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ABSTRACT 
Reverse engineering a program constructs a high-level 
representation suitable for various software develop-
ment purposes such as documentation or reengineering. 
Unfortunately however, there are no established guide-
lines to assess the adequacy of such a representation. 
We propose two such criteria, completeness and accu-
racy, and show how they can be determined during the 
course of reversing the representation. A representation 
is successfully reversed when it is given as input to a 
suitable code generator, and a program equivalent to 
the original is produced. To explore this idea, we re-
verse engineer a small but complex numerical applica-
tion, represent our understanding using algebraic speci-
fications, and then use a code generator to produce 
code from the specification. We discuss the strengths 
and weaknesses of the approach as well as alternative 
approaches to reverse engineering adequacy. 

Keywords 
Reverse engineering, algebraic specification, code gen-
eration, adequate representation 

 

"Living backwards!" Alice repeated in great aston-
ishment. "I never heard of such a thing!" 

— Lewis Carroll 

1 INTRODUCTION 
Reverse engineering is a powerful method for compre-
hending a software system. It produces a high-level 
representation of a program that is useful in software 
maintenance tasks such debugging, reengineering or 
documentation. Unfortunately, this definition is not 
helpful to software engineers and their managers in 
planning and managing reverse engineering efforts. In 
particular, it does not give any guidance to determining 

the necessary completeness and accuracy of the result-
ing representation. That is, it is hard to know when the 
understanding gained adequately represents the original 
program. The research question we explore is how do 
we know if a reverse engineering effort has produced 
an adequate representation of a program. Our answer 
is that a program representation produced by reverse 
engineering is adequate if it is sufficiently complete 
and accurate that an automated tool is capable of re-
constructing a program equivalent to the original from 
it. 

We apply two key insights to explore adequate reverse-
engineering representations. Our first insight comes 
from examining the idea of reversing the reverse engi-
neering process; that is, in taking the representation 
that results from reverse engineering and using it to 
reconstruct a program. In order to reduce variation and 
uncertainty in the process, we want the reconstruction 
to be done automatically. If we are able to do these two 
tasks, representation and generation, then we have an 
operational means for determining the completeness of 
our effort. The second insight concerns the quality of 
the representation; that is, how do we ensure that our 
representation provides useful insight into the program. 
Here we use a model of the program’s application do-
main as an external standard against which we compare 
the representation as it is built up during reverse engi-
neering. A domain model provides a set of expectations 
for constructs in the program and how they relate to 
each other. Comparing understanding gained while 
reverse engineering a program to expectations provided 
by the domain model encourages an accurate program 
representation. 

We illustrate the application of our insights by reverse 
engineering a small but complex numerical program 
using algebraic specifications as a notation for the rep-
resentation. A code generator uses the representation to 
reconstruct an equivalent version. Based upon this case 
study, we critique the strengths and weakness of the 
approach. 

 



2 ADEQUACY 
Wyuker pointed out the relevance of adequacy to the 
testing of software [12,13]. In particular, successfully 
executing an adequate set of tests gives management at 
least one indication that sufficient testing has been per-
formed. We would like an analogous indication to help 
manage the reverse-engineering process. 

The role of a reverse engineer is to understand a pro-
gram and to express that understanding using a well-
defined representation mechanism. To do this, the re-
verse engineer must answer two kinds of questions: 
what questions and how questions [8]. What questions 
concern the goals and requirements of the program; 
whereas how questions concern the design decisions 
made by the original developers and how these deci-
sions are manifested in the code [11]. The adequacy of 
a representation indicates whether the representation 
completely and accurately expresses what and how 
information. 

Adequacy can be viewed either extrinsically or intrin-
sically. Extrinsic criteria define the adequacy of an 
artifact in terms of how it is used. In the case of testing, 
reliability is an example of an extrinsic criterion. For 
example, if 99.9% reliability is used as a testing crite-
rion, then it is unlikely that users will actually experi-
ence a failure. Intrinsic criteria refer to properties that 
can be determined directly from an artifact itself. For 

example, statement coverage, which indicates that each 
line of code in a software system has been tested, is an 
example of an intrinsic testing criterion.  

Unfortunately, extrinsic criteria pose a practical prob-
lem for management because they cannot be assessed 
until the artifact is used. In the case of reverse engi-
neering, the uses to which a representation is put are 
key extrinsic determinants, but we may not be able to 
anticipate those uses at the time we are performing the 
reverse engineering. Hence, we would like intrinsic 
criteria to help manage the reverse engineering process. 

We have looked at two intrinsic adequacy criteria: 
completeness and accuracy. A representation is deemed 
completeness adequate (or complete) if it is capable of 
being automatically used to reconstruct a program 
equivalent to the original. In addition to completeness, 
we need an adequacy criterion to indicate the extent to 
which a representation elucidates the design of the 
software and the connection between the software and 
the goals it was designed to accomplish. To the extent 
that a representation provides this insight, we call it 
accurate. 

Our primary contribution is a framework for under-
standing how to objectively assess completeness and 
accuracy. For completeness, we require an automated 
code generator to be able to process the representation 
and transform it into a program that is equivalent to the 
program being reverse engineered. We judge two pro-
grams equivalent if one produces the same result as the 
other when run on a set of test data. Obviously, the 
strength of this judgement depends on the (testing) 
adequacy of the test suite being used. 

To assess accuracy, we make use of a model of a pro-
gram’s application domain. Application domains are 
mature and cohesive sets of applications characterized 
by a common vocabulary, literature and solution archi-
tecture [1]. Domain models express the important con-
cepts in the domain and relationships among them. As 
such, they provide a vocabulary with which what in-
formation can be communicated. For our purposes, a 
representation is considered accurate, if it faithfully 
articulates concepts and relationships in the program's 
domain model and connects these domain concepts to 
the program code in a way that makes design decisions 
explicit. 

3 CASE STUDY 
To explore the issue of adequate representations, we 
reverse engineered a numeric application called 
ZBRENT, written in the C programming language. The 
particular application domain was that of finding the 
root of a real-valued function. A domain model was 
obtained from textbooks. Then the SLANG algebraic 
specification language was used to represent both the 
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Figure 1: Lineage for ZBRENT 



domain model and the algorithm. SLANG is part of the 
Specware tool from Kestrel Institute. We made use of 
the SLANG code generator in Specware to produce an 
executable C++ program for ZBRENT, which was then 
tested against the original program on a set of test func-
tions. We then assessed the completeness and accuracy 
of the resulting representation. 

Root Finding 
Finding the root of a nonlinear equation is a well-
understood problem in numerical analysis [4,5]. Pro-
grams have existed for many years to robustly and effi-
ciently compute roots [9]. Consequently, root finding 
qualifies as an application domain suitable for domain-
based program understanding [10]. That is, there is a 
sufficiently large collection of programs for finding 
roots that we can identify common characteristics and 
use them as expectations to guide the reverse engineer-
ing process. 

As illustrated in Figure 1, at the top level, the root-
finding application domain can be partitioned into 
polynomial and non-polynomial families of algorithms. 
Within the latter, a further distinction exists between 
algorithms capable of finding multiple roots and those 
capable of dealing with a single root only. For the pur-
poses of this paper, we are concerned with the latter 
class. Within single-root-finders, a final distinction is 
made between those guaranteed to converge—
bracketed root finders—and those, presumably more 
efficient ones, that do not—open root finders. 

Single-root, non-polynomial root finders work in the 
following way, as illustrated in Figure 2. Input consists 
of a subprogram (f) capable of computing the func-
tional value at a given real value (x) and an initial 
estimate of the root in the form of a containing subin-
terval of the real line, denoted by its end points. Func-
tional evaluation is typically expensive, so root-finding 
algorithms try to reduce the number of calls to the ar-
gument subprogram. 

Root finding proceeds by selecting a trial point within 
the current interval thereby partitioning the interval 
into two pieces, determining the piece containing the 
root, creating a new, refined interval using the chosen 
piece, and iterating. In the figure, interval end points 
are indicated with dashed lines. Increasing subscripts 
on interval names denote the order of refinement. For 
example, interval i2 is refined by the smaller interval i3. 
Robust root-finding algorithms have the property that 
the interval gets smaller on every iteration. Moreover, a 
stopping criterion determines whether sufficient pro-
gress has been made to warrant continuing the process. 

Algorithms of this sort can be categorized by specify-
ing the method by which a refined interval is chosen 
and by the stopping criterion. Variations of the first 

sort include bisection (Bolzano’s method), linear inter-
polation (Regula Falsi), inverse quadratic interpolation 
(Mueller’s method), Aiken’s Delta Squared, Newton-
Raphson, and secant. Variations of the second sort in-
clude stopping when the functional value is sufficiently 
close to zero, stopping when the interval width is suffi-
ciently narrow, and stopping after a fixed number of 
iterations. Of course, multiple methods of each sort can 
be combined to improve robustness or efficiency. 

ZBRENT 
Our case study examined a particular root finding algo-
rithm called ZBRENT. The algorithm was first published 
by Decker in 1969 and improved by Brent in 1973. It 
combines several of the variations described in the pre-
vious section in order to improve efficiency and ro-
bustness. We have chosen the Brent variation, as taken 
from [9], as the subject of our case study, for several 
reasons. 

• It is written in the C language. This allows us to 
more directly compare it with the output of our 
chosen code generator, which produces C++ code. 

• It features all three choices of stopping criteria. 

• It features three interval shrinkage methods: bisec-
tion, secant, and inverse quadratic interpolation. 

As a consequence of the number of variations, the code 
is complex and difficult to follow, making it a good 
candidate for reverse engineering. The actual code con-
sists of a single function of 101 lines of which three are 
preprocessor lines, three are whole-line comments, 
sixteen are blank lines, eight are lines containing a sin-
gle opening or closing brace, and nineteen are declara-
tions, leaving 52 executable statements. 

Algebraic Specification 
We have chosen algebraic specification as a notation 
for representing the results of the reverse engineering 
of ZBRENT. Algebraic specification is an application of 
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Figure 2: Iterative Interval Shrinkage 



formal methods to the problem of precisely specifying 
the behavior of a software system. Specifications are 
decomposed using sorts (data types) and the operations 
that manipulate them. Operations are in turn defined 
via axioms (sets of equations) indicating how the value 
computed by one sequence of operations equates to 
that computed by another. 

If the equational definitions in an algebraic specifica-
tion are suitably constrained in format, they may be 
interpreted operationally as a set of rewrite rules, 
thereby enabling compilation into a traditional pro-
gramming language. We have used an algebraic speci-
fication language, called SLANG, which comes as part 
of the Specware tool suite from Kestrel Institute. 

Specware 
Specware is a tool for developing software from speci-
fications [7]. The particular notation that it uses, called 
SLANG, is algebraic in nature, and the accompanying 
formality enables powerful manipulations to be per-
formed including generation of code guaranteed to 
correctly implement the specifications. We used 
SLANG to represent the results of the reverse 
engineering of ZBRENT. 

As an example, the SLANG code shown in Figure 3 
denotes the specification of an interval, suitable for use 
in building a domain model for root finders. This speci-
fication for INTERVAL (lines 1-20) describes a sort 
called an Interval (line 3) making use of a previ-
ously defined specification called EXTENDED-REAL 
(line 2) that is used to model x-axis values. The struc-
ture of an Interval is defined with a sort axiom 
(line 4) as being the Cartesian product of two Reals. 
In addition to sorts, specifications define operations 
and constants. In INTERVAL there are two operations 
defined (mid-point and make-interval) but 
no constants. Operation definitions consist of a signa-
ture and one or more axioms. For example, the signa-
ture for mid-point (lines 6) indicates that it takes as 
input an Interval and produces as output a Real. 
The single axiom defining mid-point (lines 8-9) 
asserts that the output value it produces, when given as 
input the Interval constructed from values a and 
b, is equal to the value produced when the half op-
eration is composed with the results of operating on a 
and b with the plus operation. In a similar manner, 
the make-interval operation is defined on lines 
12-16. Finally, lines 18-19 indicate that the make-
interval operation provides a way in which new 
Intervals may be instantiated. 

SLANG Support For Adequate Representations 
In Specware, specifications are actual data values that 
can be manipulated by high-level operators called mor-
phisms. In particular, SLANG provides three mor-
phisms: import, for including one specification inside 

another; translate, for renaming the sorts and opera-
tions of a specification; and colimit, for combining 
specifications in a structured way. By writing atomic 
specifications and then using the morphisms to com-
bine them, complex systems can be cleanly modeled. 

We make use of one other Specware feature, called an 
interpretation, which is Specware’s way to formalize 
design refinements. Refinements relate abstract do-
main-model concepts to executable code. Operation-
ally, an interpretation demonstrates how the sorts and 
operations in one specification are implemented using 
sorts and operations in another specification at a lower 
level of abstraction. Interpretations are not morphisms, 
but rather are an idiomatic collection of morphisms and 
a special intermediate specification called a mediator. 
Briefly, a mediator defines operations in the source 
specification using axioms that reference operations in 
the target specification. 

Mediators play a central role in our approach because 
they explicate design decisions that explicitly relate 
domain concepts to implementation concepts via inter-
pretations. Interpretations force a reverse engineer to 
understand and demonstrate how domain concepts are 
connected to implementation concepts. By requiring 
the use of interpretations to connect domain and im-
plementation concepts, we make accuracy objective 
and add rigor to the understanding process. 

( 1) spec INTERVAL is 

( 2)   import EXTENDED-REAL 

( 3)   sort Interval 

( 4)   sort-axiom Interval = Real, Real 

( 5) 

( 6)   op mid-point : Interval -> Real 

( 7)   definition of mid-point is 

( 8)     axiom mid-point(a, b) =  

( 9)       half(plus(a, b)) 

(10)   end-definition 

(11) 

(12)   op make-interval : Real, Real -> 

(13)     Interval 

(14)   definition of make-interval is 

(15)     axiom make-interval(a,b) = (a,b) 

(16)   end-definition 

(17) 

(18)  constructors { make-interval } 

(19)    construct Interval 

(20) end-spec 

Figure 3: SLANG INTERVAL Specification 



Process 
The reverse engineering of ZBRENT is expressed in a 
three-part SLANG program. The first part comprises a 
domain model constructed by reading descriptions in 
books and papers on root finding and articulating them 
in SLANG. Next, we expressed the ZBRENT source 
code as a set of SLANG operation definitions. Essen-
tially, these implementation operation definitions just 
recast the code in a slightly more functional manner 
such as might be produced in writing an SML version 
of ZBRENT. We then embarked on an iterative process 
of finding SLANG interpretations to connect the im-
plementation operations to domain concepts. Often, to 
introduce an interpretation required refactoring the 
implementation specification. We only allowed 
changes that resulted in a complete representation, i.e., 
one for which Specware could generate a program that 
was testing equivalent to the original C code for 
ZBRENT. We stopped this process when we were able 
to connect every implementation specification to the 
appropriate domain specification. 

4 RESULTS 
The Root-Finding Specification 
Figure 4 depicts the root-finding domain model as a 

set of related Specware specifications. Boxes in this 
figure denote specifications, which represent different 
concepts and relationships in the domain model. Filled 
boxes are not actually part of the domain model but 
provide resources to it from other domains. In particu-
lar, REAL is the specification for real numbers, and, in 
EXTENDED-REAL, we add several useful utility op-
erations. The MACHINE-EPS specification can be 
thought of as belonging to a separate domain describ-
ing the properties of floating-point arithmetic on a 
physical machine. In this case, it provides the defini-
tion of a small constant value useful in determining 
when a floating-point computation is unable to contrib-
ute significantly to a computation. 

