
The Representation Problem in Reverse Engineering

Spencer Rugaber and Richard Clayton

College of Computing and Software Research Center

Georgia Institute of Technology

Atlanta� GA ����������

Abstract

Building models to understand software systems is

an important part of reverse engineering� Formal and

explicit model building is important because it focuses

attention on modeling as an aid to understanding and

results in artifacts that may be useful to others� The

representation used to build models has great in�uence

over the success and value of the result� Choosing the

proper representation during reverse engineering is the

representation problem� This paper examines the rep�

resentation problem by presenting a taxonomy of solu�

tions� It also illustrates the issues involved in choosing

a representation through an example reverse engineer�

ing task�

� Introduction

Chikofsky and Cross de�ne reverse engineering to
be �the process of analyzing a subject system to iden�
tify the system�s components and their interrelation�
ships and create representations of the system in an�
other form or at a higher level of abstraction �CC����	
They go on to describe six key objectives of reverse en�
gineering
 controlling complexity� generating alterna�
tive views� recovering lost information� detecting side
e�ects� synthesizing higher abstractions� and facilitat�
ing reuse�

The concept of representation is central both to the
process and the objectives of reverse engineering� To
be e�ective� reverse engineers must develop a process
capable of dealing with the informal insights developed
while understanding a program and of producing ex�
plicit representations of that understanding useful to
accomplish the objectives listed above�

This paper distinguishes between the mental activ�
ities involved in understanding a program and the rep�
resentations produced� The reverse engineer is respon�
sible for developing mental models of what a program
does� Representations and formal representation tech�
niques are tools for modeling and for expressing the
results�

Model making is an appropriate activity for under�
standing software systems� One reason is that soft�
ware itself is a model and so is already in a schematic
form� reducing the e�ort needed to construct further
models� A second reason is that programs are con�
structed from known quantities� such as executable
statements and data structures� reducing some of the
mystery as to how a program is constructed and lead�
ing to models that can accurately re
ect the software
system under consideration� Finally� programmers�
the people most likely to need a detailed understand�
ing of a software system� are� to some extent� trained
as model makers and so are likely to have both the
skill to construct mental models and an appreciation
of the value in doing so�

Understanding a software system by constructing
mental models is an important part of any task in�
volving a software system� A large part of current
work in reverse engineering is concerned with making
explicit the usually implicit comprehension activities
and models involved in software tasks �Van��� Raj����
Explicit knowledge representation results in greater
awareness and attention to reverse engineering activ�
ities� better prediction of the activities� expected ef�
forts and results� and a collection of well�de�ned sys�
tem models valuable to every task being carried out
on the software system�

The importance of building and manipulating ex�
plicit models points to a central issue in reverse engi�
neering
 the way models should be built and� in partic�
ular� the representations that should be used to build
the models� In keeping with the implicit nature of
most reverse engineering activity� current model rep�
resentations� if they exist at all� are typically informal
and ad hoc
 text �les containing extracted informa�
tion� documentation� programmer�s notes� or folklore�
These representations are too ephemeral to be a stable
base for explicit� organized activity� The representa�

tion problem in reverse engineering is concerned with
determining what representations are suitable to the
reverse engineering process and the circumstances un�
der which they should be used�



This paper examines the general features of the rep�
resentation problem� It presents a taxonomy of issues
related to solving the representation problem� The is�
sues are illustrated in a reverse engineering exercise
to convert a COBOL program to a program written
in a fourth generation language ��GL�� Our observa�
tions from the example lead to suggested directions
in future research aimed at solving the representation
problem�

� A taxonomy of issues in model rep�
resentations

There are several ways of looking at representations
of reverse engineering information� We have chosen
an approach emphasizing three aspects
 the informa�
tion content captured by the representation� how the
representation supports modeling� and how the repre�
sentation is to be used�

��� Information content

There are two issues related to the information con�
tent of a representation� The �rst is the subject matter
being represented� The second is the tradeo� between
�delity and abstraction�

����� Subject matter� Reverse engineers require
an understanding of at least three aspects of a program
in order to accomplish any of Chikofsky and Cross�s
objectives
 �� the computations performed by the pro�
gram and how they are structured� �� the rationale
behind the computational structure� and �� an under�
standing of how the program computations solve the
application problem� For example� if a maintenance
task is to repair a program fault� the fault must be lo�
cated amongst all of the computations performed by
the program� If the task is to make a signi�cant en�
hancement� it may be necessary to understand why
the program was structured the way that it was� If
the task is to extract business rules from an existing
information system� then the nature of the business
and how the program helps accomplish it must be de�
termined�

Rumbaugh� et al��RBP���� have identi�ed three
important viewpoints for understanding the compu�
tations performed by a program
 the objects ma�
nipulated by the computation �the data model�� the
manipulations performed �the functional model�� and
how the manipulations are organized and synchro�
nized �the dynamic model�� Most representation tech�
niques used during software design emphasize one of
these three views�

Representation Examples

Object�Oriented Frameworks �JF���
Category theory �Sri���
Concept hierarchies �Big��� Lub���
Mini�languages �Nei��� ABFP���
Database languages �CR���
Narrow spectrum languages �Web���
Wide spectrum languages �Wil��� WCM���
Knowledge Representation �Bar���
Text

Table �� Application domain models

A way of representing the rationale for a program�s
computational structures is in terms of the design de�
cisions they implement �ROL���� Design is a rational
process involving a series of decisions transforming a
speci�cation into an implementation� If reverse engi�
neering can detect clues to the decisions made� it can
use the clues to �untransform	 the program back to
a higher level� The detected clues can be organized
around categories of design decisions� Among the de�
cision categories are the following


� Decomposition
 breaking a problem into pieces�

� Specialization
 dealing with commonality and
special cases�

� State introduction
 introducing structures to
avoid recomputation or improve abstraction�

� Removing choice
 tying down choices left free by
the speci�cation�

� Representation
 choosing implementation mech�
anisms�

� Encapsulation�interleaving
 controlling which
computational structures are grouped together
and which are distributed�

The third issue related to subject matter concerns
the domain knowledge used to express the emerging
model� Two important categories of domain knowl�
edge are programming skills and application domain�
Programmers use a collection of mechanisms for con�
structing their programs� These are often described as
�plans	 or �schemes	 in program understanding liter�
ature �RW���� There also is work going on in �do�
main analysis�engineering�modeling	 to support for�
ward engineering activities via reuse� Table � summa�
rizes a variety of approaches taken by various projects
involved in modeling application domains�



����� Fidelity and abstraction� Models con�
structed during reverse engineering are more abstract
than the code from which they are derived� However�
there are several questions related to the degree of ab�
stractness appropriate to the emerging models
 the
amount of detail retained in the representation and�
consequently� the completeness of the representation�
the extent to which the representation captures the ap�
plication semantics versus reformulating its code syn�
tactically� and the �operationality	 of the representa�
tion�

A question with regard to �delity is whether the
corresponding representation retains all of the infor�
mation available in the source code� For example�
are the indentations and comments from the code re�
tained� Abstract syntax trees� a common representa�
tion� ignore such minutiae in favor of a syntactically
organized representation focusing on constructs ex�
pressing the computations performed� A related issue
is whether the representation retains informal annota�
tions composed by the original designers� subsequent
maintainers� or reverse engineers�

Syntactically oriented representations are limited to
answering low�level questions about the design� For
reverse engineering to be successful� a representation
must be constructed describing the implementation
architecture and how it relates to the problem being
solved by the software� An example is thinking of a
compiler as a pipeline of independent �lter programs
for lexically� syntactically� and semantically analyzing
a program and then generating and optimizing the
target code� The pipeline model of the compiler ar�
chitecture is one of many emerging high�level idioms
for software designs� Shaw discusses the issues related
to this approach to software development �Sha����

Semantically oriented representations can be
classed as to how operational they are� The more
operational representations serve as algorithms for
some speci�c computational mechanism or abstract
machine� Expressing a program in another program�
ming language is an operational representation� so is a
virtual machine description� Slightly less operational
are representations employing well�understood math�
ematical constructs� such as sets� lists� and trees� simi�
lar to the approach taken by VDM and Z in expressing
software speci�cations� Finally� the least operational
representations abstract all the way back to a spec�
i�cation expressed in the predicate calculus� This is
similar to the axiomatic semantics approach to formal
speci�cation�

��� Representational support for the
modeling process

A representation for reverse engineering models
should support the methods used to construct the
models� Among the issues that must be addressed
are the following� How does the representation or�
ganize and express hypotheses and guesses about a
program segment�s purpose before they are con�rmed
or refuted� How does the representation describe the
intra� and inter�relationships among the derived de�
sign description fragments� the code� and the domain
representation� particularly before the overall design
architecture has become apparent� Does the represen�
tation support inferencing and querying by the reverse
engineer� As the program�design is transformed and
abstracted� are previous versions retained� Perhaps
most important� to what extent does the representa�
tion support pattern matching �the search for abstract
program constructs�� which is often expressed in terms
of syntactic patterns and logical constraints�

��� How will the representation be used�

Reverse engineering has many objectives� such as to
generate or update system documentation� to support
maintenance� or as a prerequisite for re�engineering�
In the ideal situation� it would be desirable to have a
single representation capable of supporting all of these
objectives� However� the current state of the practice
often leads to representations aimed at supporting a
single objective� In addition to the high�level uses
mentioned above� more speci�c output requirements
may drive the choice of a representation� For exam�
ple� does the representation need to be automatically
manipulatable� The answer to this question might de�
termine whether the representation is kept in symbolic
or in graphical form� Or is the representation capable
of supporting multiple alternative graphical views�

If the representation is going to promote reuse� then
it is important to know the extent to which it supports
manipulations to adapt the code� such as generaliza�
tions and specializations� The manipulations might
also involve interleaving several abstractions to form
a combined result� Of course� being able to �nd the
abstraction in the �rst place is essential to represen�
tations intended to support reuse�

Finally� the representation needs to be extensible
in the following sense� If the results of the reverse
engineering are going to be used to support other ac�
tivities such as maintenance and re�engineering� then
it is desirable to be able to use the same representa�
tion for these activities as was used during the reverse



engineering� This will likely require adaptations and
extensions to the representation�

��� Summary

In this section we have analyzed the issues related
to selecting a representation for use during reverse en�
gineering� The issues have been broken down into cat�
egories depending on whether they relate to the infor�
mation content of the representation� the reverse en�
gineering process actually undergone� or the intended
use of the reverse engineering information� Table �
summarizes our taxonomy of issues related to solving
the representation problem� Next we will present an
example of how these issues have e�ected the repre�
sentation choices on an existing reverse engineering
project�

� An Example

This section describes the models developed and the
representations used during a reverse engineering ex�
ercise� The intention is to �� illustrate our view of the
importance of modeling as described in section �� ��
give readers the opportunity to establish connections
with their own experience� and �� motivate portions
of the taxonomy described in section ��

��� The reverse engineering task

The motivation for this reverse engineering exer�
cise was to determine the feasibility of moving third
generation information systems from a mainframe
COBOL environment to a �GL running with a rela�
tional database management system in a distributed�
open systems environment� To investigate this prob�
lem� a typical information system was reverse engi�
neered to obtain its design� The design was used to
construct a �GL program capable of duplicating the
reports generated by the original program� The pro�
gram� called P��AGU� is part of a system for keeping
track of and producing reports on the maintenance
status and operational readiness of Army equipment�
The P��AGU program produces a report summariz�
ing the status of all equipment described in an input
�le�

��� Approach

Synchronized Re�nement was the technique used to
reverse engineer P��AGU �KR��� OR���� Synchro�
nized Re�nement begins by constructing two related
models of the software
 one describing the program

text and the other the application problem� Once
the two models are in place� they are re�ned towards
each other� The low�level� code model becomes more
abstract� suppressing operational details while high�
lighting the design architecture� The high�level� appli�
cation model becomes more speci�c� augmenting the
problem description with solution details� The ob�
jective is to re�ne the two models so they meet and
match �in the middle�	 forming a complete and plau�
sible path from problem to solution�

Progress in Synchronized Re�nement occurs in
both directions beginning with the application model�
the early stages of the code model are often little
more than independent fragments of unknown value�
The application model begins as an overview of the
problem and a series of hypotheses or expectations
about possible solutions� The expectations are repre�
sented as a concept hierarchy to indicate interdepen�
dencies� The current set of expectations that obtain
in the application model suggest possible structures
for the code model� When a plausible structure is
located in the code� the associated parts of the two
representations are linked by an annotation describing
the relationship� Successfully linking the two models
leads to suggestions for further re�nements� The ap�
plication model becomes more detailed to re
ect the
deeper understanding about possible solutions� and
the code model becomes more abstract as details are
suppressed�

Design decisions coordinate the two models� A
design decision is denoted by programming language
constructs indicating how a programmer has chosen to
implement a particular design idea� The application
model suggests what kinds of design decisions the code
model might implement� and the source code contains
manifestations of actual design decisions for which the
application model must account� �ROL��� provides
a characterization of useful categories of design deci�
sions� section ����� of this paper contains a summary�

We chose to use Synchronized Re�nement for a
number of reasons� First� we are familiar with the
technique and have used it successfully on similar
problems in the past� Second� it uses many models�
including not only the application and code models�
but also a number of subsidiary models to support
re�nements of the two main models� Finally� it per�
forms frequent and complex manipulations on models
to keep track of progress during re�nement�



What is the information content of the representation�
What is the subject matter covered by the representation�
What views of the program�s computation does the representation provide�
Data view�
Functional view�
Dynamic view�

How does the representation support the model building process�
What domain knowledge is represented�
Programming domain knowledge�
Application domain knowledge�

How does the representation deal with �delity and abstraction�
How complete is the representation�
Is the representation aimed primarily at syntactic or semantic issues�
How abstract is the representation�

How well does the representation support the modeling process�
Does the representation include expectations�
Can the representation cope with incomplete structures�
Does the representation support inferencing and querying�
Does the representation support version control�
Does the representation support pattern matching�

How will the representation be used�
For automatic manipulation�
For graphical or textual viewing�
To support reuse and adaptation�
Can the representation be indexed�
How compatible is the representation with other tasks�

Table �� Summary of representation issues

��� Synchronized Re�nement models of
P��AGU

The Synchronized Re�nement of P��AGU starts
with a high�level application model �section ������ and
a low�level code model �section ������ and goes on to
develop a number of subsidiary models �section �������

����� The application model� The application
model is a description of the problem the system is
trying to solve� A successful reverse engineering e�ort
must include a description of what a system does and
how it does it� The initial application description used
in Synchronized Re�nement is expressed in terms of a
concept hierarchy�

The initial application model is typically quite
vague and incomplete� It is a statement of what� if any�
expectations the reverse engineer has about the pur�
pose of the program� The expectations for P��AGU
consisted of two concepts
 �equipment availability	
and �report writing	� The latter leads to expecta�
tions about page layout and line counting� As the code

model develops� further expectations are added to the
application model�s hierarchy� Most expectations are
either generated by code analysis or are elaborations
of the original expectations� Occasionally it is neces�
sary to amend part of the hierarchy when con
icting
data are encountered in the program�

The application concept hierarchy is related to the
code model in several ways� First� each concept in
the application model is ultimately manifested in the
code model� by both data and operations� When using
Synchronized Re�nement� annotations are kept relat�
ing each re�nement in the application model to the
related abstraction in the code model� Annotations
record not only the appropriate lines in the program
and the concept hierarchy� but also the type of de�
sign decision the original developer made in order to
express the concept in the code�

����� The code model� Representations of the ini�
tial code models are necessarily low level since they are
derived directly from the code� They can all be eas�
ily expressed using well�known techniques� Moreover�



they are so generally useful that they are typically
performed prior to any detailed reading of the code�

The two prominent features of the application
model described in the previous section are the in�
puts read and the report generated by the program�
P��AGU reads two input �les� One �le contains
a single record� called the DATE record� describing
the circumstances under which a report is requested�
A model for the DATE record �le was constructed
directly from the FILE DESCRIPTION section of
the source code and represented by a Jackson dia�
gram �Jac���� An analysis of the source code indicated
that the �le is only read once� so no repetition is in�
volved� Later analysis indicated some of the DATE
record �elds are never referenced by the program� This
led to re�nement of the original model and edits to its
representation�

The other input �le was signi�cantly more di�cult
to analyze� Super�cially� it appeared to be a collection
of homogeneous data records� each containing a �xed
number of �elds� There are no REDEFINES clauses�
but analysis of the source code indicated that multi�
ple records from the input �le are read� In addition�
there are several COBOL FILLER �elds� indicating
positions in the input record not relevant to the pro�
gram� It became apparent later in the analysis that
the model of the second input �le was seriously de��
cient� In fact� the records in this input �le are sorted
to three levels� and the program depends on the or�
dering� This fact only became obvious after detailed
analysis of the source code indicated how the records
were being processed� This model was also represented
by a Jackson diagram�

The complement to this representation of the pro�
gram�s input data is a model of the 
ow of control
during program execution� P��AGU makes heavy
use of PERFORM paragraphs to organize activities�
A control 
ow graph of each paragraph was used to
represent this information and quickly made it appar�
ent that the input �le had some structure not obvious
from its FILE DESCRIPTION information�

Another model developed early during the exer�
cise indicated where in the source code each named
data item was declared� where it was used� and how it
was referenced �for reading or writing�� This informa�
tion is typically represented in a cross reference listing�
Despite the simplicity of a cross�reference representa�
tion of the code� it proved to be surprisingly useful�
and it became essential when trying to unite the data
and control�
ow models into a comprehensive model
of program behavior�

As an example�P��AGUmakes heavy use of PER�
FORM clauses� Before a paragraph is PERFORMed�

Model Representation Technique

Input data Jackson diagram
Control 
ow Control 
ow graph
Variable�use Cross reference
Program architecture Call graph

Table �� Models and representation techniques

data are moved into named areas of WORKING
STORAGE� and after the paragraph is complete� re�
sults are moved from other areas into program vari�
ables� This led to the expectation that these MOVE
actions were implementing an argument list to be
made available to the paragraph as if it were an in�
dependent procedure� taking arguments and returning
results� Once this expectation was con�rmed� the data
items used for this purpose could be annotated and a
more abstract version of the program constructed� It
is interesting to note that� in this example� data 
ow
analysis of the sort performed by an optimizing com�
piler had to be understood� but it did not have to be
represented explicitly�

Another model used during this exercise deter�
mined the major components of the system and their
relation to each other� One representation for this in�
formation is a call graph in which nodes at the top
of the graph PERFORM nodes at the bottom� This
representation enables the reverse engineer to deter�
mine a bottom�up ordering for modeling the purpose
of each paragraph�

Table � summarizes the code models derived dur�
ing this stage of analysis and the representation tech�
niques used�

����� Re�ned models� The models described in
the previous two sections were developed early during
Synchronized Re�nement� As the process continued�
the initial models were transformed and abstracted�
Versions of the model were saved with a description of
why they were created� the transformations performed
to create them� the associated design decisions� and
any other commentary the reverse engineer thought
important� Approximately one hundred model trans�
formations were cataloged during P��AGU�s Syn�
chronized Re�nement�

Some transformations were lateral or regressive�
that is� they either didn�t advance a model�s re�ne�
ment or they �unre�ned	 it� For example� COBOL
permits the contents of one memory location to be
MOVEd to several other named locations in the same
statement� These other locations are often not related
conceptually� Replacing multiple MOVE statements



by individual MOVEs allowed for further independent
re�nements� These extra MOVE statements were im�
portant in recognizing and forming the procedure�call
re�nements on PERFORM statements mentioned ear�
lier�

Another class of language�speci�c transformations
were related to limitations in COBOL control struc�
tures� On some occasions� modern control structures
unavailable in COBOL were simulated using GOTOs�
On others� a cascade of decisions and interleaved GO�
TOs were used to avoid duplicating a section of code�
In practice� this might improve the e�ciency of the
program� but at the price of reduced code clarity�
Transformations applied to the code model abstracted
away from these details�

The original code was monolithic� all statements
appearing in one �le� There were no logical or cos�
metic distinctions separating the various components
other than labels indicating the beginning and end
of each paragraph� Moving related code into sepa�
rate �les helped reconstruct a high level architecture�
For example� there was one paragraph responsible for
checking whether the value of a variable occurred in
a table of legal values� The table� together with the
checking code� were broken out into a separate �le�
This step was a prerequisite for moving from a de�
sign dominated by logical cohesion to one with a more
functional organization�

Code hoisting and lowering are interesting lateral
transformations� Because the design of the original
system was dominated by logical cohesion� it was of�
ten the case that a section of code contained several
operations or sub�functions that were not closely re�
lated� Separating these functions lead to more coher�
ent design� One way to do this was to hoist a sub�
function from the beginning of a paragraph to sites
just before each of the places where the paragraph
was PERFORMed� Likewise� code near the end of a
paragraph was lowered to just after the point where
the paragraph returned� These transformations en�
abled subsequent transformations to group operations
together based on the data they manipulated �com�
municational cohesion��

There were also many cosmetic transformations�
These included renaming variables to better indicate
their purpose within the code� removing data items
not referenced in the code� and introducing new func�
tions to perform data retrieval from encapsulated ob�
jects� The value of these cosmetic transformations has
been pointed out by Byrne�Byr����

Each of the transformations re
ected a re�nement
to the reverse engineer�s understanding of the pro�
gram� The technique used to represent the transfor�

Transformation Purpose

Lateral�regressive Separation of concerns
Control restructuring Raise abstraction level
Segregation into �les Improve modularity
Code hoisting�lowering Improve modularity
Cosmetic Relate to Application

Table �� Model transformations

mation was to indicate the original source lines and
their replacement� expressed in pseudo code� Table �
summarizes the kinds of transformations performed
during this stage of reverse engineering�

��� Summary

This section has described the models and asso�
ciated representations used when reverse engineering
a program� The method used� Synchronized Re�ne�
ment� attempts to cover the entire range of system
description from problem statement through design to
implementation� This range of focus results in a large
set of models� diverse in both what is being modeled
and how the models are being represented� The iter�
ative nature of Synchronized Re�nement encourages
explicit model manipulations� analyzing the current
model set and extending it to reach the next model
set�

� Global issues in model representa�
tions

The previous sections have considered requirements
on model representations with respect to a single re�
verse engineering task� Explicit model making also
provides value over time� as subsequent reverse en�
gineering tasks can draw on the models created by
tasks already performed� This section considers re�
quirements for long�term support of reverse engineer�
ing model development�

An important issue in long�term support for model
representations is the trade�o� between representation
diversity and the ability to integrate representations�
Diversity arises because representations are not uni�
formly suited to all models� given some particular
model� it will usually be easier to represent it in some
forms than others� The need for a number of di�erent
models during reverse engineering leads to representa�
tion diversity�

The ability to integrate representations ensures
that reverse engineers using a collection of previously
created models will be able to extract maximum value



from them with minimum e�ort� Although it may
be that a model is used only in isolation� it seems
more likely� as illustrated by the Synchronized Re�ne�
ment example above� that models are integrated in
various ways during reverse engineering� It should be
both possible and easy to integrate previously unre�
lated models� failure to do so results in either a limited
ability to carry out reverse engineering or duplicated
e�ort as the reverse engineer re�creates the models in
an integratable form�

Twomechanisms for achieving balance in the trade�
o� between representation diversity and integration
are universal representations and software backplanes�
A universal representation claims to provide more or
less equal support for all models� Examples of univer�
sal representations are Lisp symbolic expressions and
relational database tables� A more sophisticated ap�
proach aimed directly at the software representation
problem is IDL �Lam���� Universal representations
move the trade�o� balance away from diversity to�
wards integration� A software backplane is essentially
an interconnection and communication standard un�
derstood by all models �Pas���� The interconnection
standard insures the models can be linked together�
the communication standard insures the models can
be made to do useful things once linked together� Soft�
ware backplanes try to compromise� moving one piece
towards diversity and the other towards integration�

The degree to which each of the mechanisms should
be used to balance the trade�o� between representa�
tion diversity and integration is unclear� It seems un�
likely that just choosing one over the other will be
acceptable� Software backplanes are the more promis�
ing of the two mechanisms since they o�er a chance
to achieve a balance instead of a trade�o� between di�
versity and integration� However� it is clear that soft�
ware backplanes require much preparatory work and
incur a �xed and perhaps not small overhead during
model making� In addition� the number of notable
systems built using software backplanes is small in
comparison to the popularity of the metaphor� Uni�
versal representations� having moremodest objectives�
have been more successful� particularly in reverse engi�
neering and software engineering in general� However�
their value outside the research lab� where diversity in
product� practice� and practitioner are a fact of life� is
less clear�

� Conclusion

We have argued that model making is a fundamen�
tal activity in reverse engineering but is generally done
in an implicit and informal way� which tends to limit

the value of model making to the short term� Ex�
plicit and formalized model making in reverse engi�
neering results in models that continue to have value
after the activity that resulted in their creation is com�
pleted� The representations used to construct mod�
els is of central concern when the models are to be
long lived� After characterizing the general features
of models and the ability of various representations to
support their features� we have presented a supporting
example of modeling in reverse engineering� We have
also presented more general considerations for model
representations� with emphasis on their overall archi�
tecture�

� Acknowledgements

The authors gratefully acknowledge the support
of the Army Research Laboratory through contract
DAKF ������D����� and the encouragement of Dr�
Jay Gowens�

References

�ABFP��� Guillermo Arango� Ira Baxter� Peter Free�
man� and Christopher Pidgeon� TMM

Software maintenance by transformation�
IEEE Software� ����
������ May �����

�Bar��� David Barstow� On convergence toward
a database of program transformations�
ACM Transactions on Programming Lan�

guages and Systems� ����
���� January
�����

�Big��� Ted J� Biggersta�� Design recovery for
maintenance and reuse� IEEE Computer�
������ July �����

�Byr��� Eric J� Byrne� Software reverse engineer�
ing
 A case study� Software�Practice

and Experience� ������
���������� Decem�
ber �����

�CC��� Elliot J� Chikofsky and James H� Cross II�
Reverse engineering and design recovery

A taxonomy� IEEE Software� ����
������
January �����

�CR��� Y� F� Chen and C� V� Ramamoorthy� The
C information abstractor� In Proceedings

COMPSASC ��� pages �������� IEEE�
�����

�Jac��� M� A� Jackson� Principles of Program De�

sign� Academic Press� �����



�JF��� R� E� Johnson and B� Foote� Design�
ing reusable classes� Journal of Object�

Oriented Programming� ����
������ June�
July �����

�KR��� Kit Kamper and Spencer Rugaber� A
reverse engineering methodology for data
processing applications� Technical Re�
port GIT�SERC������� Software Engineer�
ing Research Center� Georgia Institute of
Technology� March �����

�Lam��� David Alex Lamb� IDL
 Sharing interme�
diate representations� ACM Transactions

on Programming Languages and Systems�
����
�������� July �����

�Lub��� Mitchell D� Lubars� Domain analysis and
domain engineering in IDeA� In Ruben
Prieto�Diaz and Guillermo Arango� edi�
tors� Domain Analysis and Software Sys�

tems Modeling� pages �������� IEEE Com�
puter Society Press� �����

�Nei��� James M� Neighbors� The Draco ap�
proach to constructing software from
reusable components� IEEE Transactions

on Software Engineerings� SE������
����
���� September �����

�OR��� Stephen B� Ornburn and Spencer Rugaber�
Reverse engineering
 Resolving con
icts
between expected and actual software de�
signs� In Proceedings of the Conference on

Software Maintenance� pages �������� Or�
lando� Flordia�� November �����

�Pas��� W� Paseman� Architecture of an integra�
tion and portability platform� In COMP�

CON Spring ��� pages ������ San Fran�
cisco� California� February ���March �
����� IEEE Computer Society�

�Raj��� Vaclav Rajlich� editor� Workshop Notes

� Program Comprehension� Orlando�
Florida� November � ����� IEEE Com�
puter Society�

�RBP���� James Rumbaugh� Michael Blaha� William
Premerlani� Frederick Eddy� and William
Lorensen� Object�Oriented Modeling and

Design� Prentice�Hall� �����

�ROL��� Spencer Rugaber� Stephen B� Ornburn�
and Richard J� LeBlanc� Jr� Recognizing
design decisions in programs� IEEE Soft�

ware� ����
������ January �����

�RW��� Charles Rich and Richard C� Waters� The
Programmer�s Apprentice� Addison Wes�
ley� �����

�Sha��� Mary Shaw� Large scale systems require
higher level abstractions� In Proceedings

of the Fifth Workshop on Software Speci�

�cation and Design� pages �������� ACM
SIGSOFT Notes� ACM� May �����

�Sri��� Yellamraju V� Srinivas� Pattern Matching�

A Sheaf�Theoretic Approach� PhD thesis�
Department of Information and Computer
Science� University of California at Irvine�
May �����

�Van��� Larry Van Sickle� editor� Workshop Notes

� AI and Program Understanding� San
Jose� California� July �� ����� AAAI�

�WCM��� M� Ward� F� W� Calliss� and M� Munro�
The maintainer�s assistant� In Proceedings

of Conference on Software Maintenance�
pages �������� Miami� Florida� October
����� IEEE Computer Society Press�

�Web��� Dallas E� Webster� Mapping the design
representation terrain
 A survey� Tech�
nical Report MCC STP�������� Micro�
Electronics and Computer Technology
Corporation� July �����

�Wil��� David S� Wile� Local formalisms
 Widen�
ing the spectrum of wide�spectrum lan�
guages� In L� G� L� T� Meertens� edi�
tor� Program Speci�cation and Transfor�

mation� pages �������� Elsevier North Hol�
land� �����


