
SIDE BAR� Programming Languages and Design Decisions

There is a correspondence between the categories of design decisions listed in Section � and the variety of

approaches to programming language design found in modern programming languages� This is not accidental

but re�ects the fact that programming languages are designed to make program development easier� They

do this by providing a variety of abstraction mechanisms�

The languages Algol ��� Algol ��� and Pascal introduced and systematized control and data structures�

They provided mechanisms to support decomposition of procedures into statements and data into its com�

ponents� Of course procedural abstraction has been with us since the early days of programming languages

in the form of procedures and functions�

Variables� too� have been part of programming since its beginning� but the explicit trade o�s between

data and procedures have become more prominent with the advent of functional programming languages�

Programming in a functional language is di	cult for a traditional programmer accustomed to using variables�

Similarly� logic programming languages� such as Prolog� highlight the function�relation dichotomy� The

same kind of conceptual barriers confront a new Prolog programmer used to more traditional styles of

programming or even used to a functional style�

The issue of encapsulation is explicitly stressed in Ada� Modula� Clu� etc� The programmer expresses the

functional interface to a module in a separate construct from the implementation� The idea is to insulate the

remainder of the code from subsequent maintenance activities that alter the implementation of the module

while leaving the functional interface unchanged�

Generalization�specialization is a primary consideration in Smalltalk� The class hierarchy expresses

how subclasses specialize their parents� Dynamic binding is used to invisibly delegate responsibility for

computation to the least general class able to handle it� Ada supports compile�time specialization of generic

packages and procedures by data type and functional parameters�






Representation is supported in most programming languages� but Clu emphasizes the distinction between

representation and specialization by providing separate language constructs for expressing them� Gypsy

has features for describing both ideal behavior and implementation details� It supports the proof of their

equivalence via semi�automated means�

�


