
Cataloging Design Abstractions

Spencer Rugaber

College of Computing

Georgia Institute of Technology

Atlanta, Georgia USA

+1 404.894.8450

spencer@cc.gatech.edu

“He, whose design includes whatever language can express,

must often speak of what he does not understand.” — Samuel

Johnson

ABSTRACT

Abstractions are the essence of software design, and various

enterprises, such as design patterns, architectural styles,

programming clichés and idioms, attempt to capture, organize

and present them to software engineers. This position paper

explores the possibility of mounting a more comprehensive effort

to catalog abstractions. Related efforts such as the design of

textual and electronic dictionaries, markup languages for

software artifacts and ontologies of computer science topics are

surveyed to inform the effort. A set of derivative questions is

presented to explore the problem space.

Categories and Subject Descriptors

D.2.7 [Software Engineering] Distribution, Maintenance and

Enhancement – Documentation, Restructuring, reverse

engineering, and reengineering.

D.3.3 [Programming Languages] Language Constructs and

Features – Patterns.

K.3.2 [Computers and Education] Computer and Information

Science Education – Computer Science Education.

General Terms

Documentation, Design.

Keywords

Abstraction, architectural styles, computer science education,

design patterns, programming idioms, program understanding,

reverse engineering

1. INTRODUCTION

Mary Shaw, in describing the maturity of software engineering as

a discipline, has pointed out [24] that “software lacks the

institutionalized mechanisms of a mature engineering discipline

for recording and disseminating demonstrably good designs and

ways to choose among design alternatives”. Since the time of

Shaw’s article, software researchers have responded in a variety

of ways. Gamma et al. and their successors have produced a wide

collection of resources exploring the concept of patterns (design

patterns [9], analysis patterns [7], reengineering patterns [5] and

even anti-patterns [3]). The software architecture research

community has explored the concept of styles of software

architectures [25]. Program understanding researchers have

collected and cataloged programming clichés [29] and idioms

[17]. Each of these approaches provides a subset of the

vocabulary of abstractions that a designers use in building

programs. Shaw, referring to the work of Herbert Simon, defines

the target: “An expert in a field must know about 50,000 chunks

of information, where a chunk is any cluster of knowledge

sufficiently familiar that it can be remembered rather than

derived. Furthermore, in domains where there are full-time

professionals, it takes no less than 10 years for a world-class

expert to achieve that level of proficiency.”

We are concerned with supporting designers and programmers,

which we call “designers” in the remainder of the paper, as they

develop software. By abstraction, we mean a domain-

independent unit of a design vocabulary that subsumes more

detailed information. This paper addresses the question of

whether is it is possible to construct a catalog (a plexicon or

programmer’s lexicon) of such abstractions, and, if so, what form

should such a catalog take?

A catalog of abstractions would have a variety of benefits.

• Developers trying to solve design problems would have a

resource similar to the dictionaries and thesauri that writers

use;

• Software maintainers and reverse engineers would know

what they were looking for. Reverse engineering tools

would have explicit targets;

• Students trying to learn design would have a reference

source;

• The process of building and populating such a repository

would itself uncover knowledge of the nature of

abstractions.

This position paper first examines a wide variety of related

efforts. These include general mechanisms, such as dictionaries,

both printed and electronic, and support technology, such as

markup languages, databases and ontologies, that can be applied

to cataloging design abstractions. The paper then discusses the

implications of this work on the construction of a plexicon.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ROA’06, May 21, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

2. RELATED WORK
Shaw points out that mature engineering disciplines often have

handbooks that collect much of the knowledge of that discipline

in one place. Handbooks can provide an organizational structure

for the discipline, short articles describing individual units of

knowledge, mathematical and scientific foundations such as

formulae and tables, process descriptions, evaluation techniques,

glossaries and references to other resources.

Currently, the primary reference source for software designers is

the traditional written text. Notable are Knuth’s seminal works

on algorithms [11] and the Numerical Recipes books (www.nr.

com). But we can learn also from other efforts. Abstractions

form a vocabulary, and Sections 2.1, 2.2 and 2.3 describe the

content and organization of natural language dictionaries and

thesauri and their electronic successors. Existing efforts to

provide on-line access to design information are presented in

Section 2.4, and Table 1 summarizes the variations among them.

Section 2.5 summarizes two efforts that use markup languages to

describe software artifacts for electronic distribution. Finally,

Section 2.6 presents other technologies that might be applied to

support the automated access and management of design

knowledge.

2.1 Natural Language Dictionaries
The word dictionarius was first used in the 13th

 century, and

English language dictionaries have existed for more than four

hundred years. Landau [13] gives a fascinating presentation not

only of the history of dictionaries, but also describes the many

design issues involved in constructing them. Examples of such

issues include whether a dictionary is mono- or multi-lingual, the

age of the intended user, the size (number of entries) and extent

of coverage, the subject area covered, the period of history being

covered (e.g. Middle English), the purpose of the dictionary

(increasing vocabulary, presenting knowledge, providing

etymologies), the lexical unit covered (words, terms, phrases),

the attitude toward standardization (that is, whether the

dictionary is drawn from actual usage or is intended

normatively), the means of access (print or electronic), the

dictionary’s tone (detached, didactic, facetious), its organization

(alphabetical, by sound, by concept), the documentation provided

(historical notes and reference sources), the contents of an entry

(orthography, pronunciation, senses, definitions, inflected forms,

synonyms, usage examples, differentiation from related concepts,

usage guidance), and any special features provided (proper

names, abbreviations, etc.).

The essence of a dictionary is, of course, its entries. Each entry

can include a wide variety of information including spelling;

hyphenation; variants; homographs; pronunciation; syllable

divisions; stress; part of speech; prefixes; suffixes; combining

forms; plurals; tenses; participles; comparatives; superlatives;

capitalization; etymology; status labels: temporal (obsolete,

archaic), stylistic (slang, substandard, non-standard) and

regional (dialect or specific region or country); definition; senses;

illustrations; examples; usage notes; cross references; and

inflected forms.

And there is more. The Explanatory Notes section of a traditional

dictionary, such as [28], also includes the set of principles

(process rules) used to actually construct an entry. In [28], the

rules specify that the dictionary be self contained (all words in

definitions should have their own entries), that the words used in

defining a concept be simpler than the concept being defined,

that the definitions be non-circular and definitive, and that the

phrasing of the definition correspond to the part of speech of the

word being defined.

The above lists provide the functional requirements for a

dictionary. The most significant issue is, however, non-

functional. Dictionaries are compared by the number of entries

they contain, but their costs are proportional to their size in

pages. Therefore, the editor’s key job is to pack as many entries

in as few pages as possible while including the details mentioned

above. Thought of in this way, it can be seen that dictionary

construction is itself a design problem.

2.2 Thesauri
Related to dictionaries, but serving a somewhat different role,

are thesauri. Although general thesauri, such as Roget’s [22],

exist, most often they cover only a specific topic area, and, more

importantly, they are intended normatively; that is, they try to act

as a standard vocabulary for that area. A thesaurus can include

information on preferences between synonymous terms, related

terms and usage guidance. The key difference from dictionaries

is that the entries in a thesaurus are organized conceptually

rather than alphabetically. Hence, the conceptual organization is

itself a design activity.

A thesaurus is a “vocabulary of controlled indexing language

formally organized so that a priori relationships between

concepts are made explicit” [1]. Like dictionaries, there is a long

history demonstrating much variation. Consequently, the design

space for thesauri is quite rich. Ultimately, a thesaurus, like a

dictionary is an index into a set of knowledge entries. The chief

choice in thesaurus design is whether the indexing vocabulary is

controlled or natural. With a controlled vocabulary, search

precision is improved at the cost of the effort required to select

and organize the vocabulary. With automated analysis of free

text, statistical techniques can be used to make natural

vocabularies competitive with controlled ones. The most

fundamental relationship that a thesaurus supports is the

mapping between the index terms and the underlying material

being indexed. Other relationships supported by thesauri include

synonyms, broader and narrower terms, associated terms, whole–

parts, and instances.

There are a large collection of design choices that a thesaurus

editor can select from. Among these are of course the corpus

being indexed, the indexing language (mono or multi-lingual,

natural or controlled), search key format (stemmed, part of

speech, Boolean connectives), the size relationship between the

number of items being indexed and the number of indexing

terms, pre and post processing on the search request, textual and

graphical presentation of the corpus, and presentation options for

search results.

