
Software Psychology Requirements for Software Maintenance

S

Activities

pencer Rugaber

e

S

Victoria G. Tisdal

oftware Engineering Research Center

1. Introduction

Georgia Institute of Technology

Software psychology attempts to discover and describe human limitations in interacting with com-

i
puters. These limitations can place restrictions on and form requirements for computing systems
ntended for human interaction. Hypermaint is such a system. Hypermaint is designed, with human limi-

tations in mind, to facilitate the human task of maintaining software.

Software maintenance encompases all activities performed on a piece of software intending to
l

a
keep it useful. This includes efforts to keep software at the same level of performance/usability, as wel
s efforts to improve it. In the process of software maintenance, source code of the software must be

examined and understood by the maintainer.

The task of maintenance can be facilitated by a system congruent with human abilities and limita-

"
tions. Experimental evidence of these abilities and limitations are discussed in Shneiderman’s
Software Psychology : Human Factors in Computer and Information Systems".

-
t

"Software psychology is a study of human performance in using computer and information sys
ems",[9] Software psychology incorporates the methods and knowledge of multiple fields within the

e
a
area of psychology. It applies the techniques of experimental psychology to analyze human performanc
spects in computer tasks. It also applies the concepts of cognitive psychology to the cognitive and per-

l
p
ceptual processes involved in computer interaction. The methods of social, personnel and industria
sychology aid the understanding of human decision making ability, congnitive style, and personalities

s
o
of those working in the computer science field. The theories of psycholinguistics are explored in hope
f greater understanding of human - computer language performance.

-
t

"The goal of software psychology is to facilitate the human use of computers",[9] Human charac
eristics in the work environment have to be analyzed. In the case of maintenance, the understanding of

e
human skills and capacity to work with software is necessary in order to facilitate the maintainer’s
xamination and understanding of source code. Strengths and limitations of human abilities serve as

f
s
underlying factors in determining the functionality of software maintenance tools. An understanding o
oftware psychology will be used to aid in the design of the underlying information structures of a

e
software maintenance system and in the design of the human-computer interface of this system to
nable better and more efficient understanding of source code.

e
a

In studying human performance in human-computer interaction, a number of areas need to b
ddressed. First, some specific programming activities are examined. Second, cognitive structures and

y
m
processes that are involved in specific human-computer interactions are proposed and tested b

emorization/reconstruction and other experiments. Last, some human factors issues of programming

2

activities are discussed.

. Areas Of Programming Activity

Software psychologists focus on such human factors as: ease of use, simplicity in learning,
improved reliability, reduced error frequency, and enhanced user satisfaction. Particular areas of

- 2 -

-
p
programming activity about which experiments have been performed are program comprehension, com
osition, debugging, and modification. Different types of experiments are performed in each of these

2

areas.

.1. Program Comprehension

Of most relevance to software maintenance is program comprehension. Program comprehension
d

v
is studied via memorization/reconstruction experiments of programs. These experiments have provide
aluable insight into the cognitive structures and processes involved in various programming tasks.

t
f

A memorization/reconstruction task consists of studying a program and then reconstructing i
rom memory. Experience of the subjects plays a vital role in this task. An experiment by Shneider-

r
man[11] showed that as experience increased, the ability to reconstruct the proper program increased
apidly. Often experienced programmers wrote functionally equivalent, but syntactically different ver-

r
r
sions. His hypothesis is that as subjects gain experience in programming they improve their capacity fo
ecognizing meaningful program structures, thus enabling them to recode the syntax into a higher-level

internal semantic structure.

Shneiderman suggests that "...performance on reconstruction task is a good measure of program
d

b
comprehension. Memorizing complex material such as a computer program can not be accomplishe
y rote memorization, but knowledgeable programmer can successively recode program statement

t
u
groups into ever higher-level semantic structures." Success at reconstruction indicates that the subjec
nderstands the low-level details of each statement, intermediate-level groupings, and the overall func-

o
tion of the program. This seems to be the best definition of program comprehension: "...the recognition
f the overall program function, an understanding of intermediate-level processes including program

organization, and comprehension of the purpose of each program statement."

The work in memorization of programs closely parallels the experiments done in the area of
]

s
memorization of English sentences. The experiments with memorization of English sentences [1, 2
how that the syntactic information is retained only briefly, until it is converted to semantic information,

r
and then lost. Semantic information, however, is stored in long-term memory and can later be
ecovered, but possibly in a different syntactic form.

