The Representation Problem in Reverse Engineering

Spencer Rugaber and Richard Clayton
College of Computing and Software Research Center
Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract

Building models to understand software systems s
an important part of reverse engineering. Formal and
explicit model building 1s important because it focuses
attention on modeling as an aid to understanding and
results in artifacts that may be useful to others. The
representation used to build models has great influence
over the success and value of the result. Choosing the
proper representation during reverse engineering is the
representation problem. This paper examines the rep-
resentation problem by presenting a taronomy of solu-
tions. It also illustrates the issues involved in choosing
a representation through an example reverse engineer-
g task.

1 Introduction

Chikofsky and Cross define reverse engineering to
be “the process of analyzing a subject system to iden-
tify the system’s components and their interrelation-
ships and create representations of the system in an-
other form or at a higher level of abstraction [CC90].”
They go on to describe six key objectives of reverse en-
gineering: controlling complexity, generating alterna-
tive views, recovering lost information, detecting side
effects, synthesizing higher abstractions, and facilitat-
ing reuse.

The concept of representation is central both to the
process and the objectives of reverse engineering. To
be effective, reverse engineers must develop a process
capable of dealing with the informal insights developed
while understanding a program and of producing ex-
plicit representations of that understanding useful to
accomplish the objectives listed above.

This paper distinguishes between the mental activ-
ities involved in understanding a program and the rep-
resentations produced. The reverse engineer is respon-
sible for developing mental models of what a program
does. Representations and formal representation tech-
niques are tools for modeling and for expressing the
results.

Model making is an appropriate activity for under-
standing software systems. One reason is that soft-
ware itself 1s a model and so is already in a schematic
form, reducing the effort needed to construct further
models. A second reason is that programs are con-
structed from known quantities, such as executable
statements and data structures, reducing some of the
mystery as to how a program is constructed and lead-
ing to models that can accurately reflect the software
system under consideration. Finally, programmers,
the people most likely to need a detailed understand-
ing of a software system, are, to some extent, trained
as model makers and so are likely to have both the
skill to construct mental models and an appreciation
of the value in doing so.

Understanding a software system by constructing
mental models 1s an important part of any task in-
volving a software system. A large part of current
work in reverse engineering is concerned with making
explicit the usually implicit comprehension activities
and models involved in software tasks [Van92, Raj92].
Explicit knowledge representation results in greater
awareness and attention to reverse engineering activ-
ities, better prediction of the activities’ expected ef-
forts and results, and a collection of well-defined sys-
tem models valuable to every task being carried out
on the software system.

The importance of building and manipulating ex-
plicit models points to a central issue in reverse engi-
neering: the way models should be built and, in partic-
ular, the representations that should be used to build
the models. In keeping with the implicit nature of
most reverse engineering activity, current model rep-
resentations, if they exist at all, are typically informal
and ad hoc: text files containing extracted informa-
tion, documentation, programmer’s notes, or folklore.
These representations are too ephemeral to be a stable
base for explicit, organized activity. The representa-
tion problem in reverse engineering is concerned with
determining what representations are suitable to the
reverse engineering process and the circumstances un-

der which they should be used.



This paper examines the general features of the rep-
resentation problem. It presents a taxonomy of issues
related to solving the representation problem. The is-
sues are illustrated in a reverse engineering exercise
to convert a COBOL program to a program written
in a fourth generation language (4GL). Our observa-
tions from the example lead to suggested directions
in future research aimed at solving the representation
problem.

2 A taxonomy of issues in model rep-
resentations

There are several ways of looking at representations
of reverse engineering information. We have chosen
an approach emphasizing three aspects: the informa-
tion content captured by the representation, how the
representation supports modeling, and how the repre-
sentation is to be used.

2.1 Information content

There are two issues related to the information con-
tent of a representation. The first is the subject matter
being represented. The second is the tradeoff between
fidelity and abstraction.

2.1.1 Subject matter: Reverse engineers require
an understanding of at least three aspects of a program
in order to accomplish any of Chikofsky and Cross’s
objectives: 1) the computations performed by the pro-
gram and how they are structured, 2) the rationale
behind the computational structure, and 3) an under-
standing of how the program computations solve the
application problem. For example, if a maintenance
task is to repair a program fault, the fault must be lo-
cated amongst all of the computations performed by
the program. If the task is to make a significant en-
hancement, 1t may be necessary to understand why
the program was structured the way that it was. If
the task is to extract business rules from an existing
information system, then the nature of the business
and how the program helps accomplish it must be de-
termined.

Rumbaugh, et al.[RBP*91] have identified three
important viewpoints for understanding the compu-
tations performed by a program: the objects ma-
nipulated by the computation (the data model), the
manipulations performed (the functional model), and
how the manipulations are organized and synchro-
nized (the dynamic model). Most representation tech-
niques used during software design emphasize one of
these three views.

Representation Examples
Object-Oriented Frameworks [JF88]
Category theory Srigl]

[

[
[Big89, Lub91]
[Nei84, ABFP86]
[CR86]
[
[
[

Concept hierarchies
Mini-languages
Database languages

Narrow spectrum languages Web8&7]
Wide spectrum languages Wil87, WCM89]
Knowledge Representation Bar85]

Text

Table 1: Application domain models

A way of representing the rationale for a program’s
computational structures is in terms of the design de-
cisions they implement [ROL90]. Design is a rational
process involving a series of decisions transforming a
specification into an implementation. If reverse engi-
neering can detect clues to the decisions made, it can
use the clues to “untransform” the program back to
a higher level. The detected clues can be organized
around categories of design decisions. Among the de-
cision categories are the following:

e Decomposition: breaking a problem into pieces;

e Specialization: dealing with commonality and
special cases;

e State introduction: introducing structures to
avold recomputation or improve abstraction;

e Removing choice: tying down choices left free by
the specification;

e Representation: choosing implementation mech-
anismes;

e Encapsulation/interleaving:  controlling which
computational structures are grouped together
and which are distributed.

The third issue related to subject matter concerns
the domain knowledge used to express the emerging
model. Two important categories of domain knowl-
edge are programming skills and application domain.
Programmers use a collection of mechanisms for con-
structing their programs. These are often described as
“plans” or “schemes” in program understanding liter-
ature [RW90]. There also is work going on in “do-
main analysis/engineering/modeling” to support for-
ward engineering activities via reuse. Table 1 summa-
rizes a variety of approaches taken by various projects
involved in modeling application domains.



2.1.2 Fidelity and abstraction: Models con-
structed during reverse engineering are more abstract
than the code from which they are derived. However,
there are several questions related to the degree of ab-
stractness appropriate to the emerging models: the
amount of detail retained in the representation and,
consequently, the completeness of the representation;
the extent to which the representation captures the ap-
plication semantics versus reformulating its code syn-
tactically; and the “operationality” of the representa-
tion.

A question with regard to fidelity is whether the
corresponding representation retains all of the infor-
mation available in the source code. For example,
are the indentations and comments from the code re-
tained? Abstract syntax trees, a common representa-
tion, ignore such minutiae in favor of a syntactically
organized representation focusing on constructs ex-
pressing the computations performed. A related issue
is whether the representation retains informal annota-
tions composed by the original designers, subsequent
maintainers, or reverse engineers.

Syntactically oriented representations are limited to
answering low-level questions about the design. For
reverse engineering to be successful, a representation
must be constructed describing the implementation
architecture and how it relates to the problem being
solved by the software. An example is thinking of a
compiler as a pipeline of independent filter programs
for lexically, syntactically, and semantically analyzing
a program and then generating and optimizing the
target code. The pipeline model of the compiler ar-
chitecture is one of many emerging high-level idioms
for software designs. Shaw discusses the issues related
to this approach to software development [Sha89].

Semantically oriented representations can be
classed as to how operational they are. The more
operational representations serve as algorithms for
some specific computational mechanism or abstract
machine. Expressing a program in another program-
ming language is an operational representation; so is a
virtual machine description. Slightly less operational
are representations employing well-understood math-
ematical constructs, such as sets, lists, and trees, simi-
lar to the approach taken by VDM and Z in expressing
software specifications. Finally, the least operational
representations abstract all the way back to a spec-
ification expressed in the predicate calculus. This is
similar to the axiomatic semantics approach to formal
specification.

2.2 Representational for the

modeling process

support

A representation for reverse engineering models
should support the methods used to construct the
models. Among the issues that must be addressed
are the following. How does the representation or-
ganize and express hypotheses and guesses about a
program segment’s purpose before they are confirmed
or refuted? How does the representation describe the
intra- and inter-relationships among the derived de-
sign description fragments, the code, and the domain
representation, particularly before the overall design
architecture has become apparent? Does the represen-
tation support inferencing and querying by the reverse
engineer? As the program/design is transformed and
abstracted, are previous versions retained? Perhaps
most important, to what extent does the representa-
tion support pattern matching (the search for abstract
program constructs), which is often expressed in terms
of syntactic patterns and logical constraints?