2.3 Electronic Dictionaries
In addition to traditional printed media, dictionary purveyors and

researchers have explored the use of electronic presentation.

Notable efforts include the following.

• Providing a hypertext version of the Oxford English

Dictionary (OED) [19]. “The Oxford English Dictionary is

the largest and most scholarly dictionary of written

English.” The cited paper examines the question of how the

OED might be converted to hypertext form. Motivation for

hypertext includes support for browsing, providing

alternative forms for displaying entries and making the

dictionary a better match for its users’ tasks. The effort also

involves interfacing the resulting hypertext to other

automated tools. The key questions that arise are what

exactly are the nodes (that is, what are the targets of links),

what is the nature of the tags used and what kinds of links

should be employed. Examples of the latter might include

links between the words used in a definition and their

entries, links to synonyms, explicit cross references, links to

variants and even, it might be imagined, links from example

uses to an electronic version of the material from which they

were taken. Other issues that arise relate to use, such as the

ability to save results, to store and reuse queries, to add

annotations, and to provide additional material, generate

reports, and filter retrievals. The current on-line version of

the OED (www.oed.com/about/oed-online)

includes control over display of entries; Boolean, wild-card

queries; lookup by meaning, language of origin, source or

year of entry; and limited hyperlinked cross references.

• WordNet (wordnet.princeton.edu) [15] provides an

interesting contrast with the OED. “WordNet is an online

lexical database designed for use under program control.

English nouns, verbs, adjectives and adverbs are organized

into sets of synonyms, each representing a lexicalized

concept. Semantic relations link the synonym sets.” In

addition to hypertext links for traditional synonyms,

WorldNet supports a variety of other relationships including

antonyms; hyponyms (subordinates) and hypernyms

(superordinates); meronyms (parts) and holonyms (wholes);

troponomy (manner); and entailment. WordNet also

provides an application program interface (API) so that

other tools can readily access its content.

• EDR (www.iijnet.or.jp/edr) [31] is another

electronic dictionary effort, this one originating in Japan.

“The EDR Electronic Dictionary is a machine-tractable

dictionary that catalogues the lexical knowledge of Japanese

and English.” Besides a dictionary of words, EDR includes

a bilingual dictionary (Japanese-English), a co-occurrence

dictionary to better understand phrasing, a concept

dictionary (thesaurus), and a corpus database taken from

published documents such as newspapers, to which the

other dictionaries refer for usage information.

• Cyc (www.cyc.com) [14] is an even more ambitious

project, attempting to electronically encode the knowledge

needed to perform everyday tasks such as understanding

newspaper articles. Its encoding is more formal than those

systems described above enabling inferencing to be

performed. The formal mechanism is intended to facilitate

Cyc’s use by other programs. Cyc comprises an extensive

knowledge base, the inference engine, an underlying formal

representation language, natural language processing

technology, and API tools for third-party developers.

2.4 On-Line Dictionaries of Programming

Concepts
Of course, many web-based repositories of design information

already exist. Among the most interesting are the following.

• "Free Online Dictionary of Computing" (www.foldoc.

org) from Imperial College’s Department of Computing “is

a searchable dictionary of acronyms, jargon, programming

languages, tools, architecture, operating systems,

networking, theory, conventions, standards, mathematics,

telecoms, electronics, institutions, companies, projects,

products, history, in fact anything to do with computing”.

Access is via keyword search with some cross-reference

links. An index via first letter is provided into a page

containing all terms beginning with that letter.

• Webopedia (www.webopedia.com), maintained by

internet.com, provides keyword, category, and cross-

reference access to computer-related terms and their

definitions.

• The "Dictionary of Algorithms and Data Structures"

(www.nist.gov/dads) from the National Institute of

Standards and Technology “is a dictionary of algorithms,

algorithmic techniques, data structures, archetypical

problems and related definitions.” Access methods include

keyword search, alphabetical index, area index and category

index. Some entries link to implementations, and there is a

separate index of these implementations.

• “Algorithms and Data Structures Research & Reference

Material” (www.csse.monash.edu.au/~lloyd/ti

ldeAlgDS) from Monash University provides information

about basic algorithms and data structures. Access is

topical, with a separate presentation of implementations,

and is organized by programming language. Cross

references link entries to each other and to implementations.

• “Web Dictionary of Cybernetics and Systems” (pespmc1.

vub.ac.be/ASC/INDEXASC.html) is hosted by the

Principia Cybernetica project and includes alphabetically

arranged concepts related to cybernetics. There is also a

keyword search mechanism, cross-references and sequential

links between alphabetically adjacent items.

• “The Stony Brook Algorithm Repository” (www.cs.

sunysb.edu/~algorith) hosted by the State

University of New York at Stony Brook is “a comprehensive

collection of algorithm implementations for over seventy of

the most fundamental problems in combinatorial

algorithms.” Access methods include keyword search, site

outline, cross referencing, up/down/next/previous links and

an image map. The site also supports user-contributed

annotations.

• The University of Aukland, Computer Science Department,

“Data Structures and Algorithms” (www.cs.auckland.

ac.nz/software/AlgAnim/ds_ToC.html)

contains introductory computer science material organized

via a topical outline. Cross-references are included as well

as implementations and animations. Forward-only links to

the next topical entry are also provided.

• hillside.net/pattern is a website for pattern

resources. It is informally organized as a set of links, both

in-site and out-of-site. Some of the links are to diagrams for

patterns from the Gamma et al. book [9].

Table 1 summarizes information about the sites in the electronic

repositories.

Table 1. On-Line Computer Science Dictionaries

Contents Terminology, acronyms, concepts,

implementations, animations, diagrams

Organizational

Mechanisms

Topical outlines, alphabetical indexes,

next/previous links, image map, cross-

reference links, categories

Target

Audiences

Beginning students, advanced students,

practitioners

Topic Areas Algorithms, data structures, cybernetics,

idioms, patterns

Sources User contributions, course materials, other

dictionaries

Other Features Programming language specificity, visitor

annotation

Note that the list of web-based dictionaries in this subsection

does not include other organized collections of programming

resources such as subprogram libraries, courseware and program

analysis tools.

2.5 Software Resource Markup Languages

The previous subsections describe efforts to provide relatively

informal organization and access to collected material. This

section, in contrast, discusses two efforts that make use of

markup languages to do the organizing.

• The Open Software Description Format (www.w3.org/

TR/NOTE-OSD.html): “The goal of the OSD format is to

provide an XML-based vocabulary for describing software

packages and their inter-dependencies, whether it is user

initiated (‘pulled’), or automatic (‘pushed’).” The OSD

vocabulary can be used in a stand-alone XML document to

declare dependencies between different software

components for different operating systems and languages,

can accompany archive files, can convey the

interdependency graph for the different software modules

and can support automated distribution of components. Its

basic organizational principle is a tree of component

dependencies.

• Architectural Description Markup Language (www.

opengroup.org/architecture/adml/adml_hom

e.htm): This markup language is intended to describe

architectural components for retrieval and testing. It is based

on ACME, a notation for communicating between

architecture tools. The web site above indicates that

“ADML adds to ACME a standardization representation,

the ability to define links to objects outside the architecture

(such as rationale, designs, components, etc.),

straightforward ability to interface with commercial

repositories, and transparent extensibility.”

2.6 Knowledge Organization

One of the key issues in a catalog of abstractions is how the

contained knowledge will be organized. There are a variety of

knowledge management mechanisms that can inform the design

of a plexicon. In addition to the traditional dictionary and

thesaurus, approaches include hierarchical (taxonomic) and

faceted classifications, relational or object-oriented databases,

full-blown knowledge bases (ontologies), and various mechanical

approaches such as cluster analysis and concept hierarchies.

• Taxonomies: A taxonomy is a formal classification of a set

of concepts. Normally, the classification is hierarchical and

can either be tree-like (each entry has a single parent entry)

or graph-like (where multiple parent entries are allowed).

Both ACM (www.acm.org/class/1998) and IEEE

(www.computer.org/mc/keywords/software.

htm) have taxonomies of computer-related terminology for

purposes of characterizing published articles.