After the subject completes the reconstruction task, his reconstructed code is analyzed in terms of

c
information chuncks which give insight to the kinds of internal information structures contained the
ode. It is in terms of these internal structures that the code is interpreted, or understood, by the sub-

C
jects. Shneiderman identifies these stuctures in his model. (see section "Models of Program

omprehension and Problem Solving")

Program comprehension could be viewed as one type of a problem solving task. The goal of pro-

d
gram comprehension is to understand the given code. Greeno proposes a model of problem solving and
escribes the processes and mental structures involved in problem solving. His model could be applied

2

to program comprehension. (see section Models of Program Comprehension and Problem Solving)

.2. Program Composition

Program composition is studied directly by asking the subjects to write programs according to

2

some specifications. Grading of programs is done to predesigned standards to ensure consistency.

.3. Program Debugging

Debugging involves locating and correcting errors in a program. These errors are of two types :
t

o
syntactic and semantic. Syntactic errors consist of incorrect syntax of the programming language. Mos
f these errors are found by the compiler and do not pose a serious problem. Semantic errors are errors

-
p
in design or composition. Semantic errors are more difficult to find if they are not obvious from the out
ut of the program. Design errors are difficult to find because the programmer must see his code as he

coded it, not as he meant to code it.

Subjects in debugging experiments are required to locate and correct the bugs in a given program.

n
Perforamance is evaluated by a count of found and corrected bugs. Points can be deducted for finding
onexistant bugs and added for finding bugs unknown to the experimenter.

2.4. Program Modification

- 3 -

Program modifications consume 25 to 75 percent of all programming efforts.[9] It requires com-
-

g
petence in program comprehension and composition. Programmers are required to understand the pro
ram in a short time, and make changes to it that do not interfere with the rest of the program’s execu-

-
f
tion. Subjects of modification experiments are given instructions about the modifications they are to per
orm. Performance is evaluated on the number of successful modifications.

3. Models of Program Comprehension and Problem Solving

The majority of the program maintenance tasks are founded on program comprehension.

a
Shneiderman’s model identifies the main cognitive structures involved in program comprehension. He
lso distinguishes two types of information with the respective cognitive structures which process them.

s
Greeno’s model is a general model of problem solving which can be applied to program comprehen-
ion. This model describes the processes and mental structures involved in problem solving.

3.1. Shneiderman’s Model of Program Comprehension

Shneiderman views the comprehension of programs as consisting of three levels: low-level

a
comprehension of the function of each line of code, mid-level comprehension of the structure of the
lgorithm and data, and high-level comprehension of the overall program function. It is possible to

o
u
understand each line of code and not to understand the overall program function. It is also possible t
nderstand the overall function of the program yet not understand the individual lines of code, nor the

l
s
structure of the algorithms and data. The mid-level comprehension involves knowledge of the contro
tructures, module design, and data structures, which can be understood without knowledge at the other

two levels. Thorough comprehension involves all three levels of understanding.

An experienced programmer possesses a network of multi-leveled knowledge in his long-term
f

p
memory. Some of these multi-level concepts, which are extracted from experience and independent o
rogramming language or environment, comprise the programmer’s semantic knowledge. Semantic

t
d
knowledge consists of multi-level concepts such as the knowledge of what an assignment statemen
oes, how a stack is implemented and how it can be used, strategies for sorting a set of elements, and

many others.

Another kind of information stored in programmer’s long-term memory is syntactic knowledge.

t
This knowledge consists of syntactic details of different programming languages and systems such as:
he proper positioning of semicolons, the proper symbols for assignment and conditional statements,

available data types, and other features of the language or environment.

Shneiderman’s views comprehension as a process of converting the code of a given program to
c

a
some internal semantic form. This conversion is achieved with the help of the programmer’s semanti
nd syntactic knowledge. At the highest level, the programmer forms an idea of the program’s purpose.

s
He then recognizes lower-level structures such as algorithms for sorting, searching, familiar streams of
tatements, or others. Finally, he reaches an understanding of what the program does as well as how it

p
does it. This understanding is represented in some internal form. This internal representation of the
rogram is independent of the syntactic form from which it was extracted and is capable of being

3

expressed in other languages or environments.

.2. Greeno’s Mental Model of Problem Solving

Software psychologists are also working to uncover and describe the underlying mental structures
-

n
and processes involved in various programming activities. Since some activities involved in mainte
ance are comparable to problem solving activities, models of problem solving could be transferable to

these activities.

A model proposed by Greeno[4] looks at the components of memory involved in problem solving
d

p
tasks. In this model, information about the problem to be solved is presented to the programmer an
laced in his short term memory. His past knowledge about the problem is retreived from long term

y
w
memory and placed in working memory. New information is then transferred to working memor

here it is integrated with the information from long term memory. The result of this integration of

i

- 4 -

nformation is a solution to the problem or learning of the new information, which is the integration and
placement of new information into long term memory.

The transfer of the problem description from short term memory to working memory, and the
e

o
recall of appropriate knowledge from long term memory to working memory, represent the first phas
f problem solving. [14] During the first phase, working memory’s contents are prepared to solve the

l
s
problem. During the second phase, the programmer’s solution plan emerges in the form of interna
emantics, an internal representation of the solution. Once the internal semantics of the problem are

constructed, derivation of the solution is straightforward.

The internal semantic representation starts as a general sketch of a solution and develops into a
l

p
more detailed plan with time. The detailed plan consists of a number of subplans, parts of the tota
roblem and specific solutions to them. This is the underlying concept of modularization, subdividing

the problem into its composite problems and solving them.

Defining subgoals for the programmer facilitates the development of the internal semantics of the
-

i
problem[3, 8] Providing the programmer with a general definition of the program would provide a start
ng point. It would also be helpful to subdivide the program into parts whose interaction is minimal.

t
This would suggest some level of modularity. In construction of the internal model of the semantics of
he program, it would be helpful to have a medium for representing, documenting, and storing the inter-

.
N
nal model as it is being developed. This model, of course, varies highly between programmers

evertheless, some tailorable high-level medium could be helpful.

3.3. Closure

Short term memory has limited capacity. In order to retain information in short term memory, it

m
must be constantly rehearsed, which requires effort. Humans experience a feeling of relief when infor-

ation no longer needs to be rehearsed and can be forgotten. This relief, experienced at the completion
h

s
of a task, is termed closure. The need for closure suggests that it would be preferable to work wit
mall portions of a task at a time and to be able to release the information at completion of that por-

tion.

Understanding of code could be easier if the programmers worked on understanding of smaller

d
semantic segments of code, or modules of code. Unfortunately, working with undocumented poorly
esigned code, the programmer is forced to read the code in its entirety to locate possible semantic

a
modules. However, once these modules are identified, the maintenance task could be facilitated by
llowing the user to view semantic clusters of code at a time.

d
b

It is also useful to help the programmer in identifying semantic modules. This could be achieve
y supporting possibly related user queries, such as letting the user find the piece of code where a cer-

r
u
tain variable is modified, where it is being declared, where a certain data structure is changed o
pdated.

4. Viewing/Style Issues

A number of factors play a role in the transformation of code to an internal semantic form. These

d
factors deal with the viewing and the style of the program code. Experiments have been performed to
etermine the extent to which these factors affect the comprehension of programs.

4.1. Commenting

The issue of the influence of comments on program understanding is not resolved. A number of
-

i
studies of short programs[7] show that comments in the code interfere with the process of understand
ng, require more filtering when reading the code, and if not updated, could be misleading and cause

-
r
errors in the semantic representation of the code. Comments in the code make programs longer and dis
upt the flow of code. Experiments with longer, more realistic, programs are not reported by Shneider-

.man. It may well be the case that the importance of comments increases with the length of the program

Some experiments sited by Shneiderman [12, 13] show that functionally descriptive comments do
s

h
facilitate faster conversion of code to internal semantic structure, while non-descriptive comment
inder it. Functionally descriptive comments used in these experiments are high-level comments that

d

- 5 -

escribe actions or effects not obvious from viewing the code. Low-level non-descriptive comments

s
which restate the function of the code hinder program understanding by unnecessarily interrupting the
ubject’s thought process.

Most programmers still prefer to use some comments. For this reason it is useful to allow a link
g

t
between a comment and a part of code that it belongs to. This link would give an option of removin
he comments from the code, or overlaying them on the code, for both kinds of viewing.

4.2. Variable Names

The use of mnemonic variable names seems to be helpful in program comprehension.[6] The
s

m
mnemonics, however, have to be such that they add semantic information relevant to the code. It i

ost likely that different mnemonics have different meanings to different programmers. Allowing for

t
systematic substitution of variable names according to programmer’s specifications could tailor the code
o his personal preference. Having meaningful mnemonics would releave the programmer’s STM load,

4

making his task easier.

.3. Indentation

Most programmers use indentation, but experimentally, the advantages of indentation have not

d
been substantiated. Experiments by Weissman show that indented and commented programs are more
ifficult to read. Love[5] shows that indentation does not improve understanding for short FORTRAN

o
r
programs, and Shneiderman and McKay [10] show that indented long programs are more difficult t
ead because deep indentation can cause lines to split to accomodate margins. Since there is great varia-

-
i
bility in display preferences which could change the size and indentation look of the code, and variabil
ty in indentation preferences, it is useful to allow the programmer to specify his indentation preference

5

which would uniformly apply to the code.

. Conclusion

From the above presented discussions, a number of implications can be seen (Appendix A). These
rest on human limitations and facilitate the task of understanding code.

In comprehending a program, the first task is to represent a given program in some internal

g
semantic form. This begins with an understanding and a formulation of a general idea of what the pro-
ram does. Providing the programmer with a general definition of the program is helpful in this first

step.

In the maintenance task, the modification or enhancement to be made must also be understood
e

p
and encoded into an internal semantic form. Once both the internal semantics of the change and of th
rogram are formed, the internal semantics of the program are modified in accordance with the seman-

,
a
tics of the change. This encoding accomplished, the foundation for implementation of the code is set
nd the programmer is ready to implement the change. It would be helpful to have a medium for

f
c
representing, documenting, and storing the internal model as it is being developed. This model, o
ourse, varies highly between programmers. Nevertheless, some tailorable high-level medium would be

helpful to the programmers in refining his understanding of the code.

The programmer subdivides the program into modules, or parts with common meaning or intent,

t
and analyses them in terms of their function and contribution to the program. The programmer follows
his modularizing method until the lowest details of the code are understood. At this point he is ready

to formulate a solution.

It would be useful to help the programmer in identifying semantic modules. This could be
e

a
achieved by supporting possibly related user queries, such as letting the user find a piece of code wher

certain variable is modified, where it is being declared, where a certain data structure is changed, or
updated.

The programmer also needs a method of storing and retrieving subgoals which could either be
provided for him, or developed by him as his understanding increases.

Most programmers still prefer to use some comments. For this reason it is useful to allow the pro-
grammer to choose one of two options: view with comments, view without comments. This could be

- 6 -

s
s
implemented via a link between the comment and the part of code to which it belongs. Likewise, it i
traightforward to provide for user control of indentation and a mechanism for systematic replacement

t
of variable names in cases where a programmer can devise a new name with more mnemonic relevance
han an existing one.

Appendix A

A maintenance environment should allow for :

.

{

{1} Modification, storage and retreval of a general definition of what the program does

2} Modification, storage and retreval of subgoals of the modification task.

{

{3} Modification, storage, and retrieval of semantic model.

4} Identification of semantic modules.

.

{

{5} View code with or without comments

6} Control of indentation.

.{7} Systematic name substitution

- 7 -

1

References

. J. R. Barclay, ‘‘The Role of Comprehension in Remembering Sentences,’’ Cognitive Psychology,

2

vol. 4, pp. 229-254, 1971.

. J. D. Bransford and J. J. Franks, ‘‘The Abstraction of Linguistic Ideas,’’ Cognitive Psychology,

3

vol. 2, pp. 331-350, 1971.

. O. J. Dahl, E.W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic Press, New

4

York, 1972.

. J. G. Greeno, ‘‘The Structure of Memory and the Process of Problem Solving,’’ 37, University of

5

Michigan: Human Performance Center, 1972.

. Tom Love, Relating Individual Differences in Computer Programming Performance to Human

6

Information Processing Abilities, University of Washington, 1977. Ph.D. Thesis

. P. R. Newsted, FORTRAN Program Comprehension as a Function of Documentation, School of

7

Business Administration, University of Wisconsin, Milwaukee, Wisconsin, 1973.

. G. H. Okimoto, ‘‘The Effectivenss of Comments: A Pilot Study,’’ IBM SDD 01.1347, July 27,

8

1970.

. D. Parnas, ‘‘On the Criteria to be Used in Decomposing Systems into Modules,’’ Communications

9

of the ACM, vol. 15, no. 12, pp. 1053-1058, December 1972.

. Ben Shneiderman, Software Psychology: Human Factors in Computer and Information Systems,

1

Little Brown and Co., Boston, Massachusetts, 1980.

0. B. Shneiderman and D. McKay, ‘‘Experimental Investigations of Computer Program Debugging
-

c
and Modification,’’ Proceedings 6th International Congress of the International Ergonomics Asso
iation, College Park, Maryland, July 1976.

11. B. Shneiderman, ‘‘Exploratory Experiments in Programmer Behavior,’’ International Journal of

1

Computer and Information Sciences, vol. 5, no. 2, pp. 123-143, June 1976.

2. B. Shneiderman, ‘‘Measuring Computer Program Quality and Comprehension,’’ International

1

Journal of Man-Machine Studies, vol. 9, 1977.

3. L. Weissman, ‘‘Psychological Complexity of Computer Programs: An Experimental Methodol-

1

ogy,’’ ACM SIGPlan Notices, vol. 9, 1974.

4. W. Wickelgren, How To Solve Problems, W. H. Freeman, San Francisco, 1974.