2.3 How will the representation be used?

Reverse engineering has many objectives, such as to
generate or update system documentation, to support
maintenance, or as a prerequisite for re-engineering.
In the ideal situation, it would be desirable to have a
single representation capable of supporting all of these
objectives. However, the current state of the practice
often leads to representations aimed at supporting a
single objective. In addition to the high-level uses
mentioned above, more specific output requirements
may drive the choice of a representation. For exam-
ple, does the representation need to be automatically
manipulatable? The answer to this question might de-
termine whether the representation is kept in symbolic
or in graphical form. Or is the representation capable
of supporting multiple alternative graphical views?

If the representation is going to promote reuse, then
it is important to know the extent to which it supports
manipulations to adapt the code, such as generaliza-
tions and specializations. The manipulations might
also involve interleaving several abstractions to form
a combined result. Of course, being able to find the
abstraction in the first place is essential to represen-
tations intended to support reuse.

Finally, the representation needs to be extensible
in the following sense. If the results of the reverse
engineering are going to be used to support other ac-
tivities such as maintenance and re-engineering, then
it is desirable to be able to use the same representa-
tion for these activities as was used during the reverse



engineering. This will likely require adaptations and
extensions to the representation.

2.4 Summary

In this section we have analyzed the issues related
to selecting a representation for use during reverse en-
gineering. The issues have been broken down into cat-
egories depending on whether they relate to the infor-
mation content of the representation, the reverse en-
gineering process actually undergone, or the intended
use of the reverse engineering information. Table 2
summarizes our taxonomy of issues related to solving
the representation problem. Next we will present an
example of how these issues have effected the repre-
sentation choices on an existing reverse engineering
project.

3 An Example

This section describes the models developed and the
representations used during a reverse engineering ex-
ercise. The intention is to 1) illustrate our view of the
importance of modeling as described in section 1; 2)
give readers the opportunity to establish connections
with their own experience; and 3) motivate portions
of the taxonomy described in section 2.

3.1 The reverse engineering task

The motivation for this reverse engineering exer-
cise was to determine the feasibility of moving third
generation information systems from a mainframe
COBOL environment to a 4GL running with a rela-
tional database management system in a distributed,
open systems environment. To investigate this prob-
lem, a typical information system was reverse engi-
neered to obtain its design. The design was used to
construct a 4GL program capable of duplicating the
reports generated by the original program. The pro-
gram, called P13AGU, is part of a system for keeping
track of and producing reports on the maintenance
status and operational readiness of Army equipment.
The P13AGU program produces a report summariz-
ing the status of all equipment described in an input

file.
3.2 Approach

Synchronized Refinement was the technique used to
reverse engineer P13AGU [KR90, OR92]. Synchro-
nized Refinement begins by constructing two related
models of the software: one describing the program

text and the other the application problem. Once
the two models are in place, they are refined towards
each other. The low-level, code model becomes more
abstract, suppressing operational details while high-
lighting the design architecture. The high-level, appli-
cation model becomes more specific, augmenting the
problem description with solution details. The ob-
jective 1s to refine the two models so they meet and
match “in the middle,” forming a complete and plau-
sible path from problem to solution.

Progress in Synchronized Refinement occurs in
both directions beginning with the application model,
the early stages of the code model are often little
more than independent fragments of unknown value.
The application model begins as an overview of the
problem and a series of hypotheses or expectations
about possible solutions. The expectations are repre-
sented as a concept hierarchy to indicate interdepen-
dencies. The current set of expectations that obtain
in the application model suggest possible structures
for the code model. When a plausible structure is
located in the code, the associated parts of the two
representations are linked by an annotation describing
the relationship. Successfully linking the two models
leads to suggestions for further refinements. The ap-
plication model becomes more detailed to reflect the
deeper understanding about possible solutions, and
the code model becomes more abstract as details are
suppressed.

Design decisions coordinate the two models. A
design decision is denoted by programming language
constructs indicating how a programmer has chosen to
implement a particular design idea. The application
model suggests what kinds of design decisions the code
model might implement, and the source code contains
manifestations of actual design decisions for which the
application model must account. [ROL90] provides
a characterization of useful categories of design deci-
sions; section 2.1.1 of this paper contains a summary.

We chose to use Synchronized Refinement for a
number of reasons. First, we are familiar with the
technique and have used 1t successfully on similar
problems in the past. Second, it uses many models,
including not only the application and code models,
but also a number of subsidiary models to support
refinements of the two main models. Finally, it per-
forms frequent and complex manipulations on models
to keep track of progress during refinement.



What is the information content of the representation?
What is the subject matter covered by the representation?
What views of the program’s computation does the representation provide?

Data view?
Functional view?
Dynamic view?

How does the representation support the model building process?
What domain knowledge is represented?

Programming domain knowledge?
Application domain knowledge?

How does the representation deal with fidelity and abstraction?

How complete is the representation?

Is the representation aimed primarily at syntactic or semantic issues?

How abstract is the representation?

How well does the representation support the modeling process?
Does the representation include expectations?
Can the representation cope with incomplete structures?
Does the representation support inferencing and querying?
Does the representation support version control?
Does the representation support pattern matching?

How will the representation be used?
For automatic manipulation?
For graphical or textual viewing?
To support reuse and adaptation?

Can the representation be indexed?

How compatible is the representation with other tasks?

Table 2: Summary of representation issues

3.3 Synchronized Refinement models of
P13AGU

The Synchronized Refinement of P13AGU starts
with a high-level application model (section 3.3.1) and
a low-level code model (section 3.3.2) and goes on to
develop a number of subsidiary models (section 3.3.3).

3.3.1 The application model: The application
model is a description of the problem the system is
trying to solve. A successful reverse engineering effort
must include a description of what a system does and
how 1t does it. The initial application description used
in Synchronized Refinement is expressed in terms of a
concept hierarchy.

The initial application model is typically quite
vague and incomplete. It is a statement of what, if any,
expectations the reverse engineer has about the pur-
pose of the program. The expectations for PI3AGU
consisted of two concepts: “equipment availability”
and “report writing”. The latter leads to expecta-
tions about page layout and line counting. As the code

model develops, further expectations are added to the
application model’s hierarchy. Most expectations are
either generated by code analysis or are elaborations
of the original expectations. Occasionally it is neces-
sary to amend part of the hierarchy when conflicting
data are encountered in the program.

The application concept hierarchy is related to the
code model in several ways. First, each concept in
the application model 1s ultimately manifested in the
code model, by both data and operations. When using
Synchronized Refinement, annotations are kept relat-
ing each refinement in the application model to the
related abstraction in the code model. Annotations
record not only the appropriate lines in the program
and the concept hierarchy, but also the type of de-
sign decision the original developer made in order to
express the concept in the code.

3.3.2 The code model: Representations of the ini-
tial code models are necessarily low level since they are
derived directly from the code. They can all be eas-
ily expressed using well-known techniques. Moreover,



they are so generally useful that they are typically
performed prior to any detailed reading of the code.

The two prominent features of the application
model described in the previous section are the in-
puts read and the report generated by the program.
P13AGU reads two input files. One file contains
a single record, called the DATE record, describing
the circumstances under which a report is requested.
A model for the DATE record file was constructed
directly from the FILE DESCRIPTION section of
the source code and represented by a Jackson dia-
gram [Jac75]. An analysis of the source code indicated
that the file is only read once, so no repetition is in-
volved. Later analysis indicated some of the DATE
record fields are never referenced by the program. This
led to refinement of the original model and edits to its
representation.

The other input file was significantly more difficult
to analyze. Superficially, it appeared to be a collection
of homogeneous data records, each containing a fixed
number of fields. There are no REDEFINES clauses,
but analysis of the source code indicated that multi-
ple records from the input file are read. In addition,
there are several COBOL FILLER fields, indicating
positions in the input record not relevant to the pro-
gram. It became apparent later in the analysis that
the model of the second input file was seriously defi-
cient. In fact, the records in this input file are sorted
to three levels, and the program depends on the or-
dering. This fact only became obvious after detailed
analysis of the source code indicated how the records
were being processed. This model was also represented
by a Jackson diagram.

The complement to this representation of the pro-
gram’s input data i1s a model of the flow of control
during program execution. P13AGU makes heavy
use of PERFORM paragraphs to organize activities.
A control flow graph of each paragraph was used to
represent this information and quickly made it appar-
ent that the input file had some structure not obvious
from its FILE DESCRIPTION information.

