
ABSTRACT

 In today’s continually changing world of computing, many
old and outdated systems are being migrated to newer,
faster, and less proprietary platforms. Reengineering
strategies have traditionally concentrated on the functional
design of the program itself. User interfaces, however,
present some unique problems for migration, since often the
user interface changes drastically -- for example, migrating
from a text-based interface to a graphical user interface.
Here we present work that identifies the important issues in
effectively migrating user interfaces between heterogeneous
platforms and different display technologies.

INTRODUCTION

 The term rightsizing [1] has been coined to describe the
practice of reengineering and updating an information
system to better fit its environment, to improve business
processes, and to reduce cost. Typically this involves
migrating systems from centralized mainframes to
distributed client-server architectures (downsizing), but it
can also include migrating applications to more powerful or
ubiquitous platforms (upsizing). Application developers
are also starting to steer away from proprietary, vendor-
specific solutions and are reengineering systems to conform
to industry standards that provide more portability and
interoperability. A recent Uniforum survey showed that of
the 1,100 companies that were surveyed, 85% of them were
migrating large systems to “rightsize” them [11]. We can
surmise from this number that reengineering will be a
significant activity in many software organizations in the
coming years. Since reengineering techniques have been
shown to save up to 35% of the total cost of software

maintenance [14], there is much to be gained in researching
this process.

 The information systems domain presents some unique
problems in migration. These systems are typically data-
oriented, and often include an integral user interface. Since
user interface technology has traditionally been very
platform-dependent, much of the reengineering work can
center around properly migrating the functionality of the
user interface. Therefore, if we can improve the process of
reengineering user interfaces, we streamline the entire task
of migrating systems between different platforms.

 Research in reengineering technology to date has focused
on abstracting the functionality of existing systems by using
techniques such as program understanding, data
transformation, and source code analysis [13]. However,
there has been little concentration on the general problem of
reengineering user interfaces. This paper examines the
issues inherent in migrating user interfaces, and presents a
reengineering strategy and initial case study results.

TERMINOLOGY

The terms associated with reengineering are often
overloaded and misused. This section will serve to define
the terminology to establish a common ground for
discussion. Chikofsky and Cross present a a taxonomy of
reengineering terminology in [10], which we have used as a
basis for generating our definitions:.

• Migration is the activity of moving software from its
original environment, including hardware platform,
operating environment, or implementation language to a
new environment.

• Reengineering includes restructuring, redesigning, or
reimplementing software. In [12], McClure defines
reengineering as improving existing systems by applying
new technologies to improve maintainability, upgrade

Issues in User Interface Migration

Melody M. Moore
Spencer Rugaber

College of Computing
Open Systems Laboratory

Georgia Institute of Technology

technology, extend life expectancy, and to adhere to
standards.

• Porting software entails moving a program from one
environment to another with language syntax and operating
system interface changes only. This minimal approach
ideally entails simply recompiling the program in a different
environment. More typically, however, porting involves
modifying the code slightly to fit the new environment.

• Reverse Engineering is the activity of analyzing an
existing (“legacy”) system to describe its original design by
an abstract representation. The abstraction is derived from
analysis of the code and existing documentation. The goal
of reverse engineering is to redocument the system and aid
in understanding the program [12].

• Forward Engineering entails moving from abstraction

and design level to the system implementation level.

WHY USER INTERFACES ARE DIFFICULT
TO MIGRATE

 There are many factors that contribute to the difficulty of
migrating user interfaces:

Display technologies have become increasingly
sophisticated and have more capabilities. In the heyday of
the mainframes, displays usually were text-based or form-
based on remote “dumb” terminals. The advent of the
personal computer and the workstation brought high-quality
Graphical User Interfaces (GUIs) to the general market.
Taking advantage of the power and functionality provided
by the new interactive display technologies can be a prime
motivator for migrating an information system.

Lack of standards in early information systems led to the
proliferation of many proprietary Application Programming
Interfaces (APIs) for user interfaces. This meant that
migrating the application to another platform required
substantial or total reengineering. The availability of Open
Systems standards today allow user interfaces to be much
more portable, which is another incentive to migrate
obsolete display technologies to the new standards.

“Look and Feel” of an information system application can
change drastically between platforms, depending on
underlying display technology support. This raises a
philosophical question: when migrating an application, is it
better to retain the “look and feel” of the original platform
or to reengineer the application to conform to the “look and
feel” of the new target platform? [9]

Functionality changes may be necessary when migrating
across platforms. Some of these changes may be
improvements offered by new display capabilities, but some
changes may be required because certain functionality is not
provided on the new target platform. For example, a text-
based user interface might require the user to type
information that could simply be selected from a scrolling
list with a graphical user interface [7]. On the other hand, a
graphical interface that makes heavy use of color might not
migrate well to a system with only a monochrome monitor,
since information could be conveyed in the color scheme
[9].

