
A Quick Tools Strategy for Program Analysis and Software

Maintenance

Bret Johnson� Steve Ornburn� and Spencer Rugaber

College of Computing

and

Software Research Center

Georgia Institute of Technology

Atlanta� GA ����������

Abstract

Most software maintenance tasks are driven by spe�

ci�c customer requests for program corrections or en�

hancements� These often require detailed analyses of

speci�c code segments� Monolithic tools may not be

�exible enough to deal with such speci�c requests� This

paper describes a strategy for quickly producing new

special�purpose tools� The strategy combines exist�

ing tools including simple� o��the�shelf text processing

tools� rule�based� language�speci�c analysis tools� and

a commercial CASE tool�

� Background

��� The maintenance context

The greatest part of the software maintenance pro�
cess is devoted to understanding the system being
maintained� Fjeldstad and Hamlen report that ���
and ��� of the time spent on actual enhancement
and correction tasks� respectively� are devoted to com�
prehension activities� These involve reading the docu�
mentation� scanning the source code� and understand�
ing the changes to be made�	
� The implication is that
if we want to improve maintenance� we should facili�
tate the process of comprehending existing programs�

The most desirable approach to maintaining a soft�
ware system is to devote a signi�cant amount of up�
front e�ort to understanding and documenting the
overall purpose and behavior of the software� Unfortu�
nately� the realities of a software maintenance shop of�
ten require quick responses to unanticipated problems
or enhancement requests� The comprehensive study

approach must then be discarded in favor of a more
responsive one�

The same argument holds for tools� However de�
sirable a comprehensive program analysis tool is� the
state of the art is such that monolithic tools are often
not exible enough to deal with spontaneous requests
for information� An approach is needed where spe�
ci�c questions can be answered by quickly producing
special�purpose analysis tools� And this� in turn� can
best be accomplished by combining existing tools�

This paper describes a strategy for quickly produc�
ing tools� It has been successfully used in the con�
text of the maintenance and reverse engineering of a
large� real�time software system used for telephony�
The tools include o��the�shelf text processing tools�
rule�based� language�speci�c tools� and a commercial
CASE tool� The approach is illustrated by examples
including the generation of cross reference informa�
tion� calling trees� run�time stack analysis� and code
restructuring�

��� A large�scale� real�time� embedded
software system

Maintenance and reverse engineering activities were
carried out on software components within a large�
real�time system built and maintained by a major
telecommunications company� This system� a digi�
tal subscriber carrier that has undergone signi�cant
modi�cation and enhancement in the ten years it has
been on the market� extends both regular and special
telephone services from a switching center to residen�
tial and business communities� Its main application
is to increase the number of subscribers that can be
economically served by a feeder cable� Functionally�
it converts between the digital signals carried on the

telephone network and the analog signals required by
telephone subscribers� It also does the time�slot man�
agement and multiplexing required to complete the in�
terface between telephone network and telephone sub�
scriber�

The application software is coded in the PL�M
programming language and consists of approximately
���K lines of code� The operating system on which
the application runs is custom�built and consists of an
additional 	�K lines of assembly language code� Soft�
ware engineers assigned to the product are responsi�
ble for maintaining both the application and the op�
erating system� All of the product software is ROM�
based� which eliminates the possibility of �eld patches�
and therefore dictates that high levels of quality be
achieved and maintained with each subsequent release
of the system software�

Finally� while the code is structured in the sense
that there are no explicit �go�tos�� procedures are gen�
erally not well organized� They have been decomposed
into monolithic� deeply�nested conditional statements
rather than sequences of simply described functions�
Algorithms are often implemented using convoluted
idioms� And there is no distinction between the nor�
mal execution paths through a procedure and those
associated with exception handling�

� Tool strategy

The quick tools strategy involves three phases� The
�rst phase constructs throw�away tools from generic�
o��the�shelf text processing utilities� The second
phase produces more robust analysis tools� customized
to deal with the speci�cs of the client�s development
environment� The �nal phase uses an existing CASE
tool to support the graphical display of the data gen�
erated by the �rst two phases�

��� Phase �� Prototyping with awk and
shell scripts

One characteristic of the UNIX operating system is
a large collection of utility commands adept at manip�
ulating textual� line�oriented data� Another is a com�
mand language that can be used to easily compose
existing commands� The command language� called
the shell� composes commands by passing the output
of one to the input of the next� Facilities also exist to
save results in �les� abbreviate complicated commands
or �le paths with short identi�ers� and abstract com�
posite commands into command �les that can in turn
be used to construct higher�level commands�

Among the available UNIX text processing tools
are sed and awk� Sed is a stream editor� capable
of transforming an input �le through a sequence of
line�by�line edits� Lines to be edited can be selected
via regular expression pattern matching� Awk is even
more powerful� It is capable of treating an input �le
as if it consisted of a sequence of �elds� Field values
can be examined and altered�

In the �rst phase� we constructed a procedure cross
reference tool using sed� awk� and other UNIX tools
in the following manner� First� a small awk script ex�
tracted lines containing procedure declarations� �See
Figure 	�� An awk script consists of a series of state�
ments� Each statement contains a pattern and an ac�
tion� The pattern determines the lines in the input �le
to which the action will be applied� Actions are con�
tained within curly braces� Comments begin with ���
and continue to the end of the line� The script prints
out records describing procedure declarations and the
names of the �les in which they occur�

Several things should be noted about this script�
Most importantly� it is just an approximation� Awk
patterns are not powerful enough to completely de�ne
the PL�M language� However� these few rules were
adequate for this job� A similar script was written
to post�process the data produced by the script given
above� It removed all of the extraneous �for our pur�
poses� PL�M code leaving only the �lename and the
procedure name�

The second point is that the script depends not
only on the PL�M language but also on the coding
conventions used in this particular maintenance shop�
Knowledge of the conventions was taken advantage of
to more quickly arrive at a working solution�

The third point is that this script is not the �rst
version� It was re�ned over time by a series of trial
and error experiments� For example� procedure decla�
rations may actually be continued over several lines�
The �rst version had to be adapted to take into ac�
count this possibility�

The pair of scripts described above were comple�
mented with a similar pair that detected procedure
invocations� Both pairs were invoked by commands
written in the shell language that gave access to all
of the source �les� The output data were placed into
two text �les that were combined using further scripts
to produce the procedure calling information that is
partially displayed in Figure �� In the �gure each pro�
cedure declaration occurs on a line beginning with �����
It includes the procedure name and the name of the
�le in which the declaration occurs� Subsequent lines
indicate other �les that contain references to the pro�

BEGIN � C � �� N � �� K � � �

�

� The pattern �BEGIN� is matched before any line of the input file has been

� read� �C� is as flag indicating whether or not the input line is contained

� within a PL�M comment� Likewise	 �N� indicates whether the procedure label

� has been seen	 and �K� whether the �PROCEDURE� keyword has been detected�

�

�
�
�� � C � � �

�

� A comment has been detected�

�

C��� ��� � L � ��� N � � �

�

� Look for a line with a ��� but not in a comment� If you find one	 remember

� the whole line ���� in �L�	 and set the �N� flag�

�

C��� N��� �PROCEDURE� � K � � �

�

� If the �PROCEDURE� keyword is found after the label	 then set the �K� flag�

�

��� C��� N��� K��� � print FILENAME � � L �

�

� Once the terminating ��� is found	 print the name of the file and the record�

�

��� � N � �� K � � �

�

� Reset the �N� and �K� flags when the declaration is complete�

�

�
�
�� � C � � �

�

� Reset the �C� flag when the end of the comment is detected�

Figure 	� Awk Script for Extracting Procedure De�nitions

cedure� The total count of script lines is well under
one hundred� Writing the scripts took an afternoon�
running them took around twenty minutes�

��� Phase �� Adding precision with New�
Yacc

The tools described above were able to rapidly pro�
duce useful results� However� there are limitations on
the accuracy and completeness of the data produced�
The tools rely on regular expression pattern matching�
Regular expressions can be used to describe language
constructs at the lexical level� For example� it is easy
to write a regular expression to detect all occurrences
of an identi�er in a program source �le� However� pro�
gramming languages are more complicated than this�
Many languages� including PL�M� allow the use of

nested scopes� in which several identi�ers can have the
same name� Regular expressions are incapable of dif�
ferentiating between identi�er uses at di�erent levels�
but other tools are�

A more powerful pattern matching capability is
provided by context free parsing� For example� the
UNIX tool yacc �Yet Another Compiler Compiler�
uses a variant of context free parsing to automati�
cally construct parsers for many programming lan�
guages such as C and Pascal� Yacc takes as input a
grammatical description of the programming language
written in a notation called BNF �Backus�Naur Form��
The grammar is annotated with C language program
segments to specify the intended translation of a pro�
gram� Yacc constructs a parser that� when given a
program written in the programming language� ap�

�� ABORT�SYS�CE�VER�CTL�SEQ�P �CPMP����

CPMP��� CPMP��� CPMP���

�� ACCESS�NVS�DIRECT �CUTP���	 RTEP����

BPIP��� CAUP��� CAUP��� CAUP���

CMAP��� CMAP��� CMAP��� CPIP���

CPIP��� CPIP��� CPIP��� CTEP���

CUTP��� RTEP���

�� ACO�TSK �CALP���	 RALP����

CALP��� RALP���

�� ACTIVATE�CP �BUTP����

BINP��� BUTP���

�� ACTIVE�RING�GENERATOR �BASP����

BASP��� CASP��� CASP���

�� ACTIVE�SLEEVE�CHECK �CTAP����

CTAP��� CTAP���

�� ACTIVE�TMG�FAIL �RDSP����

RDSP��� RDSP���

Figure �� Calling Tree Records Produced by Awk

plies the translations� The translations typically spec�
ify how to construct object code for a speci�c machine
architecture�

NewYacc is a preprocessor to yacc developed by
Purtilo and Callahan��
� It can be used to analyze and
transform programs at the source level rather than
at the level of compiled object code� And because
the source language is expressed in BNF and context
free parsing is used� tools built using NewYacc much
more precisely reect the original source language con�
structs than do tools using regular expressions�

In order to apply NewYacc to program analysis
tasks� two steps are required� The �rst step is to con�
struct a grammatical description of the source lan�
guage being used� in our case PL�M� This step takes
the descriptive grammar for the language found in the
language reference manual and adapts it to the format
required by yacc� This task is a somewhat involved
technical problem that requires knowledge of the de�
tails of context free parsing� but it needs to be per�
formed only once per language and not once per tool�
In our case� the e�ort took about a week� However
yacc grammars for many programming languages are
available commercially or in the public domain�

The second step is to add NewYacc rules to the
grammar to describe the particular kind of analysis
that a tool requires� The rules indicate what New�
Yacc should do when it encounters a speci�c language
construct while parsing a program� One example that
we implemented involves a tool that constructs a call�
ing tree for a program� A calling tree is a diagram that
displays a tree structure� Nodes in the tree correspond
to functions or procedures in the program� The chil�
dren of any given node denote all of the subprograms
directly called from the function or procedure denoted
by that node�

The NewYacc rules for gathering calling informa�
tion from a PL�M program are surprisingly simple�
consisting of a few lines added to the PL�M grammar�
Figure � shows PL�M grammar rule for procedure def�
initions with a NewYacc annotation added�

proc�def � proc�stmt block�body

� �CALL�TREE� �� unset�proc�name�� �

�

Figure �� NewYacc Rule for Procedure De�nitions

The �rst line in Figure � is the yacc rule that spec�
i�es how to parse procedure de�nitions� A procedure
de�nition consists of a procedure statement followed
by the body of a block� Procedure statements and
block bodies are de�ned elsewhere in the grammar
description� The second line� delineated by square
brackets� is a NewYacc rule� It indicates that when
a calling tree is being constructed �CALL TREE��
two things should be done� First� the components
of the procedure de�nition should be asked whether
they have anything to contribute� ��	� corresponds
to the result of analyzing the procedure statement�
illustrated in Figure �� The second thing that New�
Yacc does is to call a small C language function called
unset proc name� This function is one of several re�
sponsible for remembering the name of the current
procedure�

The second NewYacc rule for constructing call�
ing trees is given in Figure �� The �rst two lines
are yacc grammar rules describing what a procedure
statement looks like� The lines in square brackets in�
dicate that NewYacc should output a record labeled
with the words �PROCEDURE DEFINITION�� The
remainder of the record is produced by a utility rule
called CTPN that prints the current line and column
numbers of the source �le and then the name of the
procedure being de�ned� Set proc name is another C
function that helps remember the name of the cur�

proc�stmt � label PROCEDURE opt�formal�param�list

opt�proc�type ol�proc�attribute 	�	

� �CALL�TREE�
PROCEDURE�DEFINITION

���CTPN�
�n

set�proc�name� ���PROCEDURE�NAME� � �

�

Figure �� NewYacc Rule for Procedure Statements

rent procedure� Two similar rules exist for handling
procedure call statements� The result of running the
NewYacc calling tree tool is a series of records� each
of which indicates that one function or procedure calls
another�

Once the grammar for the PL�M language had been
speci�ed for yacc� adding the NewYacc rules took
only a matter of minutes� One of the shell command
�les developed in the previous phase was used to apply
the NewYacc rules to all of the source �les� Other
examples of the use of NewYacc rules are described
in Section ����

��� Phase �� Integrating with a CASE
tool

Reverse engineering the source code of a software
system produces a high level description of it� This
description may take a variety of forms depending on
the intended purpose of the reverse engineering� Sim�
ilarly� modern Computer Aided Software Engineering
�CASE� products typically o�er a variety of diagram�
ing tools capable of displaying design artifacts using
diverse representations� It is appealing to consider
applying the power of CASE tools to the problems of
reverse engineering�

We conducted a small exercise to test the feasibil�
ity of this approach� Software Through Pictures

�STP� is a CASE tool developed by Interactive De�
velopment Environments� Inc� STP features a variety
of graphical editors including one called the Structure
Chart Editor that can be used to draw the style of
diagrams used with Structured Design��
� Structure
Charts include information describing the calling hi�
erarchy of a program� The exercise consisted of using
the output of the NewYacc calling tree tool as input
to the diagram editor�

Fortunately� STP has a very open architecture� Di�
agrams are stored in text �les� and the format of the
�les is described in the reference manual� It was neces�
sary only to convert the NewYacc�produced records
into the format required by STP� This was accom�
plished by a short program that decided how to po�

sition the nodes in the the calling tree� The pro�
gram took about three days to write� but� once again�
it can be reused in any situation that requires the
graphic placement of symbols in a diagram� The part
of the program that understands the structure of the
diagram �le was encapsulated� By substituting sim�
ilar modules� we intend to target other diagraming
tools� such as EDGE��
 and SDT��
� An example of a
NewYacc�generated Structure Chart is given in Fig�
ure ��

��� Other examples

While reverse engineering the digital subscriber sys�
tem� we needed to be able to quickly build tools for
a variety of purposes� Our strategy was to combine
existing tools while building an infrastructure to sup�
port more elaborate activities� Among the tools that
we built or intend to build using this approach are the
following�

� A straightforward extension of the calling tree
tool is to display parameters and to allow software
maintenance personnel to build nested diagrams
that place details in lower�level diagrams�

� We would like to add to the CASE version of the
calling tree tool the ability to view source code
by clicking on a node in the tree�

� The PL�M code consists of highly nested condi�
tional and case statements used to implement a
decision tree architecture� It is occasionally de�
sirable to see the structure of the nesting without
seeing the details� We call this a code skeleton�
and a fewNewYacc rules su�ced to produce this
tool�

� STP provides tools to describe both state ma�
chines and decision tables� We would like to tar�
get these representations in a manner similar to
what we provided for the calling trees�

� A more ambitious task is the automatic detection
of semaphores� A semaphore is an integer variable
typically used to control access to a critical sec�
tion of code� The PL�M code makes heavy use
of global variables for this purpose� Using New�
Yacc global variables can be detected when they
are declared� Their later occurrence within the
conditional part of an if statement suggests their
use as a semaphore�

� Lex is a UNIX tool for describing the lexical
properties of a programming language� It can be

card fail

restart inp port write

outp restore ports

outp

inp

outp dis intrs

Figure �� Part of a STP Calling Tree Diagram Produced by NewYacc

used to automatically generate a lexical analyzer
from a regular expression description of the to�
kens in the language� We constructed a lexer for
PL�M programs using this approach� Only ���
lines of code were required�

� In a similar manner� a parser was built for PL�M
using yacc� The parser is capable of detecting
syntax errors without requiring the overhead of
a compilation� which in our case involved down�
loading �les to a mainframe� The parser required
��� lines of code� including the ��� lines from the
lexical tool�

� Another tool that we took advantage of was
plm�c� This tool is freely available on the Inter�
net and provides conversion capabilities for trans�
lating programs from PL�M to C� We used it to
feed another tool called DATRIX� DATRIX is
a program metrics tool� It takes C programs as
input and produces a large collection of program
statistics related to maintainability and testabil�
ity of the input programs� By combining these
two tools� we were able to obtain program met�
rics for PL�M programs without writing any ad�
ditional code ourselves�

� Our most ambitious plans involve the concept of
partial evaluation� Partial evaluation divides the
inputs to a program into two categories� those
which are relatively constant and those that are
likely to change� In our case� we are interested in
partially evaluating the PL�M programs them�
selves� In particular� in diagnosing a program

fault� information may be available about the
state of the program at the time of the fault� This
information takes the form of values for certain
of the program�s global variables� We would like
to see a simpli�ed version of the program where
those values have been ��xed�� For example� if a
global Boolean ag is known to be FALSE� then
any statement dependent on its being TRUE

should be removed from the program� Likewise�
if statements that test the variable should be re�
moved and statements in the else branch of the
statement should be �promoted�� The result will
be a simpli�ed version of the program that is eas�
ier to comprehend� NewYacc�s program trans�
formation capabilities are directly applicable to
this problem�

� Applications of the strategy

��� Redesigning a component� slow line
test restructuring

One of the tasks performed by the telephony soft�
ware is Automatic System Test �AST�� AST is respon�
sible for testing transmission paths and line cards� Re�
verse engineering techniques were applied to the anal�
ysis of the code responsible for testing individual line
cards� a set of procedures known to the product�s soft�
ware engineers as being particularly di�cult to un�
derstand� This reverse engineering exercise was ex�
ploratory and did not begin with any well�developed
conjectures about how line cards were tested� As a

consequence� the work concentrated initially on ex�
tracting data from the source code� and only later
did a conceptual model describing the process of line
card testing emerge� The conceptual model di�ered
considerably in structure from the original code� The
line card test was reimplemented around a new design
based directly on the conceptual model�

In this exercise� we proceeded as follows�

� �rst� we collected and organized data extracted
from the original source code�

� second� we allowed patterns in the data to remind
us of more general designs and design problems
with which we were familiar� and

� third� we collected and analyzed additional data
to con�rm the perceived pattern and �ll in miss�
ing details�

Of course� we did not pick the right patterns on the
�rst try and had to repeat the second and third steps
until we had a consistent interpretation of the existing
code�

There were several hypotheses associated with this
analysis that proved troublesome and required addi�
tional investigation before they were con�rmed� For
example� the order in which two operations were per�
formed was not the same in all paths� i�e�� one path
showed operation A followed by B and the other B
followed by A� We were concerned that the di�erence
in order was signi�cant� By tracing calling chains and
collecting global variable references� including accesses
to physical devices� we were able to determine that the
order did not matter� Since the operations commuted�
the distinction between the two cases was eliminated�
and the code shortened�

Exception handling proved di�cult to untangle un�
til we observed that many of the resources required for
a test were shared among several tasks� This observa�
tion led us to ask how deadlock was prevented� Of the
alternative strategies� it appeared that the system em�
ployed a version of the deny�hold�and�wait strategy��
�
i�e�� if a resource could not be obtained� all resources
acquired thus far were released and the test was aban�
doned�

This analysis was not always straightforward� and
two resources in particular did not appear at �rst to
�t the hypothesized pattern� Speci�cally� we did not
have any evidence that they were being released when
exceptions occurred� By constructing and tracing the
calling chains� we were able to determine that in the
case of one important resource a paranoid strategy

was employed� as soon as a low level procedure deter�
mined the test could not be completed� the resource
was released� even before the exception ag was set
or control returned to the main testing procedure� In
the second case� we observed that along some paths
a message releasing a resource was never being sent�
While this failure to send a message appears to have
been a bug in the original program� by examining var�
ious references to the resource� we found evidence that
the bug had been �xed� though in a convoluted way�
Rather than �guring out who was failing to release
the resource� the maintenance programmer modi�ed
other components so that they would forcibly reclaim
the resource without ever identifying and notifying the
task currently holding it� The underlying assumption�
correct but undocumented� was that the unidenti�ed
task was by that time no longer using the resource and
had merely neglected to release it�

This example illustrates the importance of analyz�
ing data extracted from the program text� e�g�� con�
structing models of control ow� calling chains� and
variable references�

��� Diagnosing and �xing a design error�
the sleepy system problem

The software engineers responsible for the prod�
uct� at the time they approached us� had a plausible
hypothesis that a rare system failure was the coinci�
dence of a fault in the software control of a watchdog
timer and a stack overow� Reverse engineering tech�
niques were used to analyze low�level data to identify
circumstances under which stack overow was possi�
ble� Reverse engineering techniques were also used
to abstract the actual code and thereby to construct
a model demonstrating the interaction between stack
overow and the design fault in the timer�

This model was then used to test the e�cacy of
the repair proposed by the software engineers� The
tests had to be run against the model because the
combination of events leading to the system failure
involved interactions among internal components and
could not be recreated by simply manipulating the
system�s environment�

It is always di�cult to estimate the stack require�
ments in large multitasking systems� Because of lim�
ited physical memory and the lack of sophisticated
memory management� stacks should not be oversized�
On the other hand� stack overow is not acceptable�
Hence� each process�s stack must be accurately sized
to accommodate the longest calling chain plus space
for interrupt service routines�

Queries run against our cross reference data proved
to be of particular value in this problem because anal�
ysis of calling chains is an important part of estimat�
ing stack requirements� When the code for each pro�
cedure and function was analyzed� an estimate was
computed for the amount of stack space required� By
constructing calling chains from cross reference data
and then joining them with data on the size of the ac�
tivation record for each call� estimates of stack usage
were constructed� A similar procedure was used to
calculate the stack requirements for interrupt service
routines�

Software maintenance had over the years increased
stack requirements� but the stacks had not been rou�
tinely resized because of the tedious nature of the cal�
culation� After several years of maintenance� worst
case combinations of interrupts on nearly full stacks�
while a rare event� could cause stack overow and sys�
tem failure� With the new tools� derived from our
reverse engineering work� it is now possible to peri�
odically reestimate stack requirements and to con�rm
that maintenance has not reintroduced the possibility
of stack overow�

� Conclusions

The strategy that we employed was the following�
After understanding the information that needed to
be extracted� we built a series of scripts using avail�
able text processing utilities� The scripts were tested
and re�ned until they were successfully working on
a sample of the system�s source �les� Then� using a
shell command �le that we built� the scripts were ap�
plied to all of the system sources� Occasionally� post�
processing scripts were applied to further re�ne the
data�

A grammar for PL�M was constructed in a form
suitable for use by yacc� If the speci�c problem
to be solved required more precise program analy�
sis than that available from the text processing util�
ities� NewYacc rules were constructed and applied�
When graphical display was desired� the data was
transformed into a format understandable by the STP
CASE tool�

The quick tools approach has an additional bene�
�t besides its exibility and responsiveness� Reverse
engineering and program analysis are new areas of
research� and a maintenance shop may be reluctant
to undergo a large scale investment in unproven tool
technology� Ad hoc tools� such as those described here�
can quickly demonstrate tangible results� These re�
sults increase management con�dence in the value of
reverse engineering e�orts�

Acknowledgement

We gratefully acknowledge the contributions made
by Richard LeBlanc to the STP exercise�

References

�	
 R� K� Fjeldstad and W� T� Hamlen� �Application
Program Maintenance Study� Report to Our Re�
spondents�� Proceedings GUIDE ��� Philadelphia�
PA� 	����

��
 V� M� Markowitz and W� Fang� SDT� A Database
Schema Design and Translation Tool Reference
Manual� LBL������� Lawrence Berkeley Labora�
tory� May 	��	�

��
 Frances Newbery Paulish and Walter Tichy�
�EDGE� An Extendible Graph Editor�� Software�
Practice and Experience� Vol� ��� No� S	� pp� ���
��� June 	����

��
 James L� Peterson and Abraham Silberschatz�
Operating System Concepts� Second Edition�
Addison�Wesley� 	����

��
 James J� Purtilo and John R� Callahan� �Parse
Tree Annotations�� Communications of the ACM�
Vol� ��� No� 	�� pp� 	����	���� December 	����

��
 W� P� Stevens� G� J� Myers� and L� L� Constantine�
�Structured Design�� IBM Systems Journal� Vol�
	�� No� �� pp� 		��	��� 	����

