
Reverse Reverse-Engineering

Spencer Rugaber
College of Computing
Georgia Institute of

Technology
Atlanta, GA 30332-0280

+1 404 894 8450
spencer@cc.gatech.edu

Terry Shikano
College of Computing
Georgia Institute of

Technology
Atlanta, GA 30332-0280

+1 404 894-7553
shikano@cc.gatech.edu

R. E. Kurt Stirewalt
Department of Computer
Science and Engineering

Michigan State University
East Lansing, MI 48824

+1 517 355-2359
stire@cse.msu.edu

ABSTRACT
Reverse engineering a program constructs a high-level
representation suitable for various software develop-
ment purposes such as documentation or reengineering.
Unfortunately however, there are no established guide-
lines to assess the adequacy of such a representation.
We propose two such criteria, completeness and accu-
racy, and show how they can be determined during the
course of reversing the representation. A representation
is successfully reversed when it is given as input to a
suitable code generator, and a program equivalent to
the original is produced. To explore this idea, we re-
verse engineer a small but complex numerical applica-
tion, represent our understanding using algebraic speci-
fications, and then use a code generator to produce
code from the specification. We discuss the strengths
and weaknesses of the approach as well as alternative
approaches to reverse engineering adequacy.

Keywords
Reverse engineering, algebraic specification, code gen-
eration, adequate representation

"Living backwards!" Alice repeated in great aston-
ishment. "I never heard of such a thing!"

— Lewis Carroll

1 INTRODUCTION
Reverse engineering is a powerful method for compre-
hending a software system. It produces a high-level
representation of a program that is useful in software
maintenance tasks such debugging, reengineering or
documentation. Unfortunately, this definition is not
helpful to software engineers and their managers in
planning and managing reverse engineering efforts. In
particular, it does not give any guidance to determining

the necessary completeness and accuracy of the result-
ing representation. That is, it is hard to know when the
understanding gained adequately represents the original
program. The research question we explore is how do
we know if a reverse engineering effort has produced
an adequate representation of a program. Our answer
is that a program representation produced by reverse
engineering is adequate if it is sufficiently complete
and accurate that an automated tool is capable of re-
constructing a program equivalent to the original from
it.

We apply two key insights to explore adequate reverse-
engineering representations. Our first insight comes
from examining the idea of reversing the reverse engi-
neering process; that is, in taking the representation
that results from reverse engineering and using it to
reconstruct a program. In order to reduce variation and
uncertainty in the process, we want the reconstruction
to be done automatically. If we are able to do these two
tasks, representation and generation, then we have an
operational means for determining the completeness of
our effort. The second insight concerns the quality of
the representation; that is, how do we ensure that our
representation provides useful insight into the program.
Here we use a model of the program’s application do-
main as an external standard against which we compare
the representation as it is built up during reverse engi-
neering. A domain model provides a set of expectations
for constructs in the program and how they relate to
each other. Comparing understanding gained while
reverse engineering a program to expectations provided
by the domain model encourages an accurate program
representation.

We illustrate the application of our insights by reverse
engineering a small but complex numerical program
using algebraic specifications as a notation for the rep-
resentation. A code generator uses the representation to
reconstruct an equivalent version. Based upon this case
study, we critique the strengths and weakness of the
approach.

2 ADEQUACY
Wyuker pointed out the relevance of adequacy to the
testing of software [12,13]. In particular, successfully
executing an adequate set of tests gives management at
least one indication that sufficient testing has been per-
formed. We would like an analogous indication to help
manage the reverse-engineering process.

The role of a reverse engineer is to understand a pro-
gram and to express that understanding using a well-
defined representation mechanism. To do this, the re-
verse engineer must answer two kinds of questions:
what questions and how questions [8]. What questions
concern the goals and requirements of the program;
whereas how questions concern the design decisions
made by the original developers and how these deci-
sions are manifested in the code [11]. The adequacy of
a representation indicates whether the representation
completely and accurately expresses what and how
information.

Adequacy can be viewed either extrinsically or intrin-
sically. Extrinsic criteria define the adequacy of an
artifact in terms of how it is used. In the case of testing,
reliability is an example of an extrinsic criterion. For
example, if 99.9% reliability is used as a testing crite-
rion, then it is unlikely that users will actually experi-
ence a failure. Intrinsic criteria refer to properties that
can be determined directly from an artifact itself. For

example, statement coverage, which indicates that each
line of code in a software system has been tested, is an
example of an intrinsic testing criterion.

Unfortunately, extrinsic criteria pose a practical prob-
lem for management because they cannot be assessed
until the artifact is used. In the case of reverse engi-
neering, the uses to which a representation is put are
key extrinsic determinants, but we may not be able to
anticipate those uses at the time we are performing the
reverse engineering. Hence, we would like intrinsic
criteria to help manage the reverse engineering process.

We have looked at two intrinsic adequacy criteria:
completeness and accuracy. A representation is deemed
completeness adequate (or complete) if it is capable of
being automatically used to reconstruct a program
equivalent to the original. In addition to completeness,
we need an adequacy criterion to indicate the extent to
which a representation elucidates the design of the
software and the connection between the software and
the goals it was designed to accomplish. To the extent
that a representation provides this insight, we call it
accurate.

Our primary contribution is a framework for under-
standing how to objectively assess completeness and
accuracy. For completeness, we require an automated
code generator to be able to process the representation
and transform it into a program that is equivalent to the
program being reverse engineered. We judge two pro-
grams equivalent if one produces the same result as the
other when run on a set of test data. Obviously, the
strength of this judgement depends on the (testing)
adequacy of the test suite being used.

To assess accuracy, we make use of a model of a pro-
gram’s application domain. Application domains are
mature and cohesive sets of applications characterized
by a common vocabulary, literature and solution archi-
tecture [1]. Domain models express the important con-
cepts in the domain and relationships among them. As
such, they provide a vocabulary with which what in-
formation can be communicated. For our purposes, a
representation is considered accurate, if it faithfully
articulates concepts and relationships in the program's
domain model and connects these domain concepts to
the program code in a way that makes design decisions
explicit.

3 CASE STUDY
To explore the issue of adequate representations, we
reverse engineered a numeric application called
ZBRENT, written in the C programming language. The
particular application domain was that of finding the
root of a real-valued function. A domain model was
obtained from textbooks. Then the SLANG algebraic
specification language was used to represent both the

Root finders

Polynomial
root finders

Non-
polynomial
root finders

Multiple
root finders

Singe root
finders

Bracketed
root finders

Open
root finders

ZBRENT

Figure 1: Lineage for ZBRENT

domain model and the algorithm. SLANG is part of the
Specware tool from Kestrel Institute. We made use of
the SLANG code generator in Specware to produce an
executable C++ program for ZBRENT, which was then
tested against the original program on a set of test func-
tions. We then assessed the completeness and accuracy
of the resulting representation.

Root Finding
Finding the root of a nonlinear equation is a well-
understood problem in numerical analysis [4,5]. Pro-
grams have existed for many years to robustly and effi-
ciently compute roots [9]. Consequently, root finding
qualifies as an application domain suitable for domain-
based program understanding [10]. That is, there is a
sufficiently large collection of programs for finding
roots that we can identify common characteristics and
use them as expectations to guide the reverse engineer-
ing process.

As illustrated in Figure 1, at the top level, the root-
finding application domain can be partitioned into
polynomial and non-polynomial families of algorithms.
Within the latter, a further distinction exists between
algorithms capable of finding multiple roots and those
capable of dealing with a single root only. For the pur-
poses of this paper, we are concerned with the latter
class. Within single-root-finders, a final distinction is
made between those guaranteed to converge—
bracketed root finders—and those, presumably more
efficient ones, that do not—open root finders.

Single-root, non-polynomial root finders work in the
following way, as illustrated in Figure 2. Input consists
of a subprogram (f) capable of computing the func-
tional value at a given real value (x) and an initial
estimate of the root in the form of a containing subin-
terval of the real line, denoted by its end points. Func-
tional evaluation is typically expensive, so root-finding
algorithms try to reduce the number of calls to the ar-
gument subprogram.

Root finding proceeds by selecting a trial point within
the current interval thereby partitioning the interval
into two pieces, determining the piece containing the
root, creating a new, refined interval using the chosen
piece, and iterating. In the figure, interval end points
are indicated with dashed lines. Increasing subscripts
on interval names denote the order of refinement. For
example, interval i2 is refined by the smaller interval i3.
Robust root-finding algorithms have the property that
the interval gets smaller on every iteration. Moreover, a
stopping criterion determines whether sufficient pro-
gress has been made to warrant continuing the process.

Algorithms of this sort can be categorized by specify-
ing the method by which a refined interval is chosen
and by the stopping criterion. Variations of the first

sort include bisection (Bolzano’s method), linear inter-
polation (Regula Falsi), inverse quadratic interpolation
(Mueller’s method), Aiken’s Delta Squared, Newton-
Raphson, and secant. Variations of the second sort in-
clude stopping when the functional value is sufficiently
close to zero, stopping when the interval width is suffi-
ciently narrow, and stopping after a fixed number of
iterations. Of course, multiple methods of each sort can
be combined to improve robustness or efficiency.

ZBRENT
Our case study examined a particular root finding algo-
rithm called ZBRENT. The algorithm was first published
by Decker in 1969 and improved by Brent in 1973. It
combines several of the variations described in the pre-
vious section in order to improve efficiency and ro-
bustness. We have chosen the Brent variation, as taken
from [9], as the subject of our case study, for several
reasons.

• It is written in the C language. This allows us to
more directly compare it with the output of our
chosen code generator, which produces C++ code.

• It features all three choices of stopping criteria.

• It features three interval shrinkage methods: bisec-
tion, secant, and inverse quadratic interpolation.

As a consequence of the number of variations, the code
is complex and difficult to follow, making it a good
candidate for reverse engineering. The actual code con-
sists of a single function of 101 lines of which three are
preprocessor lines, three are whole-line comments,
sixteen are blank lines, eight are lines containing a sin-
gle opening or closing brace, and nineteen are declara-
tions, leaving 52 executable statements.

Algebraic Specification
We have chosen algebraic specification as a notation
for representing the results of the reverse engineering
of ZBRENT. Algebraic specification is an application of

x

y f(x)

i0

i1

i2

i3

Figure 2: Iterative Interval Shrinkage

formal methods to the problem of precisely specifying
the behavior of a software system. Specifications are
decomposed using sorts (data types) and the operations
that manipulate them. Operations are in turn defined
via axioms (sets of equations) indicating how the value
computed by one sequence of operations equates to
that computed by another.

If the equational definitions in an algebraic specifica-
tion are suitably constrained in format, they may be
interpreted operationally as a set of rewrite rules,
thereby enabling compilation into a traditional pro-
gramming language. We have used an algebraic speci-
fication language, called SLANG, which comes as part
of the Specware tool suite from Kestrel Institute.

Specware
Specware is a tool for developing software from speci-
fications [7]. The particular notation that it uses, called
SLANG, is algebraic in nature, and the accompanying
formality enables powerful manipulations to be per-
formed including generation of code guaranteed to
correctly implement the specifications. We used
SLANG to represent the results of the reverse
engineering of ZBRENT.

As an example, the SLANG code shown in Figure 3
denotes the specification of an interval, suitable for use
in building a domain model for root finders. This speci-
fication for INTERVAL (lines 1-20) describes a sort
called an Interval (line 3) making use of a previ-
ously defined specification called EXTENDED-REAL
(line 2) that is used to model x-axis values. The struc-
ture of an Interval is defined with a sort axiom
(line 4) as being the Cartesian product of two Reals.
In addition to sorts, specifications define operations
and constants. In INTERVAL there are two operations
defined (mid-point and make-interval) but
no constants. Operation definitions consist of a signa-
ture and one or more axioms. For example, the signa-
ture for mid-point (lines 6) indicates that it takes as
input an Interval and produces as output a Real.
The single axiom defining mid-point (lines 8-9)
asserts that the output value it produces, when given as
input the Interval constructed from values a and
b, is equal to the value produced when the half op-
eration is composed with the results of operating on a
and b with the plus operation. In a similar manner,
the make-interval operation is defined on lines
12-16. Finally, lines 18-19 indicate that the make-
interval operation provides a way in which new
Intervals may be instantiated.

SLANG Support For Adequate Representations
In Specware, specifications are actual data values that
can be manipulated by high-level operators called mor-
phisms. In particular, SLANG provides three mor-
phisms: import, for including one specification inside

another; translate, for renaming the sorts and opera-
tions of a specification; and colimit, for combining
specifications in a structured way. By writing atomic
specifications and then using the morphisms to com-
bine them, complex systems can be cleanly modeled.

We make use of one other Specware feature, called an
interpretation, which is Specware’s way to formalize
design refinements. Refinements relate abstract do-
main-model concepts to executable code. Operation-
ally, an interpretation demonstrates how the sorts and
operations in one specification are implemented using
sorts and operations in another specification at a lower
level of abstraction. Interpretations are not morphisms,
but rather are an idiomatic collection of morphisms and
a special intermediate specification called a mediator.
Briefly, a mediator defines operations in the source
specification using axioms that reference operations in
the target specification.

Mediators play a central role in our approach because
they explicate design decisions that explicitly relate
domain concepts to implementation concepts via inter-
pretations. Interpretations force a reverse engineer to
understand and demonstrate how domain concepts are
connected to implementation concepts. By requiring
the use of interpretations to connect domain and im-
plementation concepts, we make accuracy objective
and add rigor to the understanding process.

(1) spec INTERVAL is

(2) import EXTENDED-REAL

(3) sort Interval

(4) sort-axiom Interval = Real, Real

(5)

(6) op mid-point : Interval -> Real

(7) definition of mid-point is

(8) axiom mid-point(a, b) =

(9) half(plus(a, b))

(10) end-definition

(11)

(12) op make-interval : Real, Real ->

(13) Interval

(14) definition of make-interval is

(15) axiom make-interval(a,b) = (a,b)

(16) end-definition

(17)

(18) constructors { make-interval }

(19) construct Interval

(20) end-spec

Figure 3: SLANG INTERVAL Specification

Process
The reverse engineering of ZBRENT is expressed in a
three-part SLANG program. The first part comprises a
domain model constructed by reading descriptions in
books and papers on root finding and articulating them
in SLANG. Next, we expressed the ZBRENT source
code as a set of SLANG operation definitions. Essen-
tially, these implementation operation definitions just
recast the code in a slightly more functional manner
such as might be produced in writing an SML version
of ZBRENT. We then embarked on an iterative process
of finding SLANG interpretations to connect the im-
plementation operations to domain concepts. Often, to
introduce an interpretation required refactoring the
implementation specification. We only allowed
changes that resulted in a complete representation, i.e.,
one for which Specware could generate a program that
was testing equivalent to the original C code for
ZBRENT. We stopped this process when we were able
to connect every implementation specification to the
appropriate domain specification.

4 RESULTS
The Root-Finding Specification
Figure 4 depicts the root-finding domain model as a

set of related Specware specifications. Boxes in this
figure denote specifications, which represent different
concepts and relationships in the domain model. Filled
boxes are not actually part of the domain model but
provide resources to it from other domains. In particu-
lar, REAL is the specification for real numbers, and, in
EXTENDED-REAL, we add several useful utility op-
erations. The MACHINE-EPS specification can be
thought of as belonging to a separate domain describ-
ing the properties of floating-point arithmetic on a
physical machine. In this case, it provides the defini-
tion of a small constant value useful in determining
when a floating-point computation is unable to contrib-
ute significantly to a computation.

The root finding domain model proper consists of
twelve specifications, which can be further subdivided
into three pieces describing the iterative root finding
process (the bottom-right box), convergence (the
rightmost three unfilled boxes), interval shrinking (the
remain unfilled boxes). The specific roles of the speci-
fications are summarized in the following list.

• INTERVAL: the data structure holding interval end
points;

ROOT-FINDER

INTERVAL
ROOT-

CONVERGENCE-
TEST

SECANT INVERSEQ BISECT

OPEN BRACKETED

CANDIDATE-
POINT-

GENERATION

BRACKETED-
INTERVAL

EQUALS ZERO

NARROW

EXTENDED-
REAL

MACHINEEPS

REAL

d

Figure 4: Root Finding Domain Model

• BRACKETED-INTERVAL: an interval guaranteed
to hold a root;

• CANDIDATE-POINT-GENERATION: the proc-
ess of generating a candidate end point for a re-
fined interval;

• OPEN: the generation of points not guaranteed to
be contained in the current interval;

• SECANT: the secant method for generating a new
candidate end point;

• INVERSEQ: the inverse quadratic interpolation
method for generating a new candidate end point;

• BRACKETED: the generation of points guaranteed
to be contained in the current interval;

• BISECT: the bisection method for generating a
new candidate end point;

• ROOT-CONVERGENCE-TEST: the properties of
any convergence test;

• EQUALS-ZERO: a convergence test in which a
root is exactly found;

• NARROW: a convergence test in which the current
interval has become too small for further progress;

• ROOT-FINDER: the process of continually shrink-

ing an interval until a convergence test is passed.

In addition to the twelve domain specifications, Figure
4 also illustrates several kinds of morphisms. The line
from REAL to EXTENDED-REAL is labeled with the
letter d to denote what is called a definitional exten-
sion. EXTENDED-REAL can be thought of as a macro
package providing a set of abbreviations shortening the
expression of various composite REAL operations. An
unadorned line in the figure denotes an import mor-
phism indicating the textual inclusion of one specifica-
tion within another. This is normally used to build a
new specification that makes use of the features of an
old one. For example, the INTERVAL specification
needs to import from the REAL specification because
the interval end points are real numbers. The bold lines
in the figure correspond to translate morphisms in
which one or more imported specification elements
have been renamed. In this case, the renaming allows
the ROOT-FINDER specification to be written using
an abstract convergence test which, in the ZBRENT al-
gorithm, is refined by the disjunction of the two con-
crete tests specified in the figure. Finally, and most
interestingly are the two colimit morphisms denoted by
dashed lines ending in a small circle. A colimit is a
shared union of the two source specifications. It is used
within algebraic specifications for a variety of purposes
including, in this case, the composition of multiple
source specifications into a target specification.

The ZBRENT Specification
In addition to the root-finding domain model, a specifi-
cation must be given for the ZBRENT algorithm itself.
Figure 5 contains a high-level flow chart for the C
version of ZBRENT. The outer loop wraps the shrinking
process and ensures termination by counting iterations.
Within this loop, it is possible to terminate successfully
with a root if either the functional value at an interval
end point is zero or the interval itself has grown too
narrow. If termination is not warranted, a check is
made to see whether interpolation is promising, and, if
so, either secant or inverse quadratic interpolation is
chosen. As neither of these is guaranteed to produce a
bracketed value, a subsequent check must be made. If
any of these tests fail, then bisection is used. Finally,
the interval is updated with the appropriately chosen
subinterval.

Not shown in the flow chart are various optimiza-
tions—memoization of functional values to avoid re-
computation, beginning interpolation from the end
point whose functional value is smallest in magnitude,
and remembering previous interval end points to speed
interpolation.

The SLANG specification of the ZBRENT algorithm
consists of a rendering of the flow chart boxes and op-
timizations with axioms. This process is similar to writ-

compute
refined
interval

BEGIN
ZBRENT

maximum
iterations

END
ZBRENT

choose
method

secant

converged

check
interpolation

bisect accept
interpolation

END
ZBRENT

No

inverse
quadratic

interpolation

attempt
interpolation

possible to
interpolate Yes

bisect

No

update
interval

Yes

Yes

No Yes

No

Figure 5: Abstract Flow Chart for ZBRENT

ing a functional program in a language such as SML or
Haskell. Usually, the major effort is in converting oc-
currences of the assignment statement, for which there
is no equivalent in SLANG. Instead the value assigned
is passed as a argument to all subsequent computations
requiring it.

Interpretations
The SLANG representation of the ZBRENT algorithm is
complete in the sense that code equivalent to the origi-
nal can be generated from it. However, it sheds no light
on how the algorithm accomplishes the goal of finding
a root. We use SLANG interpretations for this purpose.
In particular, an interpretation indicates precisely how
an abstract domain concept is manifested in the algo-
rithm. To the extent that each aspect of the algorithm
specification is tied to a domain concept, the combined
domain and algorithm specification is judged accurate.

The Generated Code
Specware is capable of generating code from SLANG
specifications using either Lisp or C++ as a target lan-
guage. We chose C++ to facilitate comparison with
ZBRENT. Specware’s code generator does not take ad-
vantage of any of C++’s object-oriented feature, further
easing the comparison. The three parts of the ZBRENT
specification (domain model, algorithm, and interpreta-
tion) required respectively 147, 303, and 75 lines of
SLANG code. The total code generated for ZBRENT

consists of 624 lines, of which two are preprocessor
lines, six are whole line comments, 124 are blank lines,
and 47 are declarations, leaving 445 executable state-
ments.

5 EVALUATION
We proposed a definition of the adequacy of a reverse-
engineering representation based on completeness and
accuracy. We then discussed how to objectively meas-
ure these criteria by using SLANG to represent the
results of reverse engineering, checking completeness
with the aid of the Specware code generator and vali-
dating accuracy using a domain model. Having demon-
strated proof of concept, we now subject our results to
a critical analysis.

Upon reflection, we identified four criticisms that
might be raised:

• Are our methods for assessing completeness and
accuracy truly objective?

• Is our definition of intrinsic representational ade-
quacy better than other definitions?

• Given industry's resistance to formal methods, is
our approach practical?

• Would our methods fare well in other application
and solution domains?

We address each now in turn.

Objectivity of our Methods
Our methods for assessing completeness and accuracy
are objective. Completeness can be assessed objec-
tively through the use of the Specware code generator
and a suite of test cases. The code generator automati-
cally assembles an executable program from the alge-
braic specifications. This generated program is then
compiled and run against every test in the test suite. If
the generated program behaves differently than the
original program on any one of these tests, then the
programs are not equivalent. Our completeness crite-
rion requires the programs to be indistinguishable by
the test suite. Because the code is generated from the
specifications without manual intervention, and be-
cause a program either passes or fails a test, our com-
pleteness criterion is objective.

Like completeness, our accuracy criterion is also objec-
tive. The objective arbiter in our method is the applica-
tion domain model, which must reflect every domain
concept that is detected during the process of represent-
ing design decision seen in the code. In the ZBRENT
example, we used a domain model of root finding and,
to a much lesser extent, domain models that describe
machine arithmetic and real numbers. By having to
identify an interpretation that connects every line of
code to the salient domain concepts, and by virtue of a
fixed, external domain model, we claim that our accu-
racy criterion is objective.

Other Adequacy Criteria
To our knowledge, our definition of representation
adequacy in terms of completeness and accuracy is the
first intrinsic definition of representation adequacy to
be proposed. Objectivity is required of intrinsic meth-
ods, which by definition do not rely on external valida-
tion. If, over time, researchers develop new criteria to
compete with completeness and accuracy, and if these
new criteria can be assessed objectively, then it would
be possible to set up empirical studies that assess them.
Such studies would compare representations arrived at
through the competing criteria against extrinsic factors.

Our choice of algebraic specification in general and
SLANG and Specware in particular were motivated by
our desire for an objective, intrinsic measure of repre-
sentation adequacy. Clearly, however, the choice of
notation influences the larger software-maintenance
task for which the representation is used. Our results to
date do not support any claims about the extrinsic ade-
quacy of a representation that we deem intrinsically
adequate.

Practicality
Formal methods have not gained wide acceptance in
industry because they are often perceived as being dif-
ficult to learn and to apply [14]. SLANG is no excep-
tion: The authors had to invest a lot of effort to learn

how to use the notation and tools before we were able
to craft a representation with the precision and detail
required by the case study. However, because reverse
engineering is known to be an expensive activity, we
believe the benefits of an objective adequacy assess-
ment outweigh the costs involved with using formal
methods.

Beyond the general argument over formal methods, we
were able to assess SLANG as a notation for represent-
ing the results of reverse engineering. The notation was
particularly useful for experimenting with different
conjectures about the relationship between what and
how information. This experimentation was supported
by the ability to automatically generate code and the
powerful mechanisms for factoring and relating speci-
fications. For example, in the early stages of our case
study, we were able to separate implementation con-
cerns into specifications with meaningful abstract
names, even though the operations defined in these
specifications were not yet at the appropriate level of
abstraction. Typically, these early specifications are
ugly and riddled with implementation detail, but the
intended factoring and separation can still be ex-
pressed, and correct code can still be generated. More-
over, in SLANG, specifications that are riddled with
implementation detail are painfully ugly; so in some
sense, the notation provides aesthetic feedback to en-
courage factoring and compositional understanding.

The only drawback we experienced in using SLANG
concerned a lack of familiar devices that we had grown
to expect having used other modeling notations. Fea-
tures in the algebraic paradigm are more abstract and
declarative than those found in other modeling para-
digms, specifically object-oriented modeling. Object-
oriented modeling directly supports a rich set of ab-
straction mechanisms, such as encapsulation, identity,
inheritance, and polymorphism. To become proficient
in one modeling paradigm requires a methodological
commitment to think in terms of that paradigm. Even
though SLANG does not support these concepts, we
found them difficult to do without when we were mod-
eling ZBRENT. In fact, we often inadvertently tried to
simulate them in SLANG. Often this thinking resulted
in awkward specifications.

Application to Other Domains
Our results demonstrate that SLANG helps to elucidate
the design of a program that solves a mathematical
problem (root finding) in a procedural language (C).
There are, of course, at least two dimensions of varia-
tion against which our methods must be validated for
their ability to elucidate design decisions. The two di-
mensions are different application domains (e.g., con-
trol systems, decision support, etc.), and different de-
sign paradigms (e.g., object-oriented, real-time, etc.).

Concerning the former, it is difficult to predict how a
method will fare when it is applied to a different appli-
cation domain. We intend to address this question in
our future work.

On the other hand, we can make several observations
about different design paradigms, at least with regard
to our current use of algebraic specification and
Specware. For example, it is difficult in algebraic
specification to model state. Consequently, programs
that exhibit a high degree of encapsulation and linked
data might be difficult to generate using our approach.
Even though Specware has a C++ code generator, we
discovered that the generated C++ does not exploit any
object-oriented features of the language, such as inheri-
tance and polymorphism. We are exploring the extent
to which this limitation is a necessary artifact of alge-
braic specification or if, in fact, it is just a current limi-
tation in the Specware code generator.

In addition to difficulty with state and encapsulation,
non-functional concerns, such as performance and re-
source utilization, are difficult to model using algebraic
specification. In fact, such concerns are difficult to
model in most modeling notations. Fortunately, in our
experience with legacy systems, functional concerns
far outweigh the non-functional concerns, and most
systems are implemented in standard procedural lan-
guages, such as Fortran, Cobol, and C.

6 RELATED WORK
We are not aware of any other work concerning the
adequacy of reverse engineering representations. How-
ever, several other groups have explored the use of
formal methods to support reverse engineering. Per-
haps the work most closely related to ours is that of
Basili and Mills [2] in which they examine a program
called ZEROIN, a Fortran implementation of ZBRENT.
Basili and Mills are interested in applying ideas from
structured programming and program correctness
proofs to the understanding and annotation of computer
programs. In particular, they construct a prime-
program decomposition of a program’s control flow
graph, define program functions for each prime pro-
gram, build a data reference table describing the ac-
cesses to and alterations of each program variable, and
then synthesize a program correctness proof demon-
strating exactly how the program accomplishes its goal.

Using this approach, the authors are able to gain an
understanding of ZEROIN. The approach helps them
organize and document their analysis and provides a
completeness criterion. That is, they know that they
have to keep working until they complete their proof.
Hence, it gives them a way of knowing when their un-
derstanding is deep enough. Concerning accuracy,
however, they make no direct comment on the extent to
which their process relates design decisions to program

goals.

Hayes describes work similar to ours undertaken as a
collaboration between IBM and Oxford University [6].
From the point of view of Oxford, the purpose of the
described research was to explore the scaling of formal
methods to industrial settings. From the point of view
of IBM, the purpose was to gain a greater understand-
ing of its Customer Information Control System
(CICS) in support of its reimplementation and en-
hancement.

The specific effort undertaken was to mathematically
model several CICS modules using the Z specification
language augmented by informal, English language
text describing the purposes of the modeled constructs.
Hayes discusses problems that arose during the specifi-
cation process itself, including communication difficul-
ties between the mathematical modelers and the im-
plementation experts, obtaining the right level of ab-
stractness in the specification, and the exclusion of
several aspects of the system, such as parallelism and
distribution, that went beyond the capabilities of the
modeling approach used.

We are interested in producing an adequate representa-
tion; that is, one that is complete and accurate. The
Oxford models were complete in the sense that they
described the behavior of the modules to the extent
described in the manuals while incomplete in ignoring
possible interactions due to parallelism and distribu-
tion. However, the comparison with the manual is in-
herently informal in contrast to our operational com-
pleteness test.

Concerning accuracy, Hayes asserts that the right level
of abstraction occurs when the specification focuses on
the primary purpose of a module while avoiding im-
plementation details. This roughly corresponds with
our guideline that suggests that the right level of accu-
racy occurs when there is a clear mapping between the
generic domain concepts and the specific algorithm
details.