• Controlled vocabularies and faceted classification: A

controlled vocabulary is a set of terms used to index into a

knowledge repository. The terms are carefully defined and

static. If the terms are partitioned into orthogonal subsets

(facets) that describe different aspects of the knowledge,

then the knowledge repository is said to have a faceted

classification. Faceted classifications, developed to support

information retrieval, have been used for software reuse and

application domain analysis [18]. One interesting controlled

vocabulary providing access to software related assets is that

provided by the U.S. Patent Office (www.uspto.gov/

patft/help/help.htm). Patent records are described

with about thirty-five primary fields that may be used in a

search. Of primary interest is the Classification field, which,

in turn, has about five hundred possibilities. Category 717 is

the Software category that contains over one hundred

keyword-based, hierarchically organized subdivisions.

Recently, the open-source movement, in the form of various

vendors and the Open Source Development Laboratory

(www.osdl.org), has announced the creation of a related

on-line repository of open source software assets, the Patent

Commons Project (www.patentcommons.org).

• Databases: The results of analyzing programs have been

stored in databases in a variety of ways. Perhaps the most

frequent choice is to use a predefined schema to store the

results in a relational database, as was done with the C

Information Abstractor [4]. This approach can be contrasted

with the use of an object-oriented database, such as the one

provided by the Software Refinery [20] or any of a number

of commercial systems. It should be noted of course, that

UML [1] could be directly used as a representation for

expressing design knowledge. Its textual extension, the

Object Constraint Language [27] (OCL), can be used as a

query language for accessing encoded design information.

The tradeoff between the two database approaches seems to

be the facile querying available relationally and the more

flexible connectivity found with objects. One other approach

should be noted; the Programmer’s Apprentice Project [21]

devised a means for representing programming knowledge

in the form of plans. Their approach was called the Plan

Calculus and featured a custom representation comprising a

graph annotated by constraints.

• Ontologies: An ontology is a formal description of a

vocabulary, typically including a set of concepts and the

relationships among them. The formality enables machine

representations and automated reasoning. Ontologies are a

maturing technology that forms an essential part of the

Semantic Web. Various representation languages have been

developed and corresponding repositories populated.

Examples include KIF (www-ksl.stanford.edu/

knowledge-sharing/kif), which includes ontologies

for basic data structures such as lists and sets; Ontolingua

(www.ksl.stanford.edu/software/ontolingu

a) and its follow-on KSL (www-ksl-svc.stanford.

edu:5915), which provides an interactive ontology server;

KQML (www.cs.umbc.edu/kqml) and DAML,

together with its partner OIL (www.daml.org). Tool

support for designing and maintaining ontologies includes

knowledge representation languages, graphical editing

environments and inference mechanisms. Examples include

Protégé (protege.stanford.edu), PowerLOOM

(www.isi.edu/isd/LOOM/PowerLoom), and Classic

(www.research.att.com/sw/tools/classic),

all of which have been used to represent software design

information.

• Mathematical approaches: If a collection of elements

being characterized is thought of as attribute–value pairs,

then automated means can be used to characterize higher-

order concepts. Concept analysis [26] is an approach in

which the occurrence of common attributes is taken as

evidence of a concept. Some concepts subsume others.

Automated tools can construct elaborate lattices of shared

attributes. Cluster analysis, in contrast, is statistical in

nature [10]. Here each attribute serves as an axis in a

multidimensional vector space. Each element then occupies

a position in the space based on the values of its attributes.

Cluster analysis attempts to group related elements into

higher-order units based on their closeness (similarity) in

this space. Both concept analysis and cluster analysis

attempt to abstract higher-level understanding from

constituent properties, and both have been used to subdivide

complex software systems into their constituent artifacts.

3. ISSUES RAISED

The above survey raises many issues for consideration in

designing a plexicon. Below we list several of these along with

some of the possible answers.

• What software engineering tasks should a plexicon support?

Manual entry and editing, annotation, automated capture

(pattern detection, idiom extraction), keyword search,

automated exploration via formal pattern matching and

extensive cross-referenced exploration would all be of

value.

