
RECOGNITION AND REPRESENTATION

OF

DESIGN DECISIONS

Stephen B. Ornburn∗

Spencer Rugaber
School of Information and Computer Science and

Software Engineering Research Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract

Reverse engineering is the process of constructing a higher level description
of a program from a lower level one. Typically, this means constructing a
representation of the design of a program from its source code. Design is
the process of making decisions from among a set of possible alternatives.
Usually the selection is made based on non-functional considerations such
as efficiency or reliability. Thus, reverse engineering requires the recognition
of design decisions in the source code. But what is a design decision? This
paper describes a characterization of design decisions based on the analysis
of source code. Once design decisions are recognized, they can be organized
into a structure that can be used to understand the program and to perform
maintenance tasks such as enhancement or bug fixing.

∗support received from NSF grants

1

1 REVERSE ENGINEERING AND DESIGN DECISIONS

1.1 Need for Reverse Engineering

Reverse engineering is the process of constructing a higher level description of a program from a lower level

one. Typically, this means constructing a representation of the design of a program from its source code. A

high-level representation hides the details of the implementation while emphasizing the structural and se-

mantic relationships among the components. Reverse engineering is not an end in itself. It supports software

maintenance activities such as program comprehension, correction, documentation, and enhancement. The

information captured during the reverse engineering process should be organized in a manner to support

these activities.

In the ideal world, there would be no need for reverse engineering. All of the steps taken and decisions

made during initial development would be captured along with their rationales. Included with this informa-

tion would be the reasons for not making alternative choices. When the program is later changed during the

maintenance phase, the original development process could be partially replayed, including the updating of

intermediate documentation, before the code is ultimately modified.

In real life situations, however, intermediate decisions, representations, and rationale may not have been

captured. Even if captured, they may not have been kept up-to-date when subsequent changes were made.

Modifications made without benefit of this information often suffer from a limited view of the overall goals and

architecture of the program. This leads to a deterioration in the structure and coherence of the program. By

creating or recreating the intermediate and high-level representations, reverse engineering tries to overcome

these problems.

1.2 Design Decisions

Software design is the process of taking a functional specification and a set of non-functional constraints

and producing a description of an implementation from which source code can be developed. Design can be

divided into high-level design, often called architectural design, and low-level design, where the concerns are

with data structures and algorithms.

Design involves making explicit choices among alternatives. These design decisions are often involve

engineering trade-offs. Too often, however, the alternatives that are considered and the rationale for the

2

final choice are lost. Methodologies and systems are now being developed that support and document the

decision making process. Once such systems are in common use, the reverse engineering problem will be

much reduced.

One reason design information is lost is that the design representations currently in use are not expressive

enough. While they are adequate for describing the cumulative results of a set of decisions, particularly in

regard to the structure of components and how they interact, they do not have the resolving power necessary

to represent the incremental changes that come with individual design decisions. Also, they fail to describe

the process by which decisions were reached, including the relevant requirements and the relative merits of

the alternative choices.

What is a design decision? It is a choice made by the programmer about the internal structure of the

program. Within the framework of this paper, a design decision is a transformation which maps a high-

level version of a program onto a lower level one. A high-level version specifies the dependencies among

components. A low-level version, on the other hand, shows how the implementation will implicitly satisfy

these dependencies.

The differences between a high and low-level version of a program are the result of transformations. These

transformations can change the the decomposition and arrangement of components, their interconnections,

or the algorithms and data structures they use. In all cases, however, the version that results must satisfy

any design dependencies explicitly stated in the high-level design.

Design dependencies may be of many varieties, and several examples are provided here. Design depen-

dencies may relate the bounds of a for-loop to the size of an array. They may require that the conditions in a

conditional statement cover all of the possible situations that may arise. They may require that the domain

of one function include all of the values produced by another. They may even require that the same set of

procedure names be used for several data types in order to show that the types taken together implement a

particular data abstraction.

The detection of design dependencies among components is the key to reverse engineering. A dependency

reflects the fact that a high-level design component fhas been represented by a combination of lower level

design elements. The lower level elements need not be contiguous. They may distributed throughout the

text. A component whose elements have been distributed is referred to as a delocalized component[5]. If the

dependencies among the elements of a delocalized component have not been appreciated by maintenance

programmers, bugs may be introduced when a modification is made. The changes which must be made to

3

ensure the dependencies are satisfied can cause the the structure of the program to deteriorate.

1.3 Requirements for a Design Representation

There are numerous methods for designing software and numerous representations for the intermediate

results[4]. Typically, several are used during the design of a program, some during the architectural stages

and others during low-level design. Still others may be used during the maintenance stage if the original

developers have given way to a separate maintenance staff. It may consequently be difficult to recreate and

reuse the original representation.

Thus, reverse engineers are faced with constructing a representation for the design information of a

program that may not be the same as that used to develop it in the first place. The representation must be

adequate not only to express the original, presumably well structured, software but also later modifications

made to the program.

A usable representation for design information must be easy to construct from the source code. Once con-

structed, it must facilitate queries and report generation in order to support software maintenance activities.

It must provide a mechanism for attaching available documentation. Also, it must support automation. In

particular, the representation must be formal enough that its components can be automatically manipulated.

For example, it is desirable to be able to determine if a previously developed partial description of a software

component is reusable in a new situation. A representation for design information must allow all types of

design information to be attached. This includes high-level specifications, architectural overviews, detailed

interfaces, and the resulting source code. It is also desirable that the representation support requirements

tracing, informal annotations, and versioning information.

The problem that this paper addresses is the design of a methodology-independent organization for design

information that can be readily constructed from source code. Its approach is to concentrate on the question

of what is a design decision. As the reverse engineer recognizes design decisions in the source code, they are

collected into a repository that can later be perused or transformed during software maintenance.

1.4 Organizing Design Decisions

Design decisions can be broken down into categories roughly corresponding to the abstraction mechanisms

and modeling constructs used to realize them. For example, specialization is a type of refinement often

4

seen in object-oriented programming language where an already existing component is refined to handle a

special case situation. Representation is used when a decision is made to select an appropriate programming

language construct with which to implement a specific data structure or algorithm. A catalog of such design

decisions allows the reverse engineer, supported by automated analysis tools, to recognize and organize design

information.

This design information can be used for a variety of purposes. It can be used in order to gain a greater

understanding of the structure of the software. For example, if only decomposition decisions are viewed,

then the result is a functional decomposition of the design. If annotations are attached, the maintainer can

learn the reasoning behind a decision. Because all stages of the design process are available, a programmer

interested in reusing the design can locate and extract the part that matches the programmer’s needs.

2 CHARACTERIZATION OF DESIGN DECISIONS

2.1 Overview

During the course of development of a program, many decisions are made. Some of these are explicit, but

many reflect implicit assumptions based on experience or judgement concerning the “best” course to follow.

In order to effectively maintain an existing system, it is essential for the maintenance programmer to sustain

previously made decisions unless the reasons for the decision have also changed. In order for this to be done

effectively, the decisions must be recognized and understood.

Design decisions range from low-level concerns necessitated by the programming language used to struc-

tural considerations related to the components of the system and their interactions. Traditional design

methods recognize the differences between these two, but the borderline is not well defined.

Design decisions can be classified according to the language constructs used to realize them in an imple-

mentation language. For example, a programmer may decide that a computation will be performed often

enough that its results should be saved and reused. This typically involves the introduction of a variable

and its assignment as the result of the evaluation of an expression. The name of the variable can then be

referred to later in the program.

5

2.2 Categories of Design Decisions

2.2.1 The Data/Procedure Decision

The issue of whether to repeat a computation or to introduce state into a program by introducing a variable

reflects the deeper concept of the duality of data and procedure. Variables are not necessary in order to

write programs; values can always be recomputed. Program variables have a cost in terms of the amount

of effort required to comprehend and modify a program. On the other hand, they can serve to improve the

efficiency of the program and, by a judicious choice of names, serve to clarify its intent.

The introduction of state constrains the sequence in which computations may be made. This increases

the possibility of errors when variables are computed in the wrong order or when modifications made during

maintenance accidently violate an implicit ordering constraint.

The dual of state introduction is recomputation. This is sometimes used to make a program more

readable. The reader does not have to search the program for the declaration and assignments to a variable

but can use local information directly. Modern optimizing compilers can reduce the cost associated with

recomputation, particularly where constant expressions are involved.

The programmer must be aware of how the data flows though the program. Modifications made during

maintenance that change the sequence in which two statements are executed can introduce a bug if one

statement changes the value of a variable referenced by the other. By undoing the assignment statements

and introducing redundant computations the programmer can avoid sequencing problems when reordering

statements. Once the new sequence has been established, assignment statements can be reintroduced.

Programmers must also be aware of the invariants relating the program variables when inserting state-

ments into the program. For example, suppose a programmer is maintaining a loop that reads records from

a file and keeps count of the number of records read. The programmer has been asked to make the loop

disregard invalid records. Because the counter is used to satisfy design dependencies between this loop and

other components, the programmer must modify the semantics of the counter. The programmer must choose

from among three alternatives: counting the total number of records, counting the number of valid records,

or doing both. To make the correct choice, the programmer must determine how the counter is used later

in the program. In this case, the programmer can undo assignment statements and rearrange statements in

order to reconstruct the high-level operations applied to the file. Having done this, the programmer can con-

front the semantic problems raised by the distinction between valid and invalid records. Once those semantic

6

problems have been solved, components can again be delocalized and assignment statements reintroduced.

2.2.2 Generalization/Specialization

One of the most powerful features of programming languages is their ability to describe a whole class

of computations parameterized by arguments. Although procedures and functions are best thought of as

abstractions of expressions, the ability to pass arguments to them is really an example of generalization.

The decision concerning which aspects of the computation to parameterize is one of the key architectural

decisions made during design.

Other abstractions may also be parameterized. Ada provides a generic facility that allows types and

functions to parameterize packages and subprograms. Many languages provide macro capabilities that

parameterize textual substitutions.

The dual of generalization is specialization. This is often seen in object-oriented programming languages

where an inheritance facility can be used to quickly build specialized classes from more generalized prede-

cessors. Of course, the decision to use an existing procedure in a traditional language is also an example

of specialization when arguments are passed to it. Nor is this issue restricted to the procedural domain.

Variant records in languages such as Pascal are an example of the use of a single general construct to express

a set of special cases depending on the value of a discriminant field.

Another example of generalization concerns interpreters and virtual machines. It is often useful for a

designer to introduce a layer of functionality that is controlled by a well-defined protocol. The protocol can

be thought of as the programming language for the virtual machine implemented by the layer. The decision

to introduce the protocol reflects the desire to provide more generality than a set of disparate procedures

would provide.

A more subtle example of these issues concerns specialization. Often algorithms can be optimized based on

restrictions in the problem domain or facilities of the programming language. Although these optimizations

can dramatically improve the performance of the algorithm, they have a cost in lengthening the program

and making it harder to understand. Another manifestation of this can be seen in the early stages of the

design process. Often specifications are expressed in terms of idealized objects such as infinite sets and real

numbers. Actual programs have space and precision limitations. Thus a program is necessarily a special

case of a more general computational entity.

When reverse engineering, useful insights can result from generalizing a component. Generalization allows

7

the programmer to determine how the value of a parameter introduced by the generalization depends on

other values used in the program. Generalization also allows the maintenance task to be specified in terms of

a change in the value of a parameter. Once the maintenance task has been specified in terms of a parameter

change and the dependencies among the parameters of several generalized components have been identified,

then the programmer can identify the implementation changes required to complete the maintenance task.

2.2.3 Composition/Decomposition

Probably the most common design decision made when developing a program is to break it into pieces. This

can be done, for example, by a breaking a computation into steps or by defining a data structure in terms

of its fields. The prospect of introducing a component and then later decomposing it supports abstraction

by allowing decisions to be deferred and details hidden. Complexity is managed by using a name to stand

for a collection of lower level details.

The dual of decomposition is composition. One manifestation of the duality is the tension between top-

down and bottom-up design methods. Composition involves composing low-level constructs into high-level

abstractions. Of course, building an expression in a programming language from variables, constants, and

operators is an example of composition. So too is building an algorithm from calls to a library of components.

Data and control structures are programming language features that support these decisions. For ex-

ample, a loop is a mechanism for breaking a complex operation into a series of similar and simpler steps.

Likewise, an array is a way of collecting similar data items into a single item.

It is not necessary for the components of a high-level construct to appear contiguously in the final program.

A failure to recognize that a group of unconnected pieces of program text work together for a common purpose

and represent a delocalized component is often a stumbling block to the program comprehension process.

How a single design-level component can be distributed throughout a program text as the result of a design

decision is discussed in the Section 2.2.4.

2.2.4 Encapsulation and Interleaving

Structuring a program involves drawing boundaries around related constructs. Well defined boundaries or

interfaces serve to limit access to implementation details while providing controlled access to functionality by

clients. The terms encapsulation, abstract data types, and information hiding, are all related to this concept.

8

Encapsulation is a useful aid to both program comprehension and maintenance. A decision to encapsulate

the implementation of a program segment reflects the belief that the encapsulated construct can be thought

of as a whole with a behavior that can be described by a specification that is much smaller than the total

amount of code contained within the capsule. If a capsule hides the effects of a major design decision, then

when that decision is altered during later maintenance, the side-effects of the change are limited.

The dual of encapsulation is interleaving. It is sometimes useful, usually for reasons of efficiency, to

intertwine two computations. For example, it is often useful to compute the maximum element of a vector

as well as its position in the vector. These could be computed separately, but it is natural to save effort by

doing them once. Interleaving in this way makes the resulting code harder to understand and modify. A

number of interleaving transformations have been identified [2].

A debate is currently underway concerning single and multiple inheritance in object-oriented program-

ming language. The use of inheritance can simplify both generalization and specialization. A variant of an

object is more easily constructed when most of its functionality is inherited from an already existing object.

But, in nature, objects often belong to multiple classes. Some languages support multiple inheritance, where

objects can inherit properties from more than one parent object. The properties of the parents are inter-

leaved in the child. The programmer building the child is then responsible for carefully distinguishing the

functionality to be used in any computation. This problem is compounded when name conflicts arise among

the properties in the parent classes.

Because of the sequencing dependencies introduced, the presence of the assignment statements can make

it difficult to subsequently separate the interleaved elements. Indeed, it may be necessary to undo the

assignment statements before the functional components can be reassembled and encapsulated as discrete,

identifiable entities. It is to be expected that the considerable effort required to reencapsulate components

will be well spent. Many dependencies can be more clearly expressed at a higher level of granularity.

2.2.5 Representation

Representation is a subtle but important design decision. Representation is used when one abstraction or

concept is better able to express a problem solution than another. For example, programmers often use a

linked list to implement a pushdown stack. Bit vectors can be used to represent finite sets.

Representation must be carefully distinguished from specialization. If a (possibly infinite) pushdown

stack is implemented by a fixed length array, then two decisions have been made. The first decision is that

9

for the purposes of this program, a bounded length stack will serve. This is a specialization decision. Then

the bounded stack can be readily implemented by a fixed length array. This is a representation choice.

A table-driven state machine is an example where a set of computations is represented by a two dimen-

sional array. Alternatively, the array can also be represented by a procedure which computed the “stored”

values. Although this may seem unusual, it is exactly the technique that is used to speed up lexical analyzer

generators. Token classes are first represented as regular expressions and then state machines. The state

machines are then compiled directly into case/switch statements in the target programming language. The

reason for doing this is efficiency: in the compiled version the costs of indexing into the array are avoided.

When the distinction between specialization and representation is kept is mind, representation can be

seen to be its own dual. For example, a designer will often implement operations on vectors by a loop. In

the presence of vector processing hardware, however, the compiling system may invert the representation to

reconstruct the vector operation.

Another example of representation comes from the early stages of design. Formal program specifications

are often couched in terms of universal and existential quantification; e.g. “All employees who make over

$50,000 per year”. Programming languages typically use loops and recursion to represent these specifications.

Use of a stream data structure to represent a sequence of computed values is another example from this

domain.

When reverse engineering, the effort is directed towards identifying the data and procedures in the

program with higher level functions and abstract data types. Representation decisions have been under-

studied in the literature. A discussion of representation decisions as presently understood can be found in

[3]. The tools developed there are appropriate for studying representation decisions when abstract values

are in one-to-one correspondence with their representations. In practice, however, the programmer must be

aware of a number of other possibilities.

One possibility, already discussed, involves choices such as whether a function should be represented as

a data structure or a data structure represented as a function. There are also a number of alternatives for

representing data structures with other data structures. For example, several high-level types may be mapped

to a single low-level type, a situation known as overloading. On the other hand, a single high-level type is

said to have a polymorphic representation if, as in highly optimized algorithms, it can be mapped to several

distinct low-level types. This does not exhaust the range of possibilities. Structure sharing may result when a

single low-level object is used to represent a set of distinct high-level objects. In such situations, maintenance

10

tasks that at the high level may appear simple can involve considerable manipulation at the low level. Some

of the hardest examples of this type of maintenance arise in the context of object-based, distributed systems:

in such systems meeting performance requirements entails a number of representation decisions which violate

the high-level abstractions. Specifically, in such systems violations of high-level abstractions can result from

violations of atomicity, optimistic concurrency control, recovery procedures sensitive to the semantics of

the objects and applications, and the replication of data and computation. Thus, object-based, distributed

systems can be expected to present programmers with complex maintenance problems.

2.2.6 Function/Relation

Logic programming languages allow programs to be expressed as relations between sets of data. For example,

sorting is described as the relationship of two sets, both of which contain the same members, one of which

is ordered. In Prolog, this might be described by the following rule.

sort(S1, S2) : −permutation(S1, S2), ordered(S2).

If S1 is given as input, then a sorted version S2 is produced. But if an ordered version S2 is provided,

then unordered permutations are produced in S1. The decision as to which variable is input and which is

output can often be left up to the user at run-time instead of the programmer at design time.

Formal functional specification are often non-deterministic in this regard. If there is a preferred direc-

tion, then specification may use a function instead of a relations to express it. But this may reflect an

implementation bias rather than a requirement.

Of course, empirical programming languages do not support non-deterministic relationships. Even is

Prolog (the predominant logic programming language), it may be impossible to write a set of rules that

works equally well in both directions. Thus, the designer is usually responsible for selecting the preferred

direction of causality; that is, which variables are input and which are output.

Ada makes the decision explicit with its in, out, and inout keywords. The dual decision is to provide

separate functions that support both directions. For example, in a student grading system, it may be useful

to provide a function that, when given a numeric grade, indicates the percentage of students making that

grade or higher. It may also be of value to provide the inverse function that, when given a percentage,

returns the numeric grade that would separate that proportion of the students.

11

2.3 Programming Languages and Design Decisions

There is a correspondence between the categories of design decisions listed in the previous section and the

variety of approaches to programming language design found in modern programming languages. This is

not accidental but reflects the fact that programming languages are designed to make program development

easier. They do this by providing a variety of high-level abstraction mechanisms.

The languages Algol and Pascal introduced and systematized control and data structures to programming

languages. They provided mechanisms to support decomposition of procedures into statements and data

into its components. Of course procedural abstraction has been with us since the early days of programming

languages in the form of subroutines and functions.

Variables, too, have been part of programming since its beginning, but the explicit trade offs between

data and procedures have become more prominent with the advent of functional programming languages.

Programming in a functional language is difficult for a traditional programmer used to using variables.

Similarly, logic programming languages, such as Prolog, highlight the function/relation dichotomy. The

same kind of conceptual barriers confront a new Prolog programmer used to more traditional styles of

programming or even used to a functional style.

The issues of encapsulation and interleaving are explicitly stressed in Ada. The programmer expresses

the functional interface to a package in a separate construct from the implementation. Languages with

multiple inheritance, such as Common Loops, must directly address how an object derived from several

classes accesses properties in those parents with the same names.

Generalization/Specialization is a primary consideration in Smalltalk-80. The class hierarchy expresses

how subclasses specialize their parents. Dynamic binding is used to invisibly delegate responsibility for

computation to the least general class able to handle it. Of course, Ada generics support compile-time

generalization of procedures to types and functional arguments.

Representation is found in most programming languages, but Clu emphasizes the distinction between

representation and specialization by providing separate language constructs for expressing their behavior.

Gypsy has features for describing both ideal behavior and implementation details. It supports the proof of

their equivalence via semi-automated means.

12

2.4 Representing Design Decisions

A decision implies a choice. Hence, decisions can be thought of as the resolution of an issue by the selection

of an alternative. There are two important ways of the representing design information relevant to a design

decisions: as dependencies among components and as transformations. Dependencies constrain the structure

of the implementation. Transformations carry out a decision to change the structure of the design. A wide

variety of transformations have been described in the literature [2].

While existing characterizations of transformations are not fully satisfactory, it can be useful to classify

them informally. The set of categories used here are useful when a programmer is reverse engineering a

program text. Transformations can be used to change the decomposition underlying a design (i.e., breaking

down or consolidating the structure of a component), to restructure a design by intertwining components (e.g.,

modifying the flow of data and control so as to improve an algorithm or the coupling among components), to

modify the representation of data and control information, and to change the way data is stored and accessed.

Changes in the way data is stored and accessed include alterations to the couplings among components and

changes in how a program interacts with its state. Many of the transformations just mentioned have the

effect of mapping a localized component in a high-level design to a delocalized component in a lower level

design.

In addition to delocalizing components, transformations may also have other effects. It is often convenient

to consider a design that presents some key components in a localized form, even if they are delocalized in the

implementation. It can also be convenient to parameterize those components. Components can be parame-

terized for types, values, functions, and control information. Design dependencies can then be stated in terms

of relationships among those parameters. Transformations, when applied, not only delocalize components,

but can remove or modify design dependencies or introduce components satisfying them implicitly.

The categories used here have been synthesized from work related to the derivation of algorithms, opti-

mization of programs, and translations among programming language paradigms such as those associated

with the predicate calculus, Horn clauses, and functional, object-oriented, and imperative languages. Trans-

formations identified in different contexts often bear a striking resemblance. Thus, there is interest in

describing a more fundamental model in terms of which known transformations can be defined. There is

also a conviction that the set of known transformations is not yet complete: there are categories of transfor-

mational problems that have not yet been fully explored, including some as yet only poorly conceptualized.

None the less, there is a basis for optimism and value in exploring how an understanding of transformational

13

programming could be used clarify issues in software maintenance.

3 EXAMPLES OF DESIGN DECISIONS

This section describe a realistic examples of design decisions recognized in production software. The program

is taken from a paper by Basili and Mills [1] in which they use flow analysis and techniques from program

proving to guide the comprehension process and document the results. The program is given in Figure 1.

001 REAL FUNCTION ZEROIN (AX,BX,F,TOL,IP)
002 REAL AX,BX,F,TOL
003 C
004 C
005 REAL A, B, C, D, E, EPS, FA, FB, FC, TOL1, XM, P, Q, R, S
006 C
007 C COMPUTER EPS, THE RELATIVE MACHINE PRECISION
008 C
009 EPS = 1.0
010 10 EPS = EPS/2.0
011 TOL1 = 1.0 + EPS
012 IF (TOL1 .GT. 1.0) GO TO 10
013 C
014 C INITIALIZATION
015 C
016 IF (IP .EQ. 1) WRITE (6,11)
017 11 FORMAT(’THE INTERVALS DETERMINED BY ZEROIN ARE’)
018 A = AX
019 B = BX
020 FA = F(A)
021 FB = F(B)
022 C
023 C BEGIN STEP
024 C
025 20 C = A
026 FC = FA
027 D = B - A
028 E = D
029 30 IF (IP .EQ. 1) WRITE (6,31) B, C
030 31 FORMAT (2E15.8)
031 IF (ABS(FC) .GE. ABS(FB)) GO TO 40
032 A = B
033 B = C
034 C = A
035 FA = FB
036 FB = FC
037 FC = FA
038 C
039 C CONVERGENCE TEST
040 C
041 40 TOL1 = 2.0*EPS*ABS(B) + 0.5*TOL
042 XM = .5*(C-B)
043 IF (ABS(XM) .LE. TOL1) GO TO 90
044 IF (FB .EQ. 0.0) GO TO 90
045 C
046 C IS BISECTION NECESSARY
047 C
048 IF (ABS(E) .LT. TOL1) GO TO 70
049 IF (ABS(FA) .LE. ABS(FB)) GO TO 70
050 C

051 C IS QUADRATIC INTERPOLATION POSSIBLE
052 C
053 IF (A .NE. C) GO TO 50
054 C
055 C LINEAR INTERPOLATION
056 C
057 S = FB/FA
058 P = 2.0*XM*S
059 Q = 1.0 - S
060 GO TO 60
061 C
062 C INVERSE QUADRATIC INTERPOLATION
063 C
064 50 Q = FA/FC
065 R = FB/FC
066 S = FB/FA
067 P = S*(2.0*XM*Q*(Q-R) - (B-A) * (R-1.0))
068 Q = (Q-1.0)*(R-1.0)*(S-1.0)
069 C
070 C ADJUST SIGNS
071 C
072 60 IF (P .GT. 0.0) Q = -Q
073 P = ABS(P)
074 C
075 C IS INTERPOLATION ACCEPTABLE
076 C
077 IF ((2.0*P) .GE. (3.0*XM*Q - ABS(TOL1*Q))) GO TO 70
078 IF (P .GE. ABS(0.5*E*Q)) GO TO 70
079 E = D
080 D = P/Q
081 GO TO 80
082 C
083 C BISECTION
084 C
085 70 D = XM
086 E = D
087 C
088 C COMPLETE STEP
089 C
090 80 A = B
091 FA = FB
092 IF (ABS(D) .GT. TOL1) B = B + D
093 IF (ABS(D) .LE. TOL1) B = B + SIGN(TOL1,XM)
094 FB = F(B)
095 IF ((FB*(FC/ABS (FC))) .GT. 0.0) GO TO 20
096 GO TO 30
097 C
098 C DONE
099 C
100 90 ZEROIN = B
101 RETURN
102 END

Figure 1

14

The program finds the root of a function, F, by successively shrinking the interval in which it must oc-

cur. It does this by using one of several approaches (bisection, linear interpolation, and inverse quadratic

interpolation), and it is the interleaving of the approaches that complicates the program.

Programs express the solution of a problem from an application domain within the notational constraints

of a specific programming language. Hence, part of the source code expresses problem-specific details,

and part is a manifestation of the idiosyncrasies and limitations of the programming language. Software

maintainers can be expected to have a complete understanding of the latter, but their knowledge of the

former is often limited. The examples given in this section attempts to limit the amount of domain knowledge

required of the maintainer. This was also a goal of the Basili/Mills approach.

3.1 Interleaving of Program Fragments

A casual examination of the program indicates that it contains several WRITE statements that may prove

useful in understanding the program. In fact, these statements display the progress that the program makes

in narrowing the interval containing root. They are controlled by the variable IP. IP is one of the program’s

input parameters, and an examination of the program indicates that it is not altered by the program and

that IP is used for no other purpose.

This leads to the conclusion that the debugging printout is a separable piece of functionality that has

been interleaved into the program. To make the analysis of the rest of the program simpler, it can be removed

from the text. This involves removing statements numbered 016, 017, 029, and 030 and modifying line 001

to remove the reference to IP.

The lines that have been removed are themselves analyzable. In fact, the job of producing the debugging

printout has been decomposed into two tasks. The first produces a header line, and the second prints out a

description of the interval upon every iteration of the loop.

3.2 Representing Structured Control Flow in Fortran

Basili and Mills begin their analysis by examining the control flow of the program. This has the advantage of

facilitated the confirmation of later hypotheses. In fact, the version of FORTRAN used in this program has a

limited set of control structures that forces programmers to use GOTO statements to simulate the full range

of structured programming constructs. In ZEROIN, for example, lines 010-012 implement a repeat-until

15

loop, lines 031-037 serve as an if-then statement, and lines 050-068 are an if-then-else. These lines are

the result of representation decisions by the original programmer. They can be detected by straightforward

analysis such as that typically performed by the flow analysis phase of a compiler.

Another technique for expressing control flow is illustrated in this program. In several cases (lines 43-

44, 48-49, and 77-78), an elaborate branch condition is broken up into two consecutive if statements, both

branching to the same place. Each pair could easily be replaced by a single if with multiple conditions, thus

further simplifying the control flow structure of the program at the expense of the condition being tested.

3.3 Interleaving by Code Sharing

Further analysis of the control flow of the program indicates that lines 085 and 086 comprise the else part

of an if-then-else statement. Moreover, these lines are “branched into” from lines 048 and 049. The two

assignment statements are really being shared by two parts of the program. That is, two execution streams

are interleaved because they share common code. Although this makes the program somewhat shorter and

assures that both parts are updated if either is, it makes understanding the program structure more difficult.

In order to express the control flow more cleanly, it is necessary to construct a structured version. This

requires that the shared code be duplicated so that each of the sharing segments has its own version. If the

common statements were more elaborate, a subroutine could be introduced and called from both sites. As

it is, it is a simple matter to duplicate the two lines producing a properly nested conditional construct.

3.4 A Loop with Two Entrances

The bulk of the code of this program (lines 022-096) consists of a loop. The loop iterates until a root is

found or the size of the interval is reduced to a user-supplied limit (lines 043-044). What is of interest from

an understanding point of view is that the loop has two entrances, one at line 025 and one at line 031. The

one at 025 is used in two circumstances, when the loop is first entered and when an iteration computes two

new endpoints on the same side of the root. This multiple use of lines 025-028 is the result of interleaving

these two computational streams.

Multiple entrances make loops hard to understand and complicate the process of confirming hypotheses

based on analysis of paths through the program. There are various ways to represent the same program flow

while simplifying the looping structure. For example, lines 025-028 could be duplicated and inserted after

16

line 095 (at the same time representing 095 as an if-then statement). Alternatively, the test on line 095

could be moved to the top of the loop. In either case, the result is a single-entrance loop.

3.5 Data Interleaving by Reusing Variable Names

An unfortunately common practice in programs is to use the same variable name for two unrelated purposes.

This naturally leads to confusion when trying to understand the program. It can be thought of as a kind

of interleaving where, instead of two separable segments of code being intertwined at one location in the

program, two aspects of the program state are sharing the use of the same identifier. In ZEROIN, this occurs

in two places, the identifiers TOL1 (in lines 011-012 and in the remainder of the program) and Q (on line

064 through the right hand side of line 068 and the remainder of the program, including the left hand side

of line 068). Instances of this practice can be detected by data flow analysis, a techniques commonly used

by compilers when optimizing the code it has generated.

3.6 Generalization of Interpolation Schemes

ZEROIN exhibits a situation where two sections of code use alternative approaches to compute the values

of the same set of variable. Both lines 057-059 and 064-068 are responsible for computing the values of the

variables P and Q. The determination of which approach to use is based on a test made on line 053.

This is an example of specialization. Both computations and the test can be replaced conceptually by

a more general expression that is responsible for computing P and Q based on the current values of the

variables A, B, C, FA, FB, FC, and XM. This has the further benefit of localizing (encapsulating) the uses

of the variables S and R inside of the new expression.

There are really several design issues involved here. First, both code segments represent the decomposition

of a problem into pieces expressed by a series of assignment statements. Then, the realization can be made

that both segments are special cases of a more general one allows the details of the individual cases to be

hidden away. This, in turn, makes the code shorter and easier to understand.

3.7 State Introduction

A common practice in empirical programming languages is to save the result of a computation in order to

avoid having to recompute the same value at a later time. If the computation is involved, this practice can

17

result in a significant savings at run time with a modest cost (one additional variable being introduced).

In ZEROIN, this practice has been used extensively. In particular, there has been a concerted effort

to save the results of calls to the user-supplied function, F, in the variables FA, FB, FC. Because F may

be arbitrarily complex, this practice may be the most important determinant of the ultimate efficiency of

ZEROIN.

An examination of the program reveals that FA, FB, and FC always contain the results of applying F

at the points A, B, and C, respectively. From the point of view of understanding the program, these three

additional variables do not provide a significant abstraction. On the contrary, they require a non-trivial

effort to understand and manipulate. Replacing them by their definitions makes the resulting program

representation easier to understand.

There are other examples in the program of the introduction of a variable to capture the result of a

computation. From the point of view of comprehension, there are two factors to be weighed in deciding

whether to view the program with the variable name replaced by its value or left alone. On the one hand,

each new variable places a burden on the person trying to understand the program. The variable must

be read and its purpose understood and confirmed. On the positive side, variables can serve as valuable

abbreviations for the computation that they replace. It is easier to understand a variable with a carefully

chosen mnemonic name than the complex expression it represents. In the case of ZEROIN, the variables

FA, FB, and FC provide little in the way of abstraction. P and Q, on the other hand, abbreviate significant

computations. XM lays somewhere in the middle.

3.8 Other Small Examples of Representation Decisions

There are several additional instances where knowledge of the FORTRAN language and how to program in

it are of value in understanding ZEROIN.

RETURN Statement: Functions in FORTRAN return their results by assigning them as the value of a

special variable who’s name is the same as the name of the function. In the case of this program, the variable

ZEROIN is used only for this purpose.

Conditional Expression: Lines 092-093 represent a standard conditional statement. The value of the

variable B is being adjusted by one of two factors based upon a test condition. Using a conditional expression

18

instead of two IF statements avoids the duplication of the test.

Programming Idiom: Sign Test Line 095 represents a test to determine whether the values of the

function F at the points B and C are the same.

Programming Idiom: Variable Swap A similar situation can be found on lines 032-034. This is an

example of the classical idiom to swap the values of two variables. Once again a direct statement of this

improves comprehension.

If-Then-Else: Lines 072-073 can be reformulated as an if-then-else statement. This requires an under-

standing of what absolute value means so it may be beyond the power of a simple program transformation

system.

Programming Idiom: Computation of Machine Precision Lines 009-012 compute the value of EPS,

a small floating point number used to determine whether the computed root is close enough to the actual

root. It accomplishes this by successively dividing EPS by 2.0 until a result is computed that is too small

to effect the result of an addition to 1.0. This value will be a constant for a particular machine and could

have been supplied as a literal or through a call on an library function. In either case, the value could be

referenced directly on line 041.

