standard process as in 
the previous discussion.  Second, we can develop automated support that performs routine actions in a 
standardized way.  This section details the proposed design for REMORA (Resolution of MORALE Archi-

tectures).  REMORA has a conceptual architecture as shown in Figure 8. 
The conceptual architecture of REMORA represents a component-based approach to the develop-

ment of the toolkit. Major functional elements of the toolkit are implemented as independent COM com-
ponents.  This allows them to be reused at the binary level in a variety of different languages and plat-
forms.  Also, by using the remoting feature, workload-intensive components can run on different ma-
chines to accomplish their major tasks.  In Figure 8, the shaded components are building block compo-
nents which are not normally directly used by an application. 

REMORA currently uses either the VisEd (Graphlet) package or the LEDA library for graph display 
and layout services.  Christian Lindig’s [41] concepts package computes concept lattices from formal 
contexts.  The text analyzer component performs text manipulation and analysis on the documents im-
ported into the current project.  This component also contains the WordNet software package, which per-
forms significant computation services for synonym and semantic similarity detection.   

4.2.1 User-Interface Module 
The user-interface (UI) component is always active and acts as mediator for the various features of 

Remora.  A screen shot of the UI is provided in Figure 9.  The view is divided into several areas each 
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Figure 9: REMORA User Interface 

displaying different types of information to the analyst.  On the left is a tabbed tree view that lists all the 
information for a specific project.  The tabs provide organized access to diagrams, documents, and sce-
narios.  Currently the tool does not provide scenario support, but does provide a placeholder for future 
expansion. An analyst creates a project that identifies the set of perspectives, documents and their asso-
ciated information that will be used for the remainder of the process.  The extraction phase is supported 
through importation of architectural information via various filters.  After importing the perspective, other 
attributes can be assigned to the representation if desired.  The different representations created can be 

grouped using the UI module.   
The UI Module is implemented using MFC and the standard event-driven windows paradigm.  The 

model (derived from the standard MFC CDocument class) of the project controls access to the support-
ing database using OLE DB COM calls to obtain information from the database.  This allows easy swap-
ping of database components since the base program only uses standard COM calls.  Views of the data 
in the project are displayed either internally, using the MFC HTMLView class, or externally using a graph 
viewer.  By using the MFC View class, Remora can display a variety of formats including ASCII Text, 
native html, xml or MS Word documents.  The view has an integral button bar which allows access to the 
supporting COM Text Analysis modules . 

The UI module also supports log files to provide both feedback and undo functions.  The error log 
view pane displays a chronological report of abnormal conditions that occurred in the project.  Examples 
of errors include failure to successfully import an RSF file due to format problems or an inability to 
launch a required COM component. 

The Trace log on the other hand provides a basic record of how the analyst got to the point in the syn-
thesis process that the state of the project depicts.  Any actions affecting the final product are recorded 
and time stamped in the trace log.  The analyst can use this log to determine where certain views came 
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from by tracing through the perspectives that were combined.  The log can also serve to undo certain 
actions and restore a previous project state. 

4.2.2 Import Tools Module 
The Import Tools module allows data from other extraction tools to be brought into Remora.  Currently 

there are two primary importation tools.  The first is via the Graph Markup Language (GML).  This allows 
the analyst to quickly draw an architecture in either VisEd or LEDA, export it as gml and bring it into the 
project.  The second tool is a Tuple Attribute (TA) and Rigi Standard Format (RSF) importer.  This allows 
data from several research extraction tools to be brought into Remora.  These tools include PBS, DALI 
and Rigi. 

4.2.3 Matching Tools Module 
To combine perspectives, we must be able to match elements between perspectives.  This matching 

problem can be stated as: Given two perspectives P1 and P2, each comprised of a set of architectural 
elements, how can we combine the elements to create a new perspective P3 which is a combination (un-
ion) of P1 and P2?   As mentioned previously, we want to use both syntactic and semantic information to 
do this matching.  The Matching Tools Module provides access to both these techniques. 

The lattice analyzer, a COM component that uses Christian Lindig’s concepts program to compute a 
concept lattice, provides the implementation of our custom algorithm for semantic approximation.  The 
analyzer traverses the concept lattice using the algorithm described in 4.1.3.3 to find the appropriate 
matching relations.  These are then displayed through the UI component to the analyst. 

Syntactic matching is provided by connecting to the Mapper component (in the Text Analysis module), 
which provides synonyms and word relations to help match similar components. This information is also 
provided through the UI component to the analyst. 

4.2.4 Graph Viewer Module 
While documents can be displayed correctly within the UI, diagrams must be viewed externally using 

the Graph Viewer Module.  Currently, Remora supports one of two viewers, Graphlet (VisEd) or LEDA.  
These run as threads within a COM component and support graphical manipulation and display of infor-
mation. 

4.2.5 SQL Server DB Module 
Project information is persistently stored in a relational database.  Currently, Remora uses SQL 

Server 7.0, however this is not a hard requirement.  Only the UI and Import component even knows there 
is a database, and all communication is via the OLE DB protocol.  Thus, any OLE DB provider can be 
used to provide the back end, even a custom one written by the analyst.  Changing the backend does not 
require any rewrite of the other components.  Data models are provided in Appendix C.  There are two 
models, a high-level and low-level model.  These models are currently correlated and integrated by the 
application code rather than by the data model itself. 

4.2.6 Text Analysis Module 
The text analysis module is the heart of the document processing capability in Remora.  It provides 

several tools inspired by Dowser to analyze the project architectural documents.  The shaded compo-
nents in Figure 8 represent smaller building-block COM components that are not directly used by Rem-
ora.  These are the Stemmer, Tokenizer, LGP and Wordnet components.  The tokenizer provides a sim-
ple way to tokenize and return the words in a file.  The stemmer accepts a word and returns its stem us-
ing either the Porter or Morph algorithm.  Wordnet is an extensive language analysis program computing 
complex word relationships like synonyms, antonyms and hypernyms.   LGP is the link grammar parser 
that parses sentences and returns the links between the words based upon the parts of speech. 

Sitting on top of these utility components are the main Remora tools: Ngram, Counter and Mapper.  
Counter is simply a single word counter which takes a document, filters out stop words if desired, stems 
the words if desired and counts the number of occurrences of the word in the document.  Ngram works 
slightly more intelligently by recognizing that key ideas are often a combination of nouns and adjectives.  
Ngram submits the sentences in the document to the LGP and then processes the links to obtain ngrams 
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Table V: ASP to P1471 Mapping 
P1471 Requirement ASP Phase 

ID of Stakeholders/Concerns Extraction:  Identify interview candidates 
ID and Define Viewpoints Extraction:  Identify viewpoints for classifi-

cation 
Representation of Architecture through 
views 

Union:  Develop set of views by combining 
classified perspectives 

Record Inconsistencies Fusion:  Identifies and deals with inconsis-
tencies 

Rationale for selection of architecture Extraction:  Use of human interview infor-
mation 

composed of the nouns and their descriptive modifiers.  We feel this Ngram version is an improvement 
over the original Dowser ngram tool that inspired it.  First, unlike the Dowser tool, there is no need to 
specify the size of “n.”  Ngram allows “n” to range from 1 to any number.  Consider for example the 
phrase “centralized operating system.”  Depending on whether the user requested 1,2,or 3 grams, 
Dowser would return system, operating system or centralized operating system, while Ngram would 
automatically return the entire phrase centralized operating system.  Mapper takes a word and returns a 
set of related words based upon the user’s request.  It primarily uses wordnet, but may also use a user 
provided custom dictionary of domain synonyms.    

4.3 Mapping P1471 to ASP 
Table IV maps the requirements of a conforming P1471 architectural description to ASP. 

5.  Case Study 1 : Applying ASP to recover the ISVis architecture 
We now present a case study of a manual use of ASP that supports the evolution of a medium-

complexity system called ISVis (Interaction Scenario Visualizer)[33].  ISVis is a five-year-old C++ /X-
Motif / Perl application consisting of 30 separate source files containing 24,333 lines of commented 
source code.  Functionally, ISVis is a reverse engineering tool used to abstract an architectural perspec-
tive based upon both source code static information and a behavioral trace of program execution.   

We are in the process of preliminary design for the next version of ISVis and wish to perform an 
ATAM analysis.  We had many perspectives of ISVis available, but no one representation was accurate 
enough to begin the process.  We decided to do an architectural synthesis to obtain an accurate set of 
architectural representations to begin the analysis.   

A fundamental research purpose for this case study was to examine the requirements of ASP, refine 
the rough process, and document the principle steps required to accomplish the architectural recovery.  
This case study serves to illustrate many of the theoretic techniques (such as lexical, topological and 
semantic matching) previously presented in a more practical context. 

  
5.1  Extraction 

An analyst first generated several perspectives of the ISVis architecture, which are briefly described 
below.  Only two of the graph representations generated are presented as figures in this proposal, but all 
are available in the technical report [63].   The perspectives generated ranged from a generic, abstract 
reference architecture to a concrete code-level call-graph.  We selected as appropriate viewpoints the 
standard four—physical, conceptual(logical), runtime(process), and module(code). 

5.1.1  Domain-Specific (Reference) Software Architecture.    
For many legacy systems, a Domain-Specific Software Architecture (DSSA)[60] or a reference archi-

tecture describing may exist.   A DSSA can be thought of as “an assemblage of software components, 
specialized for a particular type of task (domain),  generalized for effective use across that domain, 
composed in a standardized structure (topology) effective for building successful applications” [1]. For 
this case study, a simple reference architecture for the reverse engineering domain, (the domain of the 
ISVis tool) was constructed using Tilley’s reverse engineering framework [61] and Rugaber’s Synchro-
nized Refinement process[56].   
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5.1.2  DARE (Domain Analysis for Reverse Engineering) Model 
This model is derived from textual analysis created by using the DARE process[17].  This gives an-

other domain-oriented view derived directly from the ISVis documentation.  The DARE tool first analyzed 
the ISVis user’s manual and tutorial extracting all unique words using the dowsing technique.  A filter 
then removed words of no interest to the analysis and the remaining words were counted to produce a 
frequency list.  The most common domain-significant words were then analyzed and an OMT model was 
produced.   The dowsed word list also formed the basis for the set of domain terms assigned to the vari-
ous extracted architectural elements.  For the case study, these domain term attributes included domain 
significant words such as Disk File, Actor, Scenario, Utility, Source Code, Event, Trace, Visual, Mural and 
Static.  In all, 18 domain terms were identified.  

5.1.3  ISVis Documented Architecture 
Figure 10 represents a part of the original developer’s view of the architecture typical of the box and ar-
row diagrams available for most legacy systems.   Also available in this category were context diagrams 
and OMT object models of the legacy system. 

5.1.4  ISVis Derived Architecture 
This diagram (Figure 11) represents one of the architectures derived by using the ISVis tool on itself 

to create an architectural perspective from the source code.   This process, which uses architectural lo-
calization and visualization, is described in [33].  In this particular case, the use of the ISVis tool gives 
rise to the interesting situation where the legacy system is used to analyze itself for evolution.  The ana-
lyst first instrumented the ISVis source code and then performed two usage scenarios.  From the two 
generated event traces, the analyst created abstracted components and scenarios which were manually 
translated into  two different architectural perspectives.  

5.1.5  RMTool Representations 
These perspectives were the output of the Murphy, Notkin and Sullivan Reflexion model [50] applied 

to the ISVis source code.  The input models used by RMTool were based upon the information derived 
from the ISVis analysis(5.1.4).  The high-level model of components was based upon the abstract com-

View
View

Manager

Program
Model

Trace
Analyzer

Event
Stream

Static
Analyzer Instrumentor

Solaris
DB

Database

Source
Code

Static
Information

File

Instrumented
Source
Code

Trace
Info
File

Event
Trace

Session
File

 

Figure 10: ISVis Design 
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Figure 11: Dynamic Trace Extracted Architecture 

 

ponents identified by the analyst. The mapping of classes and functions to components was based upon 
ISVis information as to the actors contained in each component of the high-level model.  The Reflexion 

tool helped to provide a measure of the relative accuracy of the ISVis-derived architecture and thus was 
a complementary perspective rather than one that added totally new information. 

5.1.6  Call Graph 
This type of diagram is a basic “who-calls-who” analysis typical of many reverse engineering static 

analysis tools such as cflow [2].  To obtain the call graph, we wrote simple filter programs to act on the 
Solaris C++ compiler browser files and produce dot[40], gml [32], vcg [57] and rigi [65] graphics files.  
This allowed the use of a wide variety of visualization tools to view and refine the graphs.  The raw ISVis 
graph had over 820 nodes and well over one thousand edges.  This information was used much as it was 
in DALI[36] to aggregate the call information into an architectural perspective.   

5.1.7  Make Analysis 
The Makefiles [52] for the application were analyzed and two perspectives were created.  One dealt 

with the process view that resulted from make target analysis and the other was a module view that was 

Table VI 
ISVis Extraction Phase Results Summary 

Source Component 
Count 

Connector 
Count 

Levels 

DSSA 12 15 1 
ISVis 
Design 

14 26(1) 1 

OMT Design 28 0 1 
Context Diagram 5 5 1 
ISVis Derived  (2 models) 39 38 2 
Reflexion (3 models) 5 9(1) 1 
DARE 15 7(2) 1 
Call-Graph 820 1500(3) 1 
Interview/Make 3 3 1 
Make Depend 30 83 1 

(1) Denoted as control or data only 
(2) Labeled associations only 
(3) Function calls only 
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Figure 12: Information Space Coverage for ISVis Extraction 

derived from the dependency analysis. 

5.1.8  Summary 
By the end of the extraction phase, 13 perspectives had been obtained.  These perspectives are 

summarized in Table VI and plotted against the information space in Figure 12.  For each perspective 
generated from a given source, the table shows the number of components and connectors in that per-
spective and the number of levels of abstraction in the perspective.  It is immediately evident that most 
sources produce a relatively flat representation.   Referring back to section 4, at the end of the extraction 
phase we had completed all the tasks in section 4.1.1.2.  We had established a purpose for the recovery 

effort, we had selected viewpoints supporting that purpose, and we had obtained a set of perspectives 
that represented an adequate coverage of the extraction information space. 
 
5.2  Classification 

The classification task for this case study was fairly simple because most of the perspectives dealt 
with a logical view of the system. This resulted primarily because ISVis runs on a single machine with 
three easily identified processes greatly reducing the complexity of the physical and process views.  At 
the end of the classification phase of the case study, there were 11 perspectives grouped into the logical 
view, one in the process view and two in the module view.  Since ISVis is not a distributed program, but 
runs on a single processor, the physical view was a trivial single component.  Further use of ASP fo-
cused on the conceptual, module and process viewpoints only.  At the end of the classification phase, we 
had completed the steps of section 4.1.2.2. 

 
5.3  Union 

With the perspectives generated and classified, the real work of uniting these multiple perspectives to 
obtain a single set of views to describe the architecture can begin. Referring to section 4.1.3.5, we see 
the same set of steps is repeated for each viewpoint therefore this section will concentrate on the appli-
cation of union to the conceptual viewpoint.  The same procedures would be followed for each viewpoint 
which we felt was significant for the AD being recovered. 
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5.3.1  Choosing the Base Representation 
  The first step during union is to choose a perspective to act as the base representation for the re-

mainder of the process.  This base representation should be the perspective that represents the highest 
level of confidence and a high level of abstraction for the view under consideration. Eixelsberger et 
al.[24] for example recommend the design documentation be used as the starting point.  For this case 
study, we selected the ISVis-derived architecture of Figure 11.   We did not chose the design perspective 
as recommended by other researchers because we felt in this case the code-derived perspective was 
more accurate.  In the general case, we would like to choose a perspective for the base representation 
that uses a source from Figure 2 that is located slightly above the midway point of the abstract-concrete 
vertical axis and clearly in the specific range of the horizontal axis.  At first glance then, it might seem we 
violated our own advice since ISVis might be considered a source from the code-based artifacts region 
of Figure 2.  In ISVis, the analyst must assign code components to higher-level abstractions by grouping 
them into components.  In this particular case, the high-level components came from interview informa-
tion with the original developer.  By discovering that the developer had tried to use the standard Model-
View-Controller design pattern, information from higher in the source graph was used to improve the 
more specific information from the code.  This is an example of promoting artifacts up the abstraction 
graph through complementary sources of information.  This also explains why ISVis could successfully 
serve as a base representation. 

  We briefly discuss issues in the union of the design perspective (Figure 11) with the base representa-
tion in this section.  More details can be found in the technical report [63].  This base representation is 
then extended by unioning it with the other perspectives in the logical view.   

5.3.2 Using the Union Algorithms 
  We briefly discuss issues in the union of the design perspective (Figure 11) with the base representa-

tion selected in the previous section.  This section focuses on the conceptual viewpoint, however more 
details can be found in the technical report [63] on other viewpoints.  This base representation is then 
extended by unioning it with the other perspectives in the logical view.  This section illustrates the three 
principle algorithms described in sections 4.1.3.1, 4.1.3.2 and 4.1.3.3.  Since the use of the algorithms is 
synergistic, their descriptions are interleaved in this section. 

We begin by picking an element in the design representation and attempt to match it to an element in 
the base representation.  Elements are described in a perspective with the following characteristics: 

• N : the lexical name of the element. Lexical names may be the same or may be domain syno-
nyms. 

• D: the full set of domain terms dowsed from the legacy system’s artifacts. 
• De: the set of domain terms associated with the element. De⊆D 
• A: the full set of general attributes for the legacy system 
• Ae: the set of attributes associated with the element 
• Ve: the value associated with a specific attribute of an element 
• {(Ae, Ve)}: the set of all general attribute-value pairs associated with the element 
We begin element matching by looking at nodes in the graphical representation of the perspectives.  