• What is it that is actually being cataloged? The term

abstraction is itself quite abstract. In addition to the

definition given earlier in the paper, the Wikipedia

(wikipedia.org) offers the following definition: “An

abstraction is an idea, conceptualization, or word for the

collection of qualities that identify the referent of a word

used to describe concrete objects or phenomena.” WordNet,

(www.wordnet.org) in contrast, states only that

abstraction is “a concept or idea not associated with any

specific instance”. Among possible constituents of a

plexicon are terminology, in the sense of a traditional

dictionary, algorithms and data structures, patterns,

architectural styles, programming clichés and idioms,

textbook examples, and programming language devices.

Although the final arbiter will be usefulness, clearly an

editorial inclusion policy is necessary.

• What should be included in an entry? The design patterns

community has a standard format for the representation of

patterns, including textual descriptions, UML diagrams and

code samples. To this could be added indexing information,

such as would be required for access via a controlled

vocabulary. Likewise, provenance information should be

included for benefit of the historical record and authenticity.

A more formal specification, such as constitutes an

ontology, could also be of value.

• How should the data be organized? What underlying

representation should be used? All of the following have

advantages. Relational databases support powerful tabular

querying. An object-oriented representation would be

compatible with UML/OCL-based tools. Marked-up (XML)

text would enable participation in the Semantic Web. A

more graph-based representation with formal annotations,

such as the Programmer’s Apprentice, would support

pattern matching with existing code for plan recognition.

Use of an ontology representation language would support

formal reasoning.

• What sorts of relationships should be supported? A

plexicon contains “chunks” of design knowledge that range

in scope from architectural styles, through patterns to

programming idioms. The basic organizational unit is the

abstraction, and abstractions can be characterized in various

ways [23]. The categories are derived from examining three

areas of computer science: programming language design,

data modeling and transformational programming. In all

three areas, the following devices are identified, possibly

using different names.

o Composition: providing a single name that identifies a

collection of subordinate elements. For example, in

programming languages, a record structure abstracts a

set of fields, and a subprogram aggregates a set of

statements.

o Generalization: characterizing one collection of

instances as being a superset of another. In data

modeling, this is sometimes called superclassing.

o Procedure/data: alternatively considering a collection

of data and the algorithm that produced it as

equivalent. An example of this distinction is the classic

time/space tradeoff. In transformational programming,

memoization performs exactly the role of converting

time-consuming computations into data accesses.

o Encapsulation/interleaving: the systematic hiding of

details beyond a formal barrier as contrasted with the

intermixing of elements, usually to improve execution

efficiency. This distinction is relevant to how an

abstraction is expressed in an actual program.

o Representation: the use of different constructs to

express the same underlying concept. For example, a

stack can be represented by a linked list or by an array

plus an index. This can be thought of as a synonym.

o Non-determinism removal: adding more constraints

to bring a specification closer to an implementation.

Implementing the stack from the previous item as a

fixed-length array bounds the depth of the stack.

• What is the role of formalism and inferencing in a plexicon?

Programs are ultimately formal objects, and abstractions

over programs can benefit from precise formulation.

Formality and reasoning can support detection,

summarization, comparison and data mining.

• What forms of presentation and data export should be used?

Possibilities include textual output with included graphics,

code extraction with automated translation into various

programming languages, XML, formal propositions suitable

for input into an inference engine, overview indexes,

summaries and graphical presentation of the entire space. In

addition, a filtering mechanism and a report-writing

capability would be of value.

• What to do about programming language specificity? Some

abstractions are clearly more important to a particular

programming language. Many uses for a plexicon will be in

the context of a specific programming situation. It is

therefore desirable to support direct expression of examples

from particular languages. On the other hand, many

abstractions derived from specific language context can be

valuable when translated into other languages. It is

interesting to contemplate the extent to which abstractions

could be automatically translated among languages.

• What editorial process is appropriate? One model is an

open forum, such as the Wikipedia (wikipedia.org),

with anyone free to add material. Editorial policy includes

an emphasis on consensus, including enforcement of agreed-

upon principles such as conformance to its encyclopedic

goal, avoidance of bias, adherence to copyright, and respect

for other contributors. At the other end of the spectrum is

construction by a single individual editor, perhaps with

support of volunteers, such as was used for the OED [30].

The former can grow more quickly, but some of the

advantages of consistency and uniformity may be lost.

• How should the repository be populated? The true benefit

of a plexicon will arise only when it has obtained a critical

mass of entries. It is therefore important to expedite its

construction. Several sources of material come to mind.

First, existing repositories can be harvested to the extent

that legal access can be obtained. Second, if the goal is to

fill a plexicon with the 50,000 chunks of knowledge

required of an expert, then it would be of value to mimic the

process by which the expert obtained the knowledge. One

intriguing possibility is to follow the course of study of

incoming Computer Science students, archiving the

abstractions they obtain from textbooks, lectures, and

exercises. The third possibility for population is via reverse

engineering; that is, the systematic examination of existing

programs for the purpose of cataloging the constituent

abstractions. A fourth, speculative, possibility is to extract

common abstractions statistically by examining frequently

occurring mechanisms, appropriately abstracted from their

program settings. A final possibility is manual construction

via volunteers, where the community itself provides much of

the editorial oversight.

• How might a plexicon support Computer Science

education? Clearly, an appropriately organized catalog of

abstractions would be of value to Computer Science

education. We have experimented with the construction of a

small plexicon (www.cc.gatech.edu/projects/

plexicon) in support of a single, sophomore-level course,

CS2130, Languages and Translation. The plexicon was

limited in scope, comprising about ninety entries, and

power. Entries contained the following fields: Name,

Keywords (uncontrolled), Category, See Also (cross-

references), Aggregates (meronyms) and Aggregate Of

(holonyms), Specializations (hyponym) and Generalizations

(hypernyms), Explanation, When to Use (context),

Examples, Contributor, Citation, and Last Modified.

Despite the limitations, the students found it useful,

particularly in preparation for their exams. It is also

interesting to contemplate the feedback that might be

obtained from viewing a history of student interactions.

Particularly useful would be learning about the connections

the students traversed between entries and the dwell time

for particular entries.

• What other interesting applications could benefit from a

plexicon? Intriguing ideas include intelligent patent search,

retrieval from reuse libraries, use of the abstractions by a

program generation tool and use in random program

construction, a la genetic programming [12].

• What research possibilities relate to the cataloging of

abstractions? The construction of a catalog of abstractions

will itself lead to interesting research results, just as the

work with design patterns and other targeted abstractions

has. Foremost is obtaining an empirical understanding of

what the space of abstractions is and how it is organized.

Are some abstractions more error prone than others? What

is the relationship between abstractions and programming

languages? How, within specific programs, are abstractions

composed? Within programs, what is the relationship

between programming abstractions and non-abstraction

code? How do abstractions relate to design refactorings [8]

and other program transformations [16]?

4. CONCLUSIONS

As Shaw points out, a handbook of design knowledge will be a

coming-of-age demonstration for software engineering. I see this

handbook taking the form of a catalog of abstractions. This

position paper explores relevant background to constructing such

a catalog of design vocabulary and discusses issues in its

construction.

The Danish design researcher, Pelle Ehn, likewise stresses the

importance of vocabulary. He relates the work of the philosopher

Ludwig Wittgenstein to the software design process [6].

Wittgenstein explored the specialized vocabulary used between

crafts people in constructing artifacts, such as buildings. He

called these specialized vocabularies language games. Ehn

contrasts Wittgenstein’s approach to design with that of

Descartes, which is based on analysis and “rationalistic

reasoning”. In particular, Ehn stresses two aspects related to

plexicons: the importance of specialized vocabulary and its

foundation in actual use. Both of these aspects are, of course,

historically central to the construction of dictionaries.

“By understanding design as a process of creating new

language-games that have family resemblance with the

language-games of both users and designers we have

an orientation for really doing design as skill based

participation, a way of doing design that may help us

to transcend some of the limits of formalization.” —

Pelle Ehn

5. REFERENCES

[1] Aitchison, J. and Gilchrist, A. Thesaurus Construction,

Second Edition. Aslib, The Association for Information

Management, London, England, 1987.

[2] Booch, G., Rumbaugh, J. and Jacobson, I. The Unified

Modeling Language User Guide. Addison Wesley, 1999.

[3] Brown, W. J., Malveau, R. C., McCormick, H. W., and

Mowbray, T. J. AntiPatterns. John Wiley, 1998.