The root finding domain model proper consists of 
twelve specifications, which can be further subdivided 
into three pieces describing the iterative root finding 
process (the bottom-right box), convergence (the 
rightmost three unfilled boxes), interval shrinking (the 
remain unfilled boxes). The specific roles of the speci-
fications are summarized in the following list. 

• INTERVAL: the data structure holding interval end 
points; 
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Figure 4: Root Finding Domain Model 



• BRACKETED-INTERVAL: an interval guaranteed 
to hold a root; 

• CANDIDATE-POINT-GENERATION: the proc-
ess of generating a candidate end point for a re-
fined interval; 

• OPEN: the generation of points not guaranteed to 
be contained in the current interval; 

• SECANT: the secant method for generating a new 
candidate end point; 

• INVERSEQ: the inverse quadratic interpolation 
method for generating a new candidate end point; 

• BRACKETED: the generation of points guaranteed 
to be contained in the current interval; 

• BISECT: the bisection method for generating a 
new candidate end point; 

• ROOT-CONVERGENCE-TEST: the properties of 
any convergence test; 

• EQUALS-ZERO: a convergence test in which a 
root is exactly found; 

• NARROW: a convergence test in which the current 
interval has become too small for further progress; 

• ROOT-FINDER: the process of continually shrink-

ing an interval until a convergence test is passed. 

In addition to the twelve domain specifications, Figure 
4 also illustrates several kinds of morphisms. The line 
from REAL to EXTENDED-REAL is labeled with the 
letter d to denote what is called a definitional exten-
sion. EXTENDED-REAL can be thought of as a macro 
package providing a set of abbreviations shortening the 
expression of various composite REAL operations. An 
unadorned line in the figure denotes an import mor-
phism indicating the textual inclusion of one specifica-
tion within another. This is normally used to build a 
new specification that makes use of the features of an 
old one. For example, the INTERVAL specification 
needs to import from the REAL specification because 
the interval end points are real numbers. The bold lines 
in the figure correspond to translate morphisms in 
which one or more imported specification elements 
have been renamed. In this case, the renaming allows 
the ROOT-FINDER specification to be written using 
an abstract convergence test which, in the ZBRENT al-
gorithm, is refined by the disjunction of the two con-
crete tests specified in the figure. Finally, and most 
interestingly are the two colimit morphisms denoted by 
dashed lines ending in a small circle. A colimit is a 
shared union of the two source specifications. It is used 
within algebraic specifications for a variety of purposes 
including, in this case, the composition of multiple 
source specifications into a target specification. 

The ZBRENT Specification 
In addition to the root-finding domain model, a specifi-
cation must be given for the ZBRENT algorithm itself. 
Figure 5 contains a high-level flow chart for the C 
version of ZBRENT. The outer loop wraps the shrinking 
process and ensures termination by counting iterations. 
Within this loop, it is possible to terminate successfully 
with a root if either the functional value at an interval 
end point is zero or the interval itself has grown too 
narrow. If termination is not warranted, a check is 
made to see whether interpolation is promising, and, if 
so, either secant or inverse quadratic interpolation is 
chosen. As neither of these is guaranteed to produce a 
bracketed value, a subsequent check must be made. If 
any of these tests fail, then bisection is used. Finally, 
the interval is updated with the appropriately chosen 
subinterval. 

Not shown in the flow chart are various optimiza-
tions—memoization of functional values to avoid re-
computation, beginning interpolation from the end 
point whose functional value is smallest in magnitude, 
and remembering previous interval end points to speed 
interpolation. 

The SLANG specification of the ZBRENT algorithm 
consists of a rendering of the flow chart boxes and op-
timizations with axioms. This process is similar to writ-
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ing a functional program in a language such as SML or 
Haskell. Usually, the major effort is in converting oc-
currences of the assignment statement, for which there 
is no equivalent in SLANG. Instead the value assigned 
is passed as a argument to all subsequent computations 
requiring it. 