3.9 Generalization of Interval Computation

Thus far, the analysis of the program has proceeding without any knowledge of the problem domain, root

finding. Because automated tools are unlikely to contain much knowledge of the wide variety of possible

applications, it is desirable to isolate the problem elements into explicit chunks. An example of this was

found in the generalization described in Section 3.6.

Now that the recognition of some intermediate design has clarified the structure of the program, the

same sort of observation can be made about lines 048-086. They have the function of assigning values to

the variable D and E based on the values of the variables A, B, C, D, E, F, TOL1, and XM. The fact that

the list of variables is so long indicates that this segment is fundamentally interleaved with the rest of the

program. Nevertheless, it is of value to indicate that the only explicit effect of these lines of code is to set

these two variables.

19

It should also be noted, that as in Section 3.6, there are several instances of specialization. Lines 079-080

and 085-086 are selected based on the tests on lines 077-078. Likewise, the lines between 049 and 050 and

lines between 050 and 087 are special cases selected on the basis of the tests on lines 048 and 049.

3.10 Program Architecture

Once the analysis described above has been performed, it is possible to appreciate the overall structure of

the program. Based on the value returned on line 044, the program can be seen to use the variable B to

hold approximations of the root of the function. B is modified on line 092 by either XM or D. The sections

starting on line 095 and on line 031 act as adjustments that are made in special situations.

Another conclusion that is now apparent is that A gets its value only from B while C gets its value only

from A. Thus A, C, and B serve as successively better approximations to the root. In fact, except under

special circumstances, A and C have identical values. Likewise, E normally has the same value as D. The

resulting architecture of the program is isolated in Figure 2.

001 REAL FUNCTION ZEROIN (AX,BX,F,TOL)
024 C
028 initialization

C
loop

conditional adjustment 1
038 C
043 if (close enough to final answer)

return(B)
045 C
092 compute new value of B

C
conditional adjustment 2

096 endloop

Figure 2

3.11 Summary

Basili and Mills make extensive use of program proving techniques to understand and document ZEROIN.

Although systems exist to assist in the verification of a proof, the automatic generation of loop invariants

and the full automation of program proving is a long way off.

Computer Science research describes two approaches to reasoning about imperative programs: an asser-

tional approach using invariants and, more recently, a transformational approach. While Basili and Mills

used the assertional approach we have applied a transformational one.

The examples described in this section make use of the characterization of design decisions described in

20

Section 2. Recognition of instances of these activities does not require knowledge of the problem domain, but

can use analysis techniques commonly found in compilers Most importantly, the separation of the examples

emphasizes different aspects of the program structure that may not be apparent when a single analysis

approach is used.

The assertional reasoning used in Basili and Mills finds its formal foundations in the the area of program

verification. The transformational approach used in this paper is grounded in the newer techniques of

transformational programming. The two approaches are complementary. Assertional reasoning can be used

to identify design dependencies in imperative programs. The transformational approach is useful in that it

permits the use of powerful transformations to restructure the program. By restructuring the program text,

a programmer can simplify the task of recognizing important design dependencies.

4 THE FUTURE FOR DESIGN DECISIONS

Software maintenance require a deep understanding of the software being manipulated. That understanding

is facilitated by the presence of design documentation. Effective documentation should include a description

of the structure the software together with details about the decisions which lead to that design.

Design decisions are not as yet fully understood. Indeed, many widely used notations for software design

do not have the resolving power needed to represent and document design decisions. To understanding

the design decisions underlying the implementation, a programmer must be able to identify high-level com-

ponents, design dependencies, and transformations. In the future the programmer’s efforts to identifying

components, design dependencies and transformations should be automated, at least in part. Many tools

for collecting and analyzing data from the program text — including cross-reference listings and diagrams

tracing the flow of control and data within the program — can be based on technology previously developed

for compilers.

Design decisions are where abstract models and theories of an application domain confront the realities

of limited machines and imperfect programming languages. If the design decisions can be reconstructed,

then there is hope of being able to reuse the mountains of undocumented software confronting us.

21

References

[1] Victor R. Basili and Harlan D. Mills, “Understanding and Documenting Programs,” IEEE Transactions

on Software Engineering, Vol. SE-8, No. 3, May 1982.

[2] Martin S. Feather, “A Survey and Classification of some Program Transformation Approaches and

Techniques,” Program Specification and Transformation, pp. 165-195, North Holland, 1987.

[3] Barbara Liskov and John Guttag. Abstraction and Specification in Program Development, The MIT

Electrical Engineering and Computer Science Series, McGraw-Hill Book Company, 1986.

[4] Lawrence J. Peters, Software Design: Methods and Techniques, Yourdon Press Computing Series, Pren-

tice Hall, 1981.

[5] Eliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman and Robin Lamport, “Designing Doc-

umentation to Compensate for Delocalized Plans,” Communications of the ACM, Vol. 31, No. 11,

November 1988.

22