Let P1 and P2 be two perspectives pertaining to the same viewpoint and let element e1∈P1 and e2∈P2.      
We have five possibilities for the comparison of e1 and e2 (listed from highest confidence to lowest con-
fidence): 

• EXACT:  A node in one perspective has the exact same general attribute-value pairs, domain 
terms and lexical name as a node in another perspective and is therefore the same element.  Thus  EX-
ACT(e1,e2)≡(Ne1=Ne2)∧ (De1=De2)∧((Ae1, Ve1)=(Ae2,Ve2)).  EXACT is a symmetric relation. 

• SUBSUME:  A node in one perspective is a more detailed description of a node in a different per-
spective and therefore is subsumed by the node.   Thus SUBSUME ≡ 
((Ne1=Ne2)∧(De1⊆De2)∧((Ae1,Ve1)⊆(Ae2,Ve2)).  SUBSUME is an antisymmetric relation.  

• CONTAIN:  A node in one perspective is a component (node) in the subsystem of the node in an-
other perspective.  We can determine the CONTAIN relation by finding an EXACT, SUBSUME or OVER-
LAP relation between the contained node and a node in the subsystem of the containing node.  
CONTAIN is an antisymmetric relation. 
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• OVERLAP:  A node in one perspective has some domain terms in common with a node in a dif-
ferent perspective, but other domain terms are different. OVERLAP(e1, 
e2)≡(De1∩De2≠∅)∧(De1−De2≠∅)∧(De2−De1≠∅).  OVER-LAP is the weakest of the 3 matches and the most 
prone to false positives.  When determining an OVERLAP relation, we use only the domain concepts to 
reduce false positives.  If we did not, then every composite element that was an abstraction of other 
atomic elements would satisfy the OVERLAP relation.  OVERLAP is a symmetric relation. 

• NOREL:  A node in one perspective does not match any node and therefore is a new node.  
NOREL(e1,e2)≡ (Ne1≠Ne2)∨((De1∩De2=∅)∨((Ae1,Ve1)∩(Ae2,Ve2)=∅).    If a node cannot satisfy SUBSUME, 
OVERLAP, CONTAIN or EXACT with any other node in another perspective then it is treated as a new 
node.   

We should mention here that there is a sixth type of relation that might exist—the ERROR relation.  It 
might be the case that an element in perspective is in error.  This type of relation frequently occurs in 
human interviews or domain architectures where an element is claimed to exist, but does not actually 
exist in the real system.  ERROR(e1) implies that element e1 should be removed from the unioned view. 

We now give concrete examples of these relations as applied to the union of Figures 10 and 11.  We 
initially select a node in Figure 11, Program Model, and try to match it to a node in the base representa-
tion using one of our five relations.  Searching the nodes in the base representation, we first look for lexi-
cal name matches and find Model, which is a domain synonym.  We now compare domain terms as 
dowsed from the ISVis textual artifacts and the general attribute-value pairs.  Comparing the domain 
terms we find that they all match, therefore we have an EXACT relation.  Figure 13 shows a partial view 

after the Model node is matched.  We now try to match the edges flowing from Program Model to those 
in the base representation.  We generally refer to the process of edge matching after a node match as 
resolving the edge.   

We see there are control and data connectors between Program Model and Trace Analyzer.  We first 
have to find Trace Analyzer in the base representation.  Doing the initial lexical comparison we do not 
find a match so our choices are narrowed down to CONTAIN, NOREL or ERROR.  We can get an EX-
ACT match to the TraceAnalyzer subcomponent of the File Processors node.  This produces a CONTAIN 
relationship between Trace Analyzer and File Processors.  Looking at the base representation, there is 
no connector between the Program Model and the File Processors, so we must add one for control and 
one for the data connectors in effect giving us NOREL relations for these connectors.  Later by using the 
Reflexion Model, we find that the control connector is an ERROR relation and should not exist in the final 
logical view.  We also record a binding in the FileProcessors subsystem so that we know that the Trace 
Analyzer sub-component has a connector that reaches the Model component in the top-level diagram.  

We now resolve a new edge leading out of ProgramModel and choose the control and data edges 
connecting to the View component.  When we match the View component in the design representation to 
the base representation, the initial lexical evaluation points us to the View node.  If we did not have addi-
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Figure 13: EXACT match for Model, Resolving Edges 
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tional attributes, we might make an incorrect match.  Using our relation rules, we find it is in the CON-
TAIN relation and therefore a sub-component of the View element in the base representation. This is why 
the domain terms and attribute-value pairs are so important.  They help to prevent false matches that 
might otherwise occur if we depended solely on lexical names. 

The design representation has several passive elements that are not present in the base representa-
tion.  This is because the ISVis perspective is generated from dynamic event traces that do not do a 
good job of identifying passive data elements.  For all the file-type components we have a NOREL with 
the elements in the base representation. Based on the attributes, they could be placed as sub-
components in the File Processors component via a CONTAIN relation.   As shown in Figure 14, the 
analyst actually placed them at the top level rather than as a sub-component of File Processors because 
modification of these files was projected for the new version of ISVis and we wanted to emphasize them 
for the analysis.  This is a good example of how the use to which the representation will be put influences 
the content.  It also demonstrates that there is no one “right” answer when someone asks to see an archi-
tecture.  Rather there are many representations that are equivalent and might be developed.  The impor-
tant thing for the analyst is to develop a complete, consistent and useful set of views.     