Integration of the user interface can vary drastically
depending on the design of the system. In many older
functionally decomposed information systems, the user
interface is the central component that “drives” the rest of
the system. Also, insensitivity to modularization makes it
difficult to isolate the user interface components. Migrating
these systems may require complete reengineering to isolate
the platform-dependent components of the system.

Architectural Issues such as callback vs. non-callback
systems, synchronous vs. asynchronous, and centralized vs.
distributed, can have a profound effect on the organization
of the user interface. The decomposition of the
reengineered system may differ from the original system, as
when reorganizing a functionally decomposed system into
an object-oriented one.

APPROACH

 The essence of the migration task is to create a mapping
that allows each component of the original user interface to
be transformed into the appropriate component in the new
environment. We can ease this process by identifying a
series of increasing abstractions to distill out the
functionality of the original user interface. When placed
into a hierarchy of concepts (Fig 1), the mappings between
user interface technologies become more defined. Where no
direct mappings exist, we can try to find the closest match in
functionality from the old environment to the new one.

For example, a menu entry that prompts the user for textual
input in a Curses-based interface can be abstracted to a
selection mechanism. The selection abstraction for Motif
may take the form of a scrolling pulldown menu, allowing
us to generalize that a mapping can be made between the
two interface mechanisms.

Figure 1 : Concept Hierarchy

A Knowledge Based Approach

The mapping can also be accomplished manually by
studying the two user interface technologies and finding the
closest match of functionality for each individual user
interface component. For example, a “Radio Button” in
Microsoft Windows has the properties of being togglable
and exclusive (in other words, in a group of Radio Buttons,
only one can be depressed at a time). In Motif, the concept
of a “Toggle Button” exists, but without the exclusivity.
When migrating from Windows to Motif, we can map Radio
Buttons to Toggle Buttons in some instances, but not in
others.

 Since this process requires collecting data about the
attributes of the user interface components and then making
inferences based on the data, a knowledge based approach
seems natural. We have experimented with this method,
collecting data on various user interface components and
then describing them in the knowledge representation
language CLASSIC [15]. Our goal is to build a knowledge
base that describes different user interface technologies (for
example, MS-Windows and Motif) to aid in automating the
mapping process.

Generic

Artifact resources widgets

level:

level:

selection ... text entry... scrolling

cursor
moves

Impl.
level:

curses
library

XT
Intrinsics

Windows
API

Tech - Text-based
 interfaces

X Windows MS Windows
nology

THE MIGRATION PROCESS

 The first step in defining a systematic methodology for
user interface migration is to identify the steps in the
process. Migration can be partitioned into three stages:

• detection - through analysis and other techniques,
identify the user interface functionality in the existing code.

• representation - once the user interface has been
detected, describe and document the functionality.

• transformation - perform mappings to generate the user
interface for the new environment.

Detection

 A large part of the difficulty in migrating systems is in
comprehending the existing design [2]. In user interface
migration, an important task is detecting modules or
components of the application that implement the user
interface, especially if the user interface technology dictates
complete reengineering or replacement of the user interface.
Detection can be accomplished in several ways. One
method involves creating call trees or dataflow diagrams of
the existing code and then identifying the code segments
that can be classified as “user interface” by transitive
groupings. Another method is to locate callbacks in the
code and use them to identify potential user interface
objects.

• Manual detection - Without automation, detection is a
labor-intensive, time consuming, and error-prone task. It
involves analyzing code to locate user interface calls and
also studying documentation and system manuals for areas
of user interaction.

• Pattern Matching - In [6], Merlo et. al. describe a toolkit
that detects user interface components from an Abstract
Syntax Tree (AST) produced by a parser. The systems
detects anchor points for code fragments by matching user
interface syntactic patterns in the code. Using the anchor
points as a basis, details about modes of interaction and
conditions of activation are identified using control flow
analysis.

• Syntactic/Semantic Analysis - In [16], Van Sickle et. al.
describe a method for detecting “user input blocks” from
COBOL code by analyzing the code against a set of criteria
for input and output. The recognition algorithm identifies
an “ACCEPT” statement and attempts to incorporate the
entire user exchange from that point by detecting groupings.
This authors indicate that this method will fail when code is
poorly structured.

Representation

 The next step in the process is to generate a description of
the user interface in the form of an abstract representation.
We need to be able to describe the functionality of the
system in a manner that is not dependent on any specific
display technology, yet is complete and robust enough to
adequately represent all of the functional requirements of
the user interface. Solving this representation problem and
building a model is key to understanding the process of
reengineering [4]. Devising an abstract representation is
also the foundation for developing further reengineering
support, such as automated tools [5]. Several methods for
representing the generic level of abstraction have been
studied:

• Abstract Description language - In [6], Merlo et. al.
describe an intermediate representation for a user interface
specification using “Abstract User Interface Design
Language (AUIDL)”. AIUDL describes user interface
structure based on an object-oriented paradigm, and
specifies user interface behavior based on process algebra.

• Finite State Machines - Since most user interfaces
involve system states and transtitions that are caused by user
inputs, finite state machines (FSMs) have been used
extensively to describe user interfaces [7]. FSM’s are
effective for showing transitions between menus, for
example, or systems that change state on user selections.
The FSM representation breaks down when the user
interface becomes less structured, such as during text entry.

• Prolog Abstract Syntax Tree - In [16], Van Sickle et. al.
represent user interface structure by translating COBOL
code into Prolog, which then acts as an abstract syntax tree.
The Prolog is then restructured and manipulated to provide
control flow information, data structure information, and
high level descriptions of the user interface.

• Object oriented representations - In [8], Foley et. al.
describe the User Interface Design Environment (UIDE),
which incorporates an object-oriented data model to
represent user interfaces. A knowledge-based
representation is used to describe user interface objects and
attributes. Preconditions and postconditions can be defined
to specify user interface actions.

Transformation

 The last step in migrating user interfaces is to devise a set
of transformations to allow the levels of the concept
hierarchy to be traversed, from the concrete level of the old
system, up to the abstract level, then back down to the

concrete level of the new platform. The transformation
step involves much more than simply translating one set of
user interface objects to another; transformation also
requires decision-making and inferencing to determine the
best match for user interface components that may not
clearly map in differing user interface environments. After
we build the transformation model, we apply it to the new
user interface environment. Work in the area of
transformation includes:

• Syntactic Analysis - NewYacc is a preprocessor to yacc
developed by Purtilo and Callahan at the University of
Maryland. It can be used to analyze and transform
programs at the source level rather than at the level of
compiled object code. In particular, the grammar for the
language in which a program is written is annotated with
rules describing the transformations to be performed on
programs in that language. For example, the addition of a
few one line rules to the grammar for the C language are
sufficient to build an analyzer to generate calling trees for C
programs.

• Knowledge based transformation - We have
experimented with knowledge based representations for
user interface components (ie, MS-Windows push buttons
as compared to Motif buttons). We used the CLASSIC
knowledge representation system to describe the
components, and then devised mappings using inferencing
queries on the collected data [17].

• State machine mappings - Systems that have been
described by Finite State Machines (FSMs) can be
transformed by devising mappings between the states and
transitions to specific components and actions of a user
interface environment [7]. The states of the FSM represent
menus and choices for the user, and the transitions or edges
represent selections or user input.

VALIDATION -- CASE STUDIES

 We are currently in the process of validating this work
with case studies:

• The TRANSOPEN project [7], sponsored by the U.S.
Army Research Laboratories, has studied migration of user
interfaces from a DOS-based interface to Open Systems
interfaces (Open Look using Unix/POSIX). This work
entailed “upsizing” an information system application from
a MS-DOS implementation to an Open Systems platform.
For these experiments, a combination of manual detection
and syntactic detection through abstract syntax trees was
used to identify user interface components. We then

described the resulting system using Finite State Machines
as a representation. The transformation process was
accomplished by mapping the functionality specified in the
FSMs to the closest Open Look component. We then
prototyped the new system using Sun’s dev/guide Graphical
User Interface tool. Currently, the TRANSOPEN project is
supporting our experiments with knowledge based
representation and transformation for user interface
migration.

• Knowledge Worker Platform Analysis [9], sponsored
by the U.S. Army Construction Engineering Research
Laboratory, is an “upsizing” study, examining migration of
interfaces from MS-Windows platform to Open Systems
interfaces (X Windows and MOTIF) on multiple
platforms. We considered many options for this migration,
including “Portable GUI Builders” such as XVT. Portable
GUI Builders allow the developer to specify the user
interface in a general representation and then automatically
generate user interface code for various environments. This
solution was rejected for several reasons: dependence on the
GUI Builder vendor (because of the proprietary
intermediate representation), deviation from the “look and
feel” standards, and immaturity of the tools. Instead, we
devised a concept hierarchy between MS-Windows and
Motif to describe a mapping of functionality. We then
prototyped the Motif user interface using the UIM/X GUI
builder tool.

CONCLUSIONS

 The need to update and reengineer outdated information
systems to make them more usable, maintainable, and cost
effective is becoming an increasing concern for many
organizations in the current economic climate. Since user
interfaces tend to be large integral components of
information systems, and because the user interface can
directly affect the usability of the product, it is important to
study methods and techniques for improving the process of
migrating user interfaces across platforms. Our goals are to
define methods, abstractions and mapping mechanisms to
ease the transition, and to refine automated methods of
migration.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the
support and encouragement of the U.S. Army Research
Laboratories (ARL) for the TRANSOPEN research effort,
and the U.S. Army Construction Engineering Research

Laboratory (USACERL) for the Knowledge Worker
Platform Analysis project.

REFERENCES

[1] Willson, Jane R. “Making a Move Off Mainframes”,
Open Systems Today, April 26, 1993.

[2] Rugaber, Spencer. “Reverse Engineering Projects at
Georgia Tech”, Reverse Engineering Newsletter,
Subcommittee on Reverse Engineering of the Technical
Committee on Software Engineering of the IEEE, October
2, 1992.

[3] Kamper, Kit, and Rugaber, Spencer. “A Reverse
Engineering Methodology for Data Processing
Applications”, College of Computing and Software
Engineering Research Center, Georgia Institute of
Technology, Tech Report number GIT-SERC-90/02, March
1990.

[4] Rugaber, Spencer, and Clayton, Richard. “The
Representation Problem in Reverse Engineering”,
Proceedings of the Working Conference on Reverse
Engineering, May 21-23 1993, Baltimore, MD. IEEE
Computer Society Press, 1993.

[5] Selfridge, Peter G., Waters, Richard C., and Chikofsky,
Elliot J. “Challenges to the Field of Reverse Engineering”,
Proceedings of the Working Conference on Reverse
Engineering, May 21-23 1993, Baltimore, MD. IEEE
Computer Society Press, 1993.

[6] Merlo, E., Girard, J.F., Kontogiannis, K., Panangaden,
P., and De Mori, R. “Reverse Engineering of User
Interfaces”, Proceedings of the Working Conference on
Reverse Engineering, May 21-23 1993, Baltimore, MD.
IEEE Computer Society Press, 1993.

[7] Moore, M., Rugaber, Spencer, et al, Transitioning to the
Open Systems Environment, (TRANSOPEN) Final Report,
College of Computing, Georgia Institute of Technology.
Prepared for The Software Technology Branch of the Army
Research Laboratory under contract number DAKF11-91-
D-0004-0014.

[8] Foley, James, Kim, Won Chul, Kovacevic, Srdjan, and
Murry, Kevin. “UIDE - An Intelligent User Interface Design
Environment”, Intelligent User Interfaces, edited by
Sullivan & Tyler, ACM Press 1991.

[9] Moore, Melody, Rugaber, Spencer, et al., Knowledge
Worker Platform Analysis Final Report, College of
Computing, Georgia Institute of Technology. Sponsored by
the U.S. Army Construction Engineering Research
Laboratory, June 1993.

[10] Chikofsky, Elliot J., and Cross, James H. “Reverse
Engineering and Design Recovery: A Taxonomy”, IEEE
Software, January 1990.

[11] UniNews, “Uniforum Research Released: ‘93 to be the
Year of Change”, Uniforum International Association of
Open Systems Professionals, Vol VII, Number 6, April 7,
1993.

[12] McClure, Carma, “The Three R’s of Software
Automation: Re-engineering, Repositories, Reusability”,
Extended Intelligence, 1990.

[13] Arnold, Robert S., Software Reengineering, IEEE
Computer Society Press, Los Alamitos, California, 1993.
[14] Salisin, John. “The Design Record: Keystone of
Software Engineering”, Keynote Speech of the Third
Reverse Engineering Forum, 1992.

[15] Brachman, Ronald J, McGuiness, Deborah L, Patel-
Schneider, Peter F., and Resnick, Lori A., “Living with
CLASSIC: When and How to Use a KL-ONE-Like
Language”, Principles of Semantic Networks, J. Sowa,
Morgan Kaufmann Inc., 1990.

[16] Van Sickle, Larry, Liu, Zheng Yang, and Ballantyne,
Michael, “Recovering User Interface Specifications for
Porting Transaction Processing Applications”, EDS
Research, Austin Laboratory, 1601 Rio Grande, Suite 500,
Austin TX 78701, 1993.

[17] Gan, Yee Huat. “User Interface Knowledge Base”,
Special Problem Report for Dr. Spencer Rugaber, College
of Computing, Georgia Institute of Technology, August
1993.