Interpretations 
The SLANG representation of the ZBRENT algorithm is 
complete in the sense that code equivalent to the origi-
nal can be generated from it. However, it sheds no light 
on how the algorithm accomplishes the goal of  finding 
a root. We use SLANG interpretations for this purpose. 
In particular, an interpretation indicates precisely how 
an abstract domain concept is manifested in the algo-
rithm. To the extent that each aspect of the algorithm 
specification is tied to a domain concept, the combined 
domain and algorithm specification is judged accurate. 

The Generated Code 
Specware is capable of generating code from SLANG 
specifications using either Lisp or C++ as a target lan-
guage. We chose C++ to facilitate comparison with 
ZBRENT. Specware’s code generator does not take ad-
vantage of any of C++’s object-oriented feature, further 
easing the comparison. The three parts of the ZBRENT 
specification (domain model, algorithm, and interpreta-
tion) required respectively 147, 303, and 75 lines of 
SLANG code. The total code generated for ZBRENT 

consists of 624 lines, of which two are preprocessor 
lines, six are whole line comments, 124 are blank lines, 
and 47 are declarations, leaving 445 executable state-
ments. 

5 EVALUATION 
We proposed a definition of the adequacy of a reverse-
engineering representation based on completeness and 
accuracy. We then discussed how to objectively meas-
ure these criteria by using SLANG to represent the 
results of reverse engineering, checking completeness 
with the aid of the Specware code generator and vali-
dating accuracy using a domain model. Having demon-
strated proof of concept, we now subject our results to 
a critical analysis. 

Upon reflection, we identified four criticisms that 
might be raised: 

• Are our methods for assessing completeness and 
accuracy truly objective? 

• Is our definition of intrinsic representational ade-
quacy better than other definitions? 

• Given industry's resistance to formal methods, is 
our approach practical? 

• Would our methods fare well in other application 
and solution domains? 

We address each now in turn. 

Objectivity of our Methods 
Our methods for assessing completeness and accuracy 
are objective. Completeness can be assessed objec-
tively through the use of the Specware code generator 
and a suite of test cases. The code generator automati-
cally assembles an executable program from the alge-
braic specifications. This generated program is then 
compiled and run against every test in the test suite. If 
the generated program behaves differently than the 
original program on any one of these tests, then the 
programs are not equivalent. Our completeness crite-
rion requires the programs to be indistinguishable by 
the test suite. Because the code is generated from the 
specifications without manual intervention, and be-
cause a program either passes or fails a test, our com-
pleteness criterion is objective. 

Like completeness, our accuracy criterion is also objec-
tive. The objective arbiter in our method is the applica-
tion domain model, which must reflect every domain 
concept that is detected during the process of represent-
ing design decision seen in the code. In the ZBRENT 
example, we used a domain model of root finding and, 
to a much lesser extent, domain models that describe 
machine arithmetic and real numbers. By having to 
identify an interpretation that connects every line of 
code to the salient domain concepts, and by virtue of a 
fixed, external domain model, we claim that our accu-
racy criterion is objective. 

Other Adequacy Criteria 
To our knowledge, our definition of representation 
adequacy in terms of completeness and accuracy is the 
first intrinsic definition of representation adequacy to 
be proposed. Objectivity is required of intrinsic meth-
ods, which by definition do not rely on external valida-
tion. If, over time, researchers develop new criteria to 
compete with completeness and accuracy, and if these 
new criteria can be assessed objectively, then it would 
be possible to set up empirical studies that assess them. 
Such studies would compare representations arrived at 
through the competing criteria against extrinsic factors. 

Our choice of algebraic specification in general and 
SLANG and Specware in particular were motivated by 
our desire for an objective, intrinsic measure of repre-
sentation adequacy. Clearly, however, the choice of 
notation influences the larger software-maintenance 
task for which the representation is used. Our results to 
date do not support any claims about the extrinsic ade-
quacy of a representation that we deem intrinsically 
adequate. 

Practicality 
Formal methods have not gained wide acceptance in 
industry because they are often perceived as being dif-
ficult to learn and to apply [14]. SLANG is no excep-
tion: The authors had to invest a lot of effort to learn 



how to use the notation and tools before we were able 
to craft a representation with the precision and detail 
required by the case study. However, because reverse 
engineering is known to be an expensive activity, we 
believe the benefits of an objective adequacy assess-
ment outweigh the costs involved with using formal 
methods. 

Beyond the general argument over formal methods, we 
were able to assess SLANG as a notation for represent-
ing the results of reverse engineering. The notation was 
particularly useful for experimenting with different 
conjectures about the relationship between what and 
how information. This experimentation was supported 
by the ability to automatically generate code and the 
powerful mechanisms for factoring and relating speci-
fications. For example, in the early stages of our case 
study, we were able to separate implementation con-
cerns into specifications with meaningful abstract 
names, even though the operations defined in these 
specifications were not yet at the appropriate level of 
abstraction. Typically, these early specifications are 
ugly and riddled with implementation detail, but the 
intended factoring and separation can still be ex-
pressed, and correct code can still be generated. More-
over, in SLANG, specifications that are riddled with 
implementation detail are painfully ugly; so in some 
sense, the notation provides aesthetic feedback to en-
courage factoring and compositional understanding. 

The only drawback we experienced in using SLANG 
concerned a lack of familiar devices that we had grown 
to expect having used other modeling notations. Fea-
tures in the algebraic paradigm are more abstract and 
declarative than those found in other modeling para-
digms, specifically object-oriented modeling. Object-
oriented modeling directly supports a rich set of ab-
straction mechanisms, such as encapsulation, identity, 
inheritance, and polymorphism. To become proficient 
in one modeling paradigm requires a methodological 
commitment to think in terms of that paradigm. Even 
though SLANG does not support these concepts, we 
found them difficult to do without when we were mod-
eling ZBRENT. In fact, we often inadvertently tried to 
simulate them in SLANG. Often this thinking resulted 
in awkward specifications. 

Application to Other Domains 
Our results demonstrate that SLANG helps to elucidate 
the design of a program that solves a mathematical 
problem (root finding) in a procedural language (C). 
There are, of course, at least two dimensions of varia-
tion against which our methods must be validated for 
their ability to elucidate design decisions. The two di-
mensions are different application domains (e.g., con-
trol systems, decision support, etc.), and different de-
sign paradigms (e.g., object-oriented, real-time, etc.). 

Concerning the former, it is difficult to predict how a 
method will fare when it is applied to a different appli-
cation domain. We intend to address this question in 
our future work. 

On the other hand, we can make several observations 
about different design paradigms, at least with regard 
to our current use of algebraic specification and 
Specware. For example, it is difficult in algebraic 
specification to model state. Consequently, programs 
that exhibit a high degree of encapsulation and linked 
data might be difficult to generate using our approach. 
Even though Specware has a C++ code generator, we 
discovered that the generated C++ does not exploit any 
object-oriented features of the language, such as inheri-
tance and polymorphism. We are exploring the extent 
to which this limitation is a necessary artifact of alge-
braic specification or if, in fact, it is just a current limi-
tation in the Specware code generator. 

In addition to difficulty with state and encapsulation, 
non-functional concerns, such as performance and re-
source utilization, are difficult to model using algebraic 
specification. In fact, such concerns are difficult to 
model in most modeling notations. Fortunately, in our 
experience with legacy systems, functional concerns 
far outweigh the non-functional concerns, and most 
systems are implemented in standard procedural lan-
guages, such as Fortran, Cobol, and C. 

6 RELATED WORK 
We are not aware of any other work concerning the 
adequacy of reverse engineering representations. How-
ever, several other groups have explored the use of 
formal methods to support reverse engineering. Per-
haps the work most closely related to ours is that of 
Basili and Mills [2] in which they examine a program 
called ZEROIN, a Fortran implementation of ZBRENT. 
Basili and Mills are interested in applying ideas from 
structured programming and program correctness 
proofs to the understanding and annotation of computer 
programs. In particular, they construct a prime-
program decomposition of a program’s control flow 
graph, define program functions for each prime pro-
gram, build a data reference table describing the ac-
cesses to and alterations of each program variable, and 
then synthesize a program correctness proof demon-
strating exactly how the program accomplishes its goal. 