Figure 14 presents the final top-level logical systems view attained after unioning all perspectives 
classified to the logical view.  The components with thick outlines have subsystems associated with 
them.  One might be struck immediately by the inclusion of the analyst as a component in the top-level 
system.  Normally the human user is not explicitly modeled in an architectural representation – yet in this 
case, the analyst not only is a top-level component, but has a subsystems view also!  This occurs be-
cause the analyst has significant computation and data responsibilities within the ISVis architecture.  For 
instance, from the DSSA, we know there is an architectural style library and a component that uses the 
library to understand an architecture.  In ISVis these functions are performed manually by the analyst 
making them significant enough to include in the architectural diagram.  Later, if we need to use this top-
level representation for impact analysis using either  SAAM or ATAM, we can better understand where 
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style-related information comes from.  If we had a code-extracted perspective alone this type of informa-
tion would not be available.  This situation also illustrates the importance of obtaining information from 
sources in Figure 2 that are in the abstract-specific quadrant of the graph.  No amount of clustering, k-
cuts or remodularization can mitigate the concept-assignment problem as well as understanding the spe-
cific domain abstractions for the legacy system being analyzed. 

Handling of connectors is one of the more difficult parts of the union process.  The reasons for this are 
two-fold.  First, connectors are usually second-class citizens in the world of legacy architecture.  As the 
ISVis design in Figure 10 demonstrates, many documented legacy architectures do not even label the 
connectors.  They may be annotated (as this one is) for differentiating control versus data, but they have 
no precise meaning.  For example they might mean calls, uses, or talks-to.  Promoting these ill-defined 
connectors to first-class elements of the architecture requires critical thinking and use of domain and ap-
plication knowledge by the person doing the synthesis. 

A principle function of an analyst in connector resolution is looking for name changes from the generic 
to the specific.  For instance, in the DSSA mapping information connectors indicate architectural infor-
mation that has been synthesized by an analyst or system.  In ISVis these mappings correspond to the 
visual information provided the analyst.  The need for these types of complex transforms motivates our 
belief that the synthesis process can never be fully automated.   

The second complexity for connectors is resolving their bindings (that is what components are at-
tached to each end of the connector).  This is especially challenging when placing connectors in sub-
sytems, and determining how these connect back to the upper-level system.  This again requires the 
analyst to have an understanding of how the components communicate.  Some of this understanding 
comes from observing the contained interactions that can be represented through an analy-
sis/visualization tool like ISVis that provides the abstraction needed over sequences of program events.   
The call-graph perspective can also help with this task when developing the logical view. 

5.3.3 Summary of Union Phase 
At the end of the union process, the 13 perspectives representing the logical view—with their single 

level of abstraction, over 750 potential components and 1600 potential connectors—were reduced to 
three levels of abstraction with a total of 26 components and 40 connectors.   By following the union 
process, different perspectives comprising very flat information (at most two levels of hierarchy), were 
refined into a single perspective, with multiple levels of abstraction that more accurately portrayed the 
actual ISVis architecture.  We felt that this reduction made the representations more understandable and 
usable for other analysis activities. 

It is interesting to note that although the component count (disregarding the call-graph case) did not 
increase significantly, the connector count did.  Many reverse engineering tools do well at identifying 
components, but do not fare so well at finding connectors.  By unioning several different perspectives we 
were able to find additional relationships between components that might have been lost if a single per-
spective had been used.  

The top level representation has only 11 components and 16 connectors, a configuration easily ana-
lyzed during an ATAM session [5].  If questions arise during the session, there are subsystem representa-
tions that clearly identify the functionality in each of the top-level components.  Again this is better than 
using any of the initial perspectives by themselves. 

5.4  Fusion 
The fusion phase was fairly straightforward for ISVis.  Mapping the Process->Physical views was triv-

ial since ISVis ran on a single processor.  The Conceptual->Module mapping was also simply accom-
plished—primarily because one of the extraction tools used (ISVis itself) provided a mapping of code 
modules to conceptual elements as a by product of its maintenance of static and dynamic architectural 
information. 

5.5  Summary of Lessons Learned 
This case study illustrates several important concepts pertaining to practical uses of ASP including: 

• Extraction techniques should be chosen so that some information comes from each of the four 
quadrants of Figure 2. 
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• Choice of the base representation should be made using a source from the abstract-specific 
quadrant of Figure 2.  This helps mitigate the concept assignment problem by providing the 
high-level abstractions for the system. 

• Connector resolution is difficult for legacy systems because they are frequently unlabelled and 
poorly documented in existing legacy documentation. 

• The use to which the architectural description will be put influences the content of the devel-
oped views. 

• Lightweight semantic approximation mitigates false positives caused by similar naming 
schemes, but different levels of abstraction. 

• Provision of explicit matching relations (EXACT, SUBSUME, CONTAIN, OVERLAP and 
NOREL) help an analyst reason about the combinations of two different perspectives. 

6. Case Study 2: LINUX Kernel recovery using ASP 
The LINUX operating system kernel architectural description was developed using ASP and following 

the process steps outlined in section 4 of the proposal.  In order to evaluate the effects of purpose on the 
resolution of inconsistencies and the selection of viewpoints, the architecture was recovered for two pur-
poses.  First as a common program understanding and modification task, we wanted to understand the 
security structure of kernel so as to modify the kernel to use access control lists rather the more simplis-
tic Unix permission structure.  This is a realistic task and was derived from the developers todo list at the 
Linux web site.  Secondly, so as to address the most general case, we recovered the architecture for the 
purpose of developing a conforming P1471 AD.  This would correspond to the general task of supporting 
the Linux documentation project with a full architectural description of the Linux kernel. 

 There have been several other attempts made to recover various aspects of the LINUX kernel, but 
none have assumed either of the purposes that were presented in the introduction to this case study.  We 
can, however, import their data and use it to provide a comprehensive set of perspectives from which to 
work with.  We can also use this data as “truth” data to compare the derived results of ASP to their con-
clusions so that an assessment of “value-added” can be made. 

NOTE TO COMMITTEE: 
This section is a placeholder for emerging results in a major case study to validate the process 

definition.  For now you can skip over the rest of section 6 until I get some results to place in 
here. 