Another model developed early during the exer-
cise indicated where in the source code each named
data item was declared, where it was used, and how it
was referenced (for reading or writing). This informa-
tion 1s typically represented in a cross reference listing.
Despite the simplicity of a cross-reference representa-
tion of the code, it proved to be surprisingly useful,
and 1t became essential when trying to unite the data
and control-flow models into a comprehensive model
of program behavior.

As an example, P13AGU makes heavy use of PER-
FORM clauses. Before a paragraph is PERFORMed,

Model

Input data

Control flow
Variable-use
Program architecture

Representation Technique

Jackson diagram
Control flow graph
Cross reference

Call graph

Table 3: Models and representation techniques

data are moved into named areas of WORKING
STORAGE, and after the paragraph is complete, re-
sults are moved from other areas into program vari-
ables. This led to the expectation that these MOVE
actions were implementing an argument list to be
made available to the paragraph as if it were an in-
dependent procedure, taking arguments and returning
results. Once this expectation was confirmed, the data
items used for this purpose could be annotated and a
more abstract version of the program constructed. It
is interesting to note that, in this example, data flow
analysis of the sort performed by an optimizing com-
piler had to be understood, but i1t did not have to be
represented explicitly.

Another model used during this exercise deter-
mined the major components of the system and their
relation to each other. One representation for this in-
formation is a call graph in which nodes at the top
of the graph PERFORM nodes at the bottom. This
representation enables the reverse engineer to deter-
mine a bottom-up ordering for modeling the purpose
of each paragraph.

Table 3 summarizes the code models derived dur-
ing this stage of analysis and the representation tech-
niques used.

3.3.3 Refined models: The models described in
the previous two sections were developed early during
Synchronized Refinement. As the process continued,
the initial models were transformed and abstracted.
Versions of the model were saved with a description of
why they were created, the transformations performed
to create them, the associated design decisions, and
any other commentary the reverse engineer thought
important. Approximately one hundred model trans-
formations were cataloged during P13AGU’s Syn-
chronized Refinement.

Some transformations were lateral or regressive;
that is, they either didn’t advance a model’s refine-
ment or they “unrefined” it. For example, COBOL
permits the contents of one memory location to be
MOVEd to several other named locations in the same
statement. These other locations are often not related
conceptually. Replacing multiple MOVE statements



by individual MOVEs allowed for further independent
refinements. These extra MOVE statements were im-
portant in recognizing and forming the procedure-call
refinements on PERFORM statements mentioned ear-
lier.

Another class of language-specific transformations
were related to limitations in COBOL control struc-
tures. On some occasions, modern control structures
unavailable in COBOL were simulated using GOTOs.
On others, a cascade of decisions and interleaved GO-
TOs were used to avoid duplicating a section of code.
In practice, this might improve the efficiency of the
program, but at the price of reduced code clarity.
Transformations applied to the code model abstracted
away from these details.

The original code was monolithic, all statements
appearing in one file. There were no logical or cos-
metic distinctions separating the various components
other than labels indicating the beginning and end
of each paragraph. Moving related code into sepa-
rate files helped reconstruct a high level architecture.
For example, there was one paragraph responsible for
checking whether the value of a variable occurred in
a table of legal values. The table, together with the
checking code, were broken out into a separate file.
This step was a prerequisite for moving from a de-
sign dominated by logical cohesion to one with a more
functional organization.

Code hoisting and lowering are interesting lateral
transformations. Because the design of the original
system was dominated by logical cohesion, it was of-
ten the case that a section of code contained several
operations or sub-functions that were not closely re-
lated. Separating these functions lead to more coher-
ent design. One way to do this was to hoist a sub-
function from the beginning of a paragraph to sites
just before each of the places where the paragraph
was PERFORMed. Likewise, code near the end of a
paragraph was lowered to just after the point where
the paragraph returned. These transformations en-
abled subsequent transformations to group operations
together based on the data they manipulated (com-
municational cohesion).

There were also many cosmetic transformations.
These included renaming variables to better indicate
their purpose within the code, removing data items
not referenced in the code, and introducing new func-
tions to perform data retrieval from encapsulated ob-
jects. The value of these cosmetic transformations has
been pointed out by Byrne[Byr91].

Each of the transformations reflected a refinement
to the reverse engineer’s understanding of the pro-
gram. The technique used to represent the transfor-

Transformation Purpose

Separation of concerns
Raise abstraction level
Improve modularity
Improve modularity
Relate to Application

Lateral /regressive
Control restructuring
Segregation into files
Code hoisting/lowering
Cosmetic

Table 4: Model transformations

mation was to indicate the original source lines and
their replacement, expressed in pseudo code. Table 4
summarizes the kinds of transformations performed
during this stage of reverse engineering.

3.4 Summary

This section has described the models and asso-
ciated representations used when reverse engineering
a program. The method used, Synchronized Refine-
ment, attempts to cover the entire range of system
description from problem statement through design to
implementation. This range of focus results in a large
set of models, diverse in both what is being modeled
and how the models are being represented. The iter-
ative nature of Synchronized Refinement encourages
explicit model manipulations, analyzing the current
model set and extending it to reach the next model
set.

4 Global issues in model representa-
tions

The previous sections have considered requirements
on model representations with respect to a single re-
verse engineering task. FExplicit model making also
provides value over time, as subsequent reverse en-
gineering tasks can draw on the models created by
tasks already performed. This section considers re-
quirements for long-term support of reverse engineer-
ing model development.

An important issue in long-term support for model
representations is the trade-off between representation
diversity and the ability to integrate representations.
Diversity arises because representations are not uni-
formly suited to all models; given some particular
model, it will usually be easier to represent it in some
forms than others. The need for a number of different
models during reverse engineering leads to representa-
tion diversity.

The ability to integrate representations ensures
that reverse engineers using a collection of previously
created models will be able to extract maximum value



from them with minimum effort. Although it may
be that a model is used only in isolation, it seems
more likely, as illustrated by the Synchronized Refine-
ment example above, that models are integrated in
various ways during reverse engineering. It should be
both possible and easy to integrate previously unre-
lated models; failure to do so results in either a limited
ability to carry out reverse engineering or duplicated
effort as the reverse engineer re-creates the models in
an integratable form.

Two mechanisms for achieving balance in the trade-
off between representation diversity and integration
are universal representations and software backplanes.
A universal representation claims to provide more or
less equal support for all models. Examples of univer-
sal representations are Lisp symbolic expressions and
relational database tables. A more sophisticated ap-
proach aimed directly at the software representation
problem is IDL [Lam87]. Universal representations
move the trade-off balance away from diversity to-
wards integration. A software backplane is essentially
an interconnection and communication standard un-
derstood by all models [Pas88]. The interconnection
standard insures the models can be linked together;
the communication standard insures the models can
be made to do useful things once linked together. Soft-
ware backplanes try to compromise, moving one piece
towards diversity and the other towards integration.

The degree to which each of the mechanisms should
be used to balance the trade-off between representa-
tion diversity and integration is unclear. It seems un-
likely that just choosing one over the other will be
acceptable. Software backplanes are the more promis-
ing of the two mechanisms since they offer a chance
to achieve a balance instead of a trade-off between di-
versity and integration. However, it is clear that soft-
ware backplanes require much preparatory work and
incur a fixed and perhaps not small overhead during
model making. In addition, the number of notable
systems built using software backplanes is small in
comparison to the popularity of the metaphor. Uni-
versal representations, having more modest objectives,
have been more successful, particularly in reverse engi-
neering and software engineering in general. However,
their value outside the research lab, where diversity in
product, practice, and practitioner are a fact of life, is
less clear.

5 Conclusion
We have argued that model making is a fundamen-

tal activity in reverse engineering but is generally done
in an implicit and informal way, which tends to limit

the value of model making to the short term. Ex-
plicit and formalized model making in reverse engi-
neering results in models that continue to have value
after the activity that resulted in their creation is com-
pleted. The representations used to construct mod-
els is of central concern when the models are to be
long lived. After characterizing the general features
of models and the ability of various representations to
support their features, we have presented a supporting
example of modeling in reverse engineering. We have
also presented more general considerations for model
representations, with emphasis on their overall archi-
tecture.

6 Acknowledgements

The authors gratefully acknowledge the support
of the Army Research Laboratory through contract
DAKF 11-91-D-0004 and the encouragement of Dr.
Jay Gowens.

References

[ABFP86] Guillermo Arango, Ira Baxter, Peter Free-
man, and Christopher Pidgeon. TMM:
Software maintenance by transformation.

IEEE Software, 3(3):27-39, May 1986.

[Bar85]  David Barstow. On convergence toward
a database of program transformations.
ACM Transactions on Programming Lan-
guages and Systems, 7(1):1-9, January
1985.

[Big89]  Ted J. Biggerstaff. Design recovery for
maintenance and reuse. IEEE Computer,
22(7), July 1989.

[Byr91]  Eric J. Byrne. Software reverse engineer-
ing: A case study. Software—Practice
and Ezperience, 21(12):1349-1364, Decem-
ber 1991.

[CCI0] Elliot J. Chikofsky and James H. Cross II.

Reverse engineering and design recovery:
A taxonomy. IEEE Software, 7(1):13-17,
January 1990.

[CR86] Y. F. Chen and C. V. Ramamoorthy. The
C information abstractor. In Proceedings

COMPSASC 86, pages 291-298. TEEE,
1986.

[JacT5] M. A. Jackson. Principles of Program De-

sign. Academic Press, 1975.



[JF88]

[KRI0]

[Lam87]

[Lub91]

[Nei84]

[OR92]

[Pas88]

[Raj92]

[RBP+91]

[ROLIO]

R. E. Johnson and B. Foote. Design-
ing reusable classes. Journal of Object-
Oriented Programming, 1(2):22-35, June-
July 1988.

Kit Kamper and Spencer Rugaber. A
reverse engineering methodology for data
processing applications.  Technical Re-
port GIT-SERC-90/02, Software Engineer-
ing Research Center, Georgia Institute of
Technology, March 1990.

David Alex Lamb. IDL: Sharing interme-
diate representations. ACM Transactions
on Programming Languages and Systems,

9(3):297-318, July 1987.

Mitchell D. Lubars. Domain analysis and
domain engineering in IDeA. In Ruben
Prieto-Diaz and Guillermo Arango, edi-
tors, Domain Analysis and Software Sys-
tems Modeling, pages 163-178. IEEE Com-
puter Society Press, 1991.

James M. Neighbors.
proach to constructing
reusable components. IEEFE Transactions
on Software Engineerings, SE-10(5):564-
574, September 1984.

The Draco ap-
software from

Stephen B. Ornburn and Spencer Rugaber.
Reverse engineering: Resolving conflicts
between expected and actual software de-
signs. In Proceedings of the Conference on
Software Maintenance, pages 206-213, Or-
lando, Flordia., November 1992.

W. Paseman. Architecture of an integra-
tion and portability platform. In COMP-
CON Spring 88, pages 254-8, San Fran-
cisco, California, February 29-March 3
1988. IEEE Computer Society.

Vaclav Rajlich, editor. Workshop Notes
—  Program Comprehension, Orlando,
Florida, November 9 1992. IEEE Com-
puter Society.

James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and
Design. Prentice-Hall, 1991.

Spencer Rugaber, Stephen B. Ornburn,
and Richard J. LeBlanc, Jr. Recognizing
design decisions in programs. [EEE Soft-
ware, 7(1):46-54, January 1990.

[RW90]

[Sha89]

[Sri9l1]

[Van92]

[WCMB89]

[Web87]

[Wil87]

Charles Rich and Richard C. Waters. The
Programmer’s Apprentice. Addison Wes-
ley, 1990.

Mary Shaw. Large scale systems require
higher level abstractions. In Proceedings
of the Fifth Workshop on Software Speci-
fication and Design, pages 143-146. ACM
SIGSOFT Notes, ACM, May 1989.

Yellamraju V. Srinivas. Pattern Matching:
A Sheaf-Theoretic Approach. PhD thesis,
Department of Information and Computer
Science, University of California at Irvine,

May 1991.

Larry Van Sickle, editor. Workshop Notes
— Al and Program Understanding, San
Jose, California, July 12 1992. AAAL

M. Ward, F. W. Calliss, and M. Munro.
The maintainer’s assistant. In Proceedings
of Conference on Software Maintenance,
pages 307-315, Miami, Florida, October
1989. IEEE Computer Society Press.

Dallas E. Webster. Mapping the design
representation terrain: A survey. Tech-
nical Report MCC STP-093-87, Micro-
Electronics and Computer Technology
Corporation, July 1987.

David S. Wile. Local formalisms: Widen-
ing the spectrum of wide-spectrum lan-
guages. In L. G. L. T. Meertens, edi-
tor, Program Specification and Transfor-
mation, pages 165-195. Elsevier North Hol-
land, 1987.