Using this approach, the authors are able to gain an 
understanding of ZEROIN. The approach helps them 
organize and document their analysis and provides a 
completeness criterion. That is, they know that they 
have to keep working until they complete their proof. 
Hence, it gives them a way of knowing when their un-
derstanding is deep enough. Concerning accuracy, 
however, they make no direct comment on the extent to 
which their process relates design decisions to program 



goals. 

Hayes describes work similar to ours undertaken as a 
collaboration between IBM and Oxford University [6]. 
From the point of view of Oxford, the purpose of the 
described research was to explore the scaling of formal 
methods to industrial settings. From the point of view 
of IBM, the purpose was to gain a greater understand-
ing of its Customer Information Control System 
(CICS) in support of its reimplementation and en-
hancement. 

The specific effort undertaken was to mathematically 
model several CICS modules using the Z specification 
language augmented by informal, English language 
text describing the purposes of the modeled constructs. 
Hayes discusses problems that arose during the specifi-
cation process itself, including communication difficul-
ties between the mathematical modelers and the im-
plementation experts, obtaining the right level of ab-
stractness in the specification, and the exclusion of 
several aspects of the system, such as parallelism and 
distribution, that went beyond the capabilities of the 
modeling approach used. 

We are interested in producing an adequate representa-
tion; that is, one that is complete and accurate. The 
Oxford models were complete in the sense that they 
described the behavior of the modules to the extent 
described in the manuals while incomplete in ignoring 
possible interactions due to parallelism and distribu-
tion. However, the comparison with the manual is in-
herently informal in contrast to our operational com-
pleteness test. 

Concerning accuracy, Hayes asserts that the right level 
of abstraction occurs when the specification focuses on 
the primary purpose of a module while avoiding im-
plementation details. This roughly corresponds with 
our guideline that suggests that the right level of accu-
racy occurs when there is a clear mapping between the 
generic domain concepts and the specific algorithm 
details. 

Another related project was REDO [3], a part of the 
ESPRIT II European collaboration. A variety of activi-
ties were undertaken in REDO including the invention 
of a language, called UNIFORM, intermediate between 
code and specifications, an application of weakest-
precondition semantics to the verification of programs, 
the definition of the Z++ extension to Z, an exploration 
of decompilation including the development of a de-
compiler compiler, and the activity closest to ours, the 
reverse engineering of existing applications. 

The REDO reverse engineering process consisted of 
three stages: compilation from Cobol to UNIFORM, 
abstraction to a functional form, and simplification 
using normalizing transformations. The REDO work 

builds on the Basili and Mills approach but goes be-
yond it by detecting and characterizing important ob-
jects in the code corresponding to, for example, files, 
arrays and reports. However, there is no discussion of 
either completeness or accuracy. 

7 CONCLUSION 
For reverse engineering to become a routine part of the 
software development life cycle, managers must under-
stand its costs and benefits. The cost of reverse engi-
neering equates to the effort required to produce a 
high-level representation for a program. But because 
such representations vary greatly in detail and scope, it 
is necessary to have a precise definition of what such 
representations entail. Once such a definition exists, 
then data can be collected relating the effort required to 
produce a representation to the size of the program 
being analyzed. This data, in turn, can be used to better 
schedule the required effort. 

The benefit of a reverse engineering effort correlates to 
the quality of the representation produced. In particu-
lar, high-quality representations describe not only the 
functioning of a program but also how that functioning 
accomplishes the program’s purpose. A definition of 
reverse-engineering representation that specifies this 
association permits managers to better relate the repre-
sentation to its uses in subsequent software mainte-
nance tasks. 

We have proposed a definition for an adequate reverse 
engineering representation in terms of its completeness 
and accuracy, which, in turn, enable better understand-
ing or reverse engineering costs and benefits. 
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