6.1 Extraction 
The following perspectives were obtained using various tool suites. 

6.1.1 Domain Specific Software Architectures (DSSA) 
There are many DSSA’s available for the domain of operating systems.  Appendix D, Figures 1 and 2 

present two common ways of looking at an operating system.  These figures are adapted from [46].  Fig-
ure 1 is based on the concept of a non-portable abstraction layer that interfaces directly with the hard-
ware and a portable layer that remains constant regardless of the platform that the OS is being ported to.  
Figure 2 on the other hand, emphasizes the major functional groupings that exist in an operating system.  
We would expect then that if the final AD conceptual view conforms closely to Figure 1, then portability 
was a major nonfunctional requirement.  Likewise, if we find the architecture conforms more closely to 
Figure 2, we might imply that modifiability or extensibility were major considerations.  In any event, nei-
ther of these architectural views helps us much with the task of modifying the security features of Linux, 
since security does not seem to be addressed at this level of abstraction. 

6.1.2 Portable Bookshelf 
The portable bookshelf (PBS) research group (described in 3.3.2) used their technique to recover the 

LINUX Kernel.  This perspective can be accessed and viewed at 
http://www.turing.toronto.edu/~brewste/bkshelf/linux/V2.0.27a/index.html.  This particular perspective, 
because it is itself synthesized, provides a rich set of information about the module view of LINUX.   
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6.1.3 Rigi 
There is also available a detailed set of RSF extracted raw facts about the LINUX kernel. This infor-

mation was downloaded and imported into Remora.  It basically provides the equivalent of static call-
graph level and data access information.   

6.1.4 DALI 
The DALI team also provided a set of information extracted using the DALI techniques.  This informa-

tion was in the form of a Tuple Attribute (TA) file.  This file was also imported into Remora and used to 
generate perspectives. 

6.1.5 Text Documentation 
Documentation was available from the LINUX Documentation Project.  This documentation was im-

ported into Remora and used for the text processing tasks.  We also used electronic information on the 
general domain of operating systems. 

6.1.6 Call Graph Data 

6.1.7 RMTool 
 

6.2 Classification 
6.3 Union 
6.4 Fusion 
6.5 SUMMARY 
6.6 CONCLUSIONS 

7. CONCLUSIONS 
This work has demonstrated a conceptual model into which all architectural recovery work can be 

placed.  Further, a defined process has been specified that produces P1471 compliant AD’s.  By using 
domain information to help guide aggregation of information, ASP mitigates the concept assignment 
problem.  By providing a method for checking different views and cross-mapping information, inconsis-
tencies can be identified.  By providing the concept of an extraction information space and information 
space coverage, the analyst can plan extraction so that redundant information is not gathered, and fully 
informed views can be developed.  Finally, a tool supporting an analyst using ASP has been presented. 

8.  VALIDATION 
Validation of the technique will be conducted in two phases.  In phase one, the overall conceptual 

model is validated through a survey of existing architectural recovery techniques and mapping these 

Table VII:  Case Study Plan 
Case 
Study 

Domain Languages Validation Perspectives 
Developed 

Views 
Created 
(Union) 

Views 
Fused 

Automation 
Used 

Results 

ISVis Reverse 
Engineering 

Perl, C, C++ 
Single Proc-
ess, Single 
Processor 

24 KLOC 

 13 
RMTool 
Make Analysis 
Cflow 
ISVis 
Design Docs 
Dowser 
Interview 

5    2 None Proof of Concept 
see TR GIT-CC-98-
22 
Shortcomings - lim-
ited opportunity for 
fusion 
Usefulness:   

Linux Operating 
Systems 

C, ASM, 
 

Compare to 
other LINUX 
case studys 

PBS 
DALI 
Rigi 
 

TBD TBD Remora TBD 
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onto the ASP.  This validates the thesis that the conceptual model is able to accept and organize all dif-
ferent recovery techniques.   

Phase 2 involves use of ASP case studies to determine adequate definition, completeness and 
consistency of the AD.  Table VI summarizes the planned case studies.  The first study (ISVis) was com-
pleted using primarily manual techniques.  Its purpose was to develop and validate the synthesis proc-
ess.  There were several limitations discovered during this case study.  The first was that ISVis is essen-
tially a single-process/single-processor application.  This limited the physical viewpoint of the architecture 
to a trivial representation.  The lack of multiple views resulted in a limited chance to develop and refine 
the fusion phase of the synthesis process.  The manually developed views of the AD were then used to 
validate the ASP algorithms by using those views as truth data.  

The primary validation case study will involve extraction of the LINUX operating system kernel archi-
tecture.  This system provides an “industrial-strength” size application of non-trivial complexity.  It also 
has the advantage of being open-source and having an accessible developer community.  The LINUX 
kernel has also been designated as an architecture recovery exemplar, and thus has been the object of 
several recovery efforts including DALI, PBS and a manual recovery by Bowman et al. [12].  These re-
covered architectures will be used as baselines to show the additional value-added by ASP.   Also, the 
AD produced by ASP can be critiqued by the LINUX developer community for additional validation of its 
“quality.”   In a sense the LINUX development community can be used as an oracle that “knows” the true 
architecture and can provide a standard against which the ASP-derived products can be compared.  The 
idea of quality of the AD of LINUX principally focuses on the latter half of the thesis statement.  While we 
could make the statement that a defined process was specified and usable at the end of the first case 
study, we cannot make any claims about the fully informed, consistency, usefulness or conformance of 
the AD.  Table IV demonstrates that the product is conforming by showing the mapping of the ASP proc-
ess onto P1471 (which in turn could be mapped onto other emerging standards for architectural descrip-
tion).   That leaves the more subjective elements of fully informed, consistent and useful. 

As we defined earlier, fully informed implies the use of all available information about the legacy.  To 
ensure that a user of ASP uses all available information, we introduced the idea of the extraction infor-
mation space.  By obtaining information from all quadrants of the information space, we can gain enough 
information to make fully informed descriptions.  How then do we prove that the information space repre-
sents the necessary range of extraction information?  We can map existing taxonomies of information 
onto the information space and provide a reasoned argument that this information provides an adequate 
basis to develop architectural descriptions. 

Likewise, we previously defined consistent as having accounted for all conflicting or inaccurate infor-
mation.  How do we show that the LINUX ASP is consistent?  First we have the other recovered architec-
tures to compare it to.  Secondly, and most valuable there is a rabid core of developers for the kernel 
who would be only too anxious to find errors and inconsistencies in the produced AD.   

Finally usefulness has to be shown.  Can the AD be used for its intended purpose?  Again the en-
trenched LINUX community can be extremely helpful.  For the group looking into extending the security 
features of LINUX, we can ask if the AD was helpful in performing architectural-level understanding of 
the security architecture of the kernel.  Likewise, for the general architectural description, we can query 
the LINUX documentation project to determine whether the total AD is valuable for understanding the 
architecture and structure of the kernel across multiple viewpoints. 

Completing these steps, we will have shown that the thesis: 
A defined process for obtaining a software architecture description (AD) from a legacy 

system can be specified in sufficient detail to be usable by practicing software engineers, 
and the products produced by the process are complete, consistent, useful, and conform 
to P1471.   

is true. 

 9.  SCHEDULE  
The schedule below relates the principle research questions of this proposal to project delivery dates. 
Thesis restatement: The fundamental thesis of this work is that a repeatable process for obtaining a 
software architecture from a legacy system can be defined in sufficient detail to be usable by practicing 
software engineers, and that its products are complete, consistent and useful.   
Research Questions: 
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1.  What process can be defined to synthesize architectural information obtained from any potential 
source? (See section 2 ASP) 
2.  What methods are appropriate for manipulating and representing architectural information? (see sec-
tion 4 on Remora DB data model) 
3.  What is an appropriate data model for storing architectural information? (see section 4 on Remora DB 
model) 
4.  Given two different sets of architectural information, how can that information be combined? (see sec-
tion 4 on lexical, topological and semantic approaches)  

4.1 What syntactic information is important for comparing two sets of architectural information? 
(see section 4, lexical matching) 

4.2 How can semantic information be represented in a lightweight, easy to automate fashion? 
(see section 4 on sematic approximation using concept analysis) 

4.3 What methods are most effective for matching architectural elements in different perspec-
tives? (see section 4 on lexical, topologic and semantic approaches) 
5.  What views or view sets are most useful for practitioners? (Open, seems to depend on domain and 
purpose for which architecture is being recovered) 

5.1 What rules are effective for determining which information elements refer to which views? (see 
section 4 on classification) 
6. What rules can be developed to provide guidelines for determining the completeness of architectural 

information? (see section 4 on details of union and section 2 on the extraction information space) 
7.  What mappings exist between different architectural viewpoints and their corresponding views? (see 
section 4 on fusion) 

 
20 Sep 200   Complete draft Proposal, gain preliminary approval from committee 
Fall (Oct) 2000      Formal Proposal Presentation 
Fall (Dec) 2000  Complete Remora Toolkit  
Fall (Dec) 2000  Complete LINUX Case Study (Start-Up and extraction phase underway) 
Spring 2000        Defense of Research 
Summer 2000        Graduation 

10.  DELIVERABLES 
The following three items constitute the deliverables for this research: 
• ASP User’s Guide  
• REMORA Toolkit 
• Dissertation 

11.  FUTURE WORK 
Future work in ASP can be focused on moving from a defined to a repeatable process.  This would in-

volve observation-type experiments on several groups, each using ASP to recover the same legacy sys-
tem and analyzing where variances occurred.  This would also allow further refinement of the mechanics 
of the ASP process. 

There are several automatic text processing algorithms using neural networks and self-organizing 
maps that hold promise to further refine the semantic approximation algorithm.  This would reduce vari-
ability in assignment of domain terms to the appropriate architectural elements. 
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Appendix A : Alloy Description 
 
//alloy model of the architectural synthesis processs 
model sa { 
    //******************************DOMAIN********************************* 
   //The major objects in our domain of interest are: 
   //   elements : These are the things that make up an architecture 
   //   representation: This is a presentation of the architecture in some format 
   //   constraints : This is a description of any constraints that apply to the architecture 
   //   attributes : These are things about elements that  help us differentiate them  
  domain {elements, representation, constraints, attributes, viewpoint} 
     
  //**********************STATE********************************************* 
  state { 
     //******************SETS*************************************** 
 
     //Architectural elements can be divided into components and connectors 
     partition components, connectors : elements 
 
     //The representation of the architecture may be a view or a perspective 
     //  Views are the final representation of architectural information describing a viewpoint 
     //  Perspectives are raw information about an architecture derived from a single source  
     partition view, perspective : representation 
 
     //There are four canonical views and one category for specialization 
     // system : This is the high level systems view of which software physical  is a subset 
     // module : A code-based view of the architecture 
     // logical : The conceptual or functional architectural view ( a static picture of the architecture) 
     // runtime : A view focused on threads/processes existing at runtime and the ipc between them  
     partition module, system, runtime, logical : viewpoint 
 
     //Additionally we have some common subsets 
     //The software physical view is a subset of the system architecture 
     physical : system 
 
     //Some NFR views are subsets of the logical 
     security, performance : logical 
 
     //Within each view the components have special semantic meaning 
     // process : A runtime process or thread, dll or COM/CORBA component 
     // processor : A physical device capable of hosting a process component 
     // code_module : A source code file, directory or package 
     // logical_component : An active or passive functional component 
     partition process, processor, code_module, logical_component : components 
 
     //Within each view the connectors also have special semantic meaning 
     // ipc : Runtime interprocess communication such as RPC, RMI, COM/CORBA calls 
     // comm_path : A physical communications path between processors such as ethernet 
     // dependency : A relationship between code modules.  One may contain another or need 
     //                      another for compilation 
     //logical_connector : A relationship between two logical_components 
     partition ipc, comm_path, dependency, logical_connector : connectors 
  
     //******************RELATIONS*********************************** 
      //Now define the state relations 
     //runsOn maps processes to the processor on which they run (Maps runtime to physical view)  
     runsOn(~hosts) : process -> processor 
 
     //travelsOn maps ipc mechanisms between processes on different processors (Maps runtime to physical view) 
     travelsOn(~supports) : ipc -> comm_path 
 
     //implements maps code modules to the components they implement 
     implements(~implementedBy) : code_module -> logical_component 
      
     //views are built up from individual perspectives, thus a view is derived from a set of perspectives 
     derivedFrom :  view -> perspective 
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     //These relations get information about elements in a particular representation 
     getComponent(~getCompRep)  : representation! -> components 
     getConnector(~getConnRep) : representation! -> connectors 
     getConstraints : representation! -> constraints 
     getAttributes : elements -> attributes 
     getViewpoint : representation -> viewpoint! 
 
     from, to : connectors -> components! 
  } 
 
   //********************INVARIANTS************************************ 
  //define that for certain views, only certain types of components/connectors exist  
  //Views are constrained to have a single general semantic meaning 
  //If the views have mixed information, we didn't do union right 
  inv Affinity { 
     all r : view | r.getViewpoint in module <-> (r.getComponent in code_module and r.getConnector in dependency) 
     all r : view | r.getViewpoint in runtime <-> (r.getComponent in process and r.getConnector in ipc) 
     all r : view | r.getViewpoint in system <-> (r.getComponent in processor and r.getConnector in comm_path)  
     all r : view | r.getViewpoint in logical <-> (r.getComponent in logical_component and r.getConnector in logical_connector) 
  } 
 
  //for connector, it must have a component at each end  
  //and they all have to be in the same rep 
  inv connectivity { 
      all c : connectors | some m,n : components | c.from=m and c.to = n and c.getConnRep in m.getCompRep and c.getConnRep in 
n.getCompRep    
  } 
 
 //*********************OPERATIONS*****************************************  
  //for the union process we add the elements in one perspective to the base_rep 
  op union ( baseRep : perspective!, per : perspective! ) { 
    //details not important for fusion 
  } 
  op classify (rep:perspective!) { 
    //details not important for fusion 
  } 
  //For the system and physical views to be consistent all the processors and  
 //comm paths in the physical have to have a match in the system 
  op check_sys_phys_consistent (p : view!, s : view!) { 
      p.getViewpoint in physical and s.getViewpoint in system 
      all pp:processor | some ps:processor | pp in p.getComponent and ps in s.getComponent  and pp = ps 
      all cp:comm_path | some cs:comm_path | cp in p.getConnector and cs in s.getConnector and cp = cs 
  } 
  //For the runtime and physical views to be consistent there must be a processor for each  
 //process and a process on each processor 
 //ipc connectors however may run on either processor or comm_path  
op check_runtime_phys_consistent(r:view!, p:view!) { 
     r.getViewpoint in runtime and p.getViewpoint in physical 
    all pr:process | some ps:processor | pr in r.getComponent and ps in p.getComponent and  pr.runsOn = ps 
    all ps:processor | some pr:process | pr in r.getComponent and ps in p.getComponent and ps.hosts = pr 
    all i :ipc | some ps:processor |some c:comm_path | i in r.getConnector and ps in p.getComponent and c in p.getConnector    
          and  (i.runsOn=ps or i.travelsOn=c) 
  } 
  //check the logical and code module views for consistency 
  //every code module should implement an element in logical view 
  op check_logical_module(l:view!, m:view!) { 
    l.getViewpoint in logical and m.getViewpoint in module 
   all cm:code_module | some lc:logical_component | some le:logical_connector | 
        cm in m.getComponent and lc in l.getComponent and le in l.getConnector and (cm.implements = lc or cm.implements=le) 
 } 
 //*********************CONDITIONS***************************************** 
  //this condition tries to force the system not to choose the simplest (NULL) sets 
  cond PopulateSchema { 
     some view 
     some perspective 
     some connectors 

  }  
} 
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APPENDIX B: Glossary 
 
Architecture: (P1471) The highest level conception of a system in its environment. 
 
Legacy System: An existing system which has a significant software component.  Frequently, the system 
is mission critical, has been in place for several years, and is poorly documented and understood.  Usu-
ally, the original developers have long since left the company. 
 
Perspective:  A single representation of a software architecture that is derived from a single source.  It 
can be thought of as a human (or machine-derived) opinion of what some part of the software architec-
ture looks like.  A perspective can be thought of as a set of incomplete information. 
 
Representation:  A description of a part of an architecture.  This description may be textual in the form of 
an unstructured language description, but is often expressed in an architectural description language 
(ADL).  Representations are most often graphical.  The most common graphical notation, especially for 
legacy systems, is the “box-and-arrow” diagram.   
 
View:  A representation of a specific viewpoint.  Views are composites of a set of one or more perspec-
tives.  A view can be thought of  as having a sense of completeness about it.  This is what differentiates 
a view from a classified perspective. 
 
Viewpoint: A specific set of interests that concern a group of stakeholders.  Viewpoints are expressed 
using one or more views. 
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Appendix C: Remora Data Models 
 

 

Figure C.1: Low-Level Data Model 

 

 

Figure C.2: High-Level Data Model 
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Appendix D : LINUX Perspectives 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure D.1: A Domain Specific Architecture for Operating Systems 

 

Figure D.2: Another Domain Specific Architecture for Operating Systems 
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Appendix E: Sample Viewpoint and View 
 
The following viewpoint definition is taken from IEEE Draft Standard P1471 and represents a viewpoint 
description for the Air Force Command and Control Target Architecture(C2STA): 
 
VIEWPOINT NAME:  Data 
Purpose:  To establish how enterprise data is defined, organized, accessed and maintained. 
Stakeholders: Data Administrators, producers, and composers of capabilities 
Concerns:  How is data accessed? How is data interpreted?  What metadata is available about data? 
Modeling Methods:  data access capabilities, interfaces, data stores, data models, metadata, ownership 
and security, CRUD (Create, Read, Update and Delete) privileges, consistency information 
Viewpoint Language: UML Class Diagrams, Entity-Relationship Diagram, CRUD Matrix 
 
 

 

Figure E1: Sample View for the Data Viewpoint 