Another related project was REDO [3], a part of the
ESPRIT II European collaboration. A variety of activi-
ties were undertaken in REDO including the invention
of a language, called UNIFORM, intermediate between
code and specifications, an application of weakest-
precondition semantics to the verification of programs,
the definition of the Z++ extension to Z, an exploration
of decompilation including the development of a de-
compiler compiler, and the activity closest to ours, the
reverse engineering of existing applications.

The REDO reverse engineering process consisted of
three stages: compilation from Cobol to UNIFORM,
abstraction to a functional form, and simplification
using normalizing transformations. The REDO work

builds on the Basili and Mills approach but goes be-
yond it by detecting and characterizing important ob-
jects in the code corresponding to, for example, files,
arrays and reports. However, there is no discussion of
either completeness or accuracy.

7 CONCLUSION
For reverse engineering to become a routine part of the
software development life cycle, managers must under-
stand its costs and benefits. The cost of reverse engi-
neering equates to the effort required to produce a
high-level representation for a program. But because
such representations vary greatly in detail and scope, it
is necessary to have a precise definition of what such
representations entail. Once such a definition exists,
then data can be collected relating the effort required to
produce a representation to the size of the program
being analyzed. This data, in turn, can be used to better
schedule the required effort.

The benefit of a reverse engineering effort correlates to
the quality of the representation produced. In particu-
lar, high-quality representations describe not only the
functioning of a program but also how that functioning
accomplishes the program’s purpose. A definition of
reverse-engineering representation that specifies this
association permits managers to better relate the repre-
sentation to its uses in subsequent software mainte-
nance tasks.

We have proposed a definition for an adequate reverse
engineering representation in terms of its completeness
and accuracy, which, in turn, enable better understand-
ing or reverse engineering costs and benefits.

ACKNOWLEDGEMENTS
We appreciate the support provided by the National
Science Foundation (CCR-9708913). We would also
like to acknowledge the help provided by the Specware
team at the Kestrel Institute, particularly Jim McDon-
ald, Dusko Pavlovic and Doug Smith. Our colleague on
this project was Linda Wills. We benefited greatly in
our discussions with her.

REFERENCES
1. Guillermo Arango and Rubén Prieto-Díaz. Domain

Analysis and Software Systems Modeling. IEEE
Computer Society Press, (1991).

2. Victor R. Basili and Harlan D. Mills. Understand-
ing and Documenting Programs. IEEE Transac-
tions on Software Engineering, SE-8(3):270-283,
(May 1982).

3. Jonathan P. Bowen, Peter T. Breuer, and Kevin C.
Lano. The REDO Project: Final Report. Oxford
University Computing Laboratory, PRG-TR-23-
91, (1991).

4. G. Dalhquist and Å. Björck. Nonlinear Equations.
Numerical Methods, Chapter 6, Prentice-Hall,
(1974).

5. G. E. Forsythe, M. A. Malcolm, and C. B. Moler.
Solution of Nonlinear Equations. Computer Meth-
ods for Mathematical Computations. Chapter 8,
Prentice-Hall, (1977).

6. Ian J. Hayes. Applying Formal Specification to
Software Development in Industry. IEEE Transac-
tions on Software Engineering. SE-11(2):169-178,
(February 1985).

7. Kestrel Institute Specware User Guide, Version
2.0.3, (March 1998).

8. S. Letovsky. Plan Analysis of Programs. Ph.D.
Thesis, Yale University, (1988).

9. W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Root Finding and Nonlinear
Sets of Equations. Numerical Recipes in C, The
Art of Scientific Computing, Second Edition, Chap-
ter 9, Cambridge University Press, (1992).

10. S. Rugaber. The Use of Domain Knowledge in
Program Understanding. Annals of Software Engi-
neering, 9:143-192, (2000).

11. Spencer Rugaber, Stephen B. Ornburn, and Rich-
ard J. LeBlanc, Jr. Recognizing Design Decisions
in Programs. IEEE Software, 7(1):46-54, (January
1990).

12. Elaine J. Weyuker. Axiomatizing Software Test
Date Adequacy. IEEE Transactions on Software
Engineering, SE-12(12):1128-1138, (December
1986).

13. Elaine J. Weyuker. The Evaluation of Program-
Based Software Test Date Adequacy Criteria.
Communications of the ACM, 31(6):668-675,
(June 1988).

14. Jeannette M. Wing. A Specifier's Introduction to
Formal Methods. IEEE Computer, 10, (September
1990).