[4] Yih-Farn Chen, Y-F., Nishimoto, M. Y., and

Ramamoorthy, C. V. The C information abstraction system.

IEEE Transactions on Software Engineering, 16, 3, (Mar.

1990), 325-334.

[5] Demeyer, S., Nierstrasz, O. M., Ducasse, S. Object-

Oriented Reengineering Patterns. Morgan Kaufmann, 2002.

[6] Ehn, P. Playing the language-games of design and use-On

skill and participation. In the Conference on Supporting

Group Work Archive, ACM, (Palo Alto, California), 1988,

142-157.

[7] Fowler, M. Analysis Patterns: Reusable Object Models.

Addison-Wesley, 1996.

[8] Fowler, M. Refactoring. Addison Wesley, 1999.

[9] Gamma E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns: Abstraction and Reuse of Object-Oriented

Software. Addison-Wesley, 1995.

[10] Jain, A. K., Murty, M. N. and Flynn, P. J. Data clustering: A

review. ACM Computing Surveys, 31, 3, (Sep. 1999), 264-

323.

[11] Knuth, D. E. The Art of Computer Programming, Volumes

1-3. Addison Wesley, 1998.

[12] Koza, J. R. Genetic Programming / On the Programming of

Computers by Means of Natural Selection. MIT Press,

1992.

[13] Landau, S. I. Dictionaries / The Art and Craft of

Lexicography. Charles Scribner, 1984.

[14] Lenat, D. B.. Cyc: A large scale investment in knowledge

infrastructure. Communications of the ACM, 38, 11, (Nov.

1995), 33-38.

[15] Miller, G. A. WordNet: A lexical database for English.

Communications of the ACM, 38, 11, (Nov. 1995), 39-41.

[16] Partsch, H. and Steinbruggen, R. Program transformation

systems. ACM Computing Surveys, 15, 3, (Sep. 1983), 189-

226.

[17] Perlis, A. and Rugaber, S. Programming with idioms in

APL. In Proceedings of APL International Conference,

(Rochester, NY), 1979, 232-235.

[18] Prieto-Díaz, R. and Freeman, P. Classifying software for

reusability. IEEE Software, 4, 1, (Jan. 1987), 94-104.

[19] Raymond, D. R. and Tompa, F. W. Hypertext and the

Oxford English Dictionary. Communications of the ACM,

31, 7, (Jul. 1988), 871-879.

[20] Reasoning Systems Inc. Refine User's Guide. (Palo Alto,

California), 1990.

[21] Rich, C. and Waters, R. C. The Programmer's Apprentice.

Addison Wesley, 1990.

[22] Roget, P. Roget's Thesaurus of English Words and Phrases.

George Davidson (Editor), Penguin Books, 2002.

[23] Rugaber, S., Ornburn, S. B. and LeBlanc, R. J. Jr.

Recognizing design decisions in programs. IEEE Software,

7, 1, (Jan. 1990), 46-54.

[24] Shaw, M. Prospects for an engineering discipline of

software. IEEE Software, 7, 6 (Nov. 1990), 15-24.

[25] Shaw, M. and Garlan, D. Software Architecture /

Perspectives on an Emerging Discipline. Prentice Hall,

1996.

[26] Snetling, G. Concept analysis - A new framework for

program understanding. In SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering

(PASTE'98), (Montreal, Canada), 1998.

[27] Warmer, J. and Kleppe, A. The Object Constraint

Language, Second Edition. Addison Wesley, 2003.

[28] Webster’s Seventh New Collegiate Dictionary. G & C

Merriam Co., 1965.

[29] Wills, L. M. Automated Program Recognition by Graph

Parsing. Ph.D. Thesis, Massachusetts Institute of

Technology, Technical report 1358, MIT Artificial

Intelligence Laboratory, July 1992.

[30] Winchester, S. The Professor and the Madman: A Tale of

Murder, Insanity, and the Making of the Oxford English

Dictionary. G. K. Hall & Co., Thorndike, Maine, 1998.

[31] Yokoi, T. The EDR electronic dictionary. Communications

of the ACM, 38, 11 (Nov. 1995), 42-44.

