
RECOGNIZING DESIGN DECISIONS

IN PROGRAMS

Richard J� LeBlanc� Jr�

Stephen B� Ornburn

Spencer Rugaber
School of Information and Computer Science and

Software Engineering Research Center

Georgia Institute of Technology

Atlanta� Georgia ����������

Abstract

Software maintenance� reverse engineering� and software reuse rely on being

able to recognize� comprehend� and manipulate design decisions in source

code� But what is a design decision� This paper describes a characterization

of design decisions based on the analysis of programming language constructs�

The characterization underlies a framework for documenting and manipulat�

ing design information to facilitate maintenance and reuse activities�

�



� DESIGN DECISIONS

During the course of development of a program� many decisions are made� Some relate to the problem

domain and how it should be viewed and modeled� Others address constraints imposed by the solution space�

including the target machine and programming language� Some decisions stand alone and have little impact

on the rest of the program� Others are subtly interdependent� Sometimes decisions are explicitly documented

along with their rationales� but more often the only indication of a decision is its resulting in�uence on the

source code� In order to e�ectively maintain an existing system� it is essential for a maintenance programmer

to sustain previously made decisions unless the reasons for the decisions have also changed� In order to

accomplish this the decisions must be recognized and understood�

Software design is the process of taking a functional speci�cation and a set of non�functional constraints

and producing a description of an implementation from which source code can be developed� Functional

speci�cations may be formal or informal but are primarily concerned with what the target system is supposed

to do and not with how it is to do it� Source code is inherently formal� Although its primary purpose is

to express solutions to problems� other concerns such as target machine characteristics intrude� The middle

ground between speci�cations and code is more nebulous� Webster� surveys the variety of notations and

graphical representations that have been used� The design process as a whole can be described as repeatedly

taking a description of intended behavior �whether speci�cation� intermediate representation� or code� and

re�ning it� Each re�nement re�ects an explicit design decision� Each limits the solution to a class of

implementations within the universe of possibilities�

Design involves making choices among alternatives� Too often� however� the alternatives that are con�

sidered and the rationale for the �nal choice are lost� One reason design information is lost is that the

design representations currently in use are not expressive enough� While they are adequate for describing

the cumulative results of a set of decisions� particularly in regard to the structure of components and how

they interact� they do not attempt to represent the incremental changes that come with individual design

decisions� Also� they fail to describe the process by which decisions are reached� including the relevant

problem requirements and the relative merits of the alternative choices� The well known tendency for system

structure to deteriorate over time is accelerated when the original structure and intent of the design are not

retained with the code�

Design decisions are not made in isolation� Often a solution idea is best expressed through several

interrelated decisions� Unless the interdependencies are explicitly documented� the unwary maintenance

	



programmer will fail to notice all of the implications of a proposed change� Design ideas that are expressed

via interrelated decisions are called delocalized information by Balzer� and delocalized plans by Soloway��

If design decisions and their rationale were captured during initial program development� and if a suitable

notational mechanism existed to describe their interdependencies� then several aspects of software engineering

would pro�t� First� initial development would bene�t from the increased discipline and facilitated commu�

nication provided by the notation� Opportunities for software reuse would be multiplied by the availability

of design information that could be reused as is or transformed to meet new requirements� Finally� software

maintenance would be vastly improved by the explicit recognition of dependencies and the availability of

rationale�

� CHARACTERIZING DESIGN DECISIONS

Studying various areas Computer Science reveals several categories of design decisions� Abstraction mech�

anisms in programming languages provide evidence of the need to express design ideas in code� Semantic

relationships from data base theory support the modeling of information structures from a variety of �elds�

Finally� examination of tools used for reverse engineering and software maintenance indicate decisions that

have been found useful in understanding existing programs�

��� Composition and Decomposition

Probably the most common design decision made when developing a program is to split it into pieces� This

can be done� for example� by breaking a computation into steps or by de�ning a data structure in terms of

its �elds� Introducing a construct and then later decomposing it supports abstraction by allowing decisions

to be deferred and details hidden� Complexity is managed by using an appropriate name to stand for a

collection of lower level details�

If a 
top�down� approach is taken to design� then a program is decomposed into pieces� If a 
bottom�up�

approach is used� then a program is composed from available sub�components� Regardless of the approach�

the result is that a relationship has been established between an abstract element and several more detailed

components�

Data and control structures are programming language features that support these decisions� For exam�

ple� a loop is a mechanism for breaking a complex operation into a series of simpler steps� Likewise� arrays

�



and record structures are ways of collecting related data elements into a single item� Of course� building

an expression from variables� constants� and operators is an example of composition� So too is building a

system from a library of components�

��� Encapsulation and Interleaving

Structuring a program involves drawing boundaries around related constructs� Well�de�ned boundaries or

interfaces serve to limit access to implementation details while providing controlled access to functionality by

clients� The terms encapsulation� abstract data types� and information hiding� are all related to this concept�

Encapsulation is the decision to gather selected parts of a program into a component� variously called a

package� cluster� or module� The component
s behavior is restricted by a protocol or interface so that other

parts of the system can only interact with the component in limited ways� Parnas� introduced the term

information hiding to describe this approach to structuring a system�

Encapsulation is a useful aid to both program comprehension and maintenance� A decision to encapsulate

the implementation of a program component re�ects the belief that the encapsulated construct can be thought

of as a whole with a behavior that can be described by a speci�cation that is much smaller than the total

amount of code contained within the component� If the component hides the details of a major design

decision� then when that decision is altered during later maintenance� side�e�ects of the change are limited�

The alternative to encapsulation is interleaving� It is sometimes useful� usually for reasons of e�ciency�

to intertwine two computations� For example� it is often useful to compute the maximum element of a vector

as well as its position in the vector� These could be computed separately� but it is natural to save e�ort by

doing them in a single loop� Interleaving in this way makes the resulting code harder to understand and

modify� A number of useful interleaving transformations have been collected by Feather��

��� Generalization and Specialization

One of the most powerful features of programming languages is their ability to describe a whole class of

computations using a subprogram parameterized by arguments� Although procedures and functions are

usually thought of as abstractions of expressions� the ability to pass arguments to them is really an example

of generalization� The decision concerning which aspects of the computation to parameterize is one of the

key architectural decisions made during software design�

�



Generalization is a design decision in which a program speci�cation is satis�ed by relaxing some of its

constraints� For example� a program might be required to compute the logarithm of a limited set of numbers�

The requirement could be satis�ed by providing access to a general purpose library function for computing

logarithms� The library function would be capable of computing logarithms of all of the set of required

numbers as well as many others� The decision to use the library function is a generalization decision�

Abstractions other than numerical computations may also be parameterized� The Ada programming

language provides a generic facility that allows data types and functions to parameterize packages and

subprograms� Many languages provide macro capabilities that parameterize textual substitutions� Variant

records in Pascal and Ada and type unions in C are examples of the use of a single general construct to

express a set of special cases� depending on the value of a discriminant �eld�

Another example of generalization concerns interpreters for virtual machines� It is often useful for a

designer to introduce a layer of functionality that is controlled by a well�de�ned protocol� The protocol can

be thought of as the programming language for the virtual machine implemented by the layer� The decision

to introduce the protocol re�ects the desire to provide more generality than a set of disparate procedures

would o�er�

Specialization is a design decision related to generalization� Specialization involves replacing a program

speci�cation by a more restricted one� Often an algorithm can be optimized based on restrictions in the

problem domain or facilities of the programming language� Although these optimizations can dramatically

improve performance� they have a cost in lengthening the program text and making it harder to understand�

Another manifestation of this can be seen in the early stages of the design process� Often speci�cations are

expressed in terms of idealized objects such as in�nite sets and real numbers� Actual programs have space

and precision limitations� Thus a program is necessarily a special case of a more general computational

entity�

In object�oriented programming languages such as Smalltalk and C��� the designer is provided with

a collection of existing class de�nitions� A class provides an implementation for objects that belong to it�

Knowledgable developers can quickly implement new classes by specializing existing classes� A new class is

said to inherit the common functionality from its more general predecessor�

Generalization and specialization decisions have long�term implications on the program being developed�

It is easier to reuse or adapt a generalized component than a restricted one� Generality has a cost� however�

Generalized components may be less e�cient than specially tuned versions� Moreover� there is often more

�



e�ort required to test a component intended for wide application than its more speci�c counterpart�

��� Representation

Representation is a powerful and comprehensive design decision� Representation is used when one abstraction

or concept is better able to express a problem solution than another� This may arise because the target

abstraction more ably captures the sense of the solution or because it can be more e�ciently implemented

on the target machine� For example� a programmer may choose a linked list to implement a pushdown stack�

Bit vectors are used to represent �nite sets� Representation is the decision to use one construct in place of

another functionally equivalent one�

Representation must be carefully distinguished from specialization� If a �possibly in�nite� pushdown

stack is implemented by a �xed length array� then two decisions have been made� The �rst decision is that

for the purposes of this program a bounded length stack will serve� This is a specialization decision� Then

the bounded stack can be readily implemented by a �xed length array and an index variable� This is a

representation choice�

When the distinction between specialization and representation is kept in mind� representation can be

seen to be a �exible and symmetric decision� In one context it may be appropriate to represent one construct

by another� In a di�erent situation� the inverse representation might be used� For example� operations on

vectors are usually implemented by a loop� In the presence of vector processing hardware� however� the

compiling system may invert the representation to reconstruct the vector operation�

Another example of representation comes from the early stages of design� Formal program speci�cations

are often couched in terms of universal and existential quanti�cation� e�g� 
All employees who make over

������� per year�� Programming languages typically use loops and recursion to represent these speci�cations�

��� Data and Procedure

Variables are not necessary in order to write programs� values can always be explicitly recomputed� Program

variables have a cost in terms of the amount of e�ort required to comprehend and modify a program� On

the other hand� they can serve to improve the e�ciency of the program and� by a judicious choice of names�

serve to clarify its intent�

Programmers must be aware of the invariants relating the program variables when inserting statements

�



into a program� For example� suppose a maintenance programmer is investigating a loop that reads records

from a �le and keeps count of the number of records read� The programmer has been asked to make the loop

disregard invalid records� Because the counter is used to satisfy design dependencies between this loop and

other parts of the program� the programmer must modify the semantics of the counter� The programmer

must choose from among three alternatives� counting the total number of records� counting the number of

valid records� or doing both� To make the correct choice� the programmer must determine how the counter

is used later in the program� In this case� the programmer can replace references to variables with the

computations that produced their most recent values� The resulting statements can be rearranged in order

to reconstruct the high�level operations applied to the �le� Having done this� the programmer can confront

the semantic problems raised by the distinction between valid and invalid records� Once those semantic

problems have been solved� components can again be delocalized and assignment statements reintroduced�

The introduction of variables constrains the sequence in which computations may be made� This increases

the possibility of errors when modi�cations made during maintenance accidently violate an implicit ordering

constraint or when variables are computed in the wrong order�

The alternative to introducing a variable is to recompute values when they are needed� This is sometimes

used to make a program more readable� A reader does not have to search the program for the declaration

and assignments to a variable but can directly use local information� Optimizing compilers often reduce the

cost associated with recomputation� particularly where constant expressions are involved�

The decision to repeat a computation or to save the result of the computation in a variable re�ects

the deeper concept of the duality of data and procedure� The implementation of a �nite state machine

is an example where the data�procedure decision is apparent� In the data�oriented approach� possibilities

for the machine
s next state are recorded in a two dimensional array� often called the 
next�state� table�

Alternatively� the next�state information can be computed directly in code for each of the states� Although

this may seem unusual� it is exactly the technique that is used to speed up lexical analyzers� Token classes are

�rst represented as regular expressions and then as states in a state machine� The states are then compiled

directly into case�switch statements in the target programming language� The reason for doing this is

e�ciency� in the procedural version the cost of indexing into the array is avoided�

�



��� Function and Relation

Logic programming languages allow programs to be expressed as relations between sets of data� For example�

sorting is described as the relationship of two sets� both of which contain the same members� one of which

is ordered� In Prolog� this might be described by the following rule�

sort�S�� S	� � �permutation�S�� S	�� ordered�S	��

If S� is given as input� then a sorted version S	 is produced� But if� instead� an ordered version S	 is

provided� then unordered permutations are produced in S�� The decision as to which variable is input and

which is output can be left up to the user at run�time instead of the developer at design time�

Formal functional speci�cations are often non�deterministic in this regard� If there is a preferred di�

rection� then the designer may use a function instead of a relation to express it� But this may re�ect an

implementation bias rather than a requirement�

Of course� more traditional programming languages do not support non�deterministic relationships� Even

in Prolog it may be impossible� for any given problem� to write a set of rules that works equally well in both

directions� Thus� the designer is usually responsible for selecting the preferred direction of causality� that is�

which variables are input and which are output�

An alternative approach is to provide separate functions that support both directions� For example� in a

student grading system� it may be useful to provide a function that� when given a numeric grade� indicates

the percentage of students making that grade or higher� It may also be of value to provide the inverse

function that� when given a percentage� returns the numeric grade that would separate that proportion of

the students�

� FINDING DESIGN DECISIONS IN CODE

Software maintenance and reuse activities require the detection of design decisions in existing code� which

is a part of reverse engineering� Reverse engineering is the process of constructing a higher level description

of a program from a lower level one� Typically� this means constructing a representation of the design of a

program from its source code� The process is bottom�up and incremental� low level constructs are detected

and replaced by their high�level counterparts� If this process is repeated� gradually the overall architecture

of the program emerges from the programming language�dependent details�

�



The program below is taken from a paper by Basili and Mills� in which they use �ow analysis and tech�

niques from program proving to guide the comprehension process and document the results� It will be used

as a realistic example of production software in which design decisions can be recognized� The program is

shown in Figure ��

��� REAL FUNCTION ZEROIN �AX�BX�F�TOL�IP	
��� REAL AX�BX�F�TOL
��� C
��� C
��� REAL A� B� C� D� E� EPS� FA� FB� FC� TOL�� XM� P� Q� R� S
��� C
��
 C COMPUTER EPS� THE RELATIVE MACHINE PRECISION
��� C
��� EPS 
 ���
��� �� EPS 
 EPS����
��� TOL� 
 ��� � EPS
��� IF �TOL� �GT� ���	 GO TO ��
��� C
��� C INITIALIZATION
��� C
��� IF �IP �EQ� �	 WRITE �����	
��
 �� FORMAT��THE INTERVALS DETERMINED BY ZEROIN ARE�	
��� A 
 AX
��� B 
 BX
��� FA 
 F�A	
��� FB 
 F�B	
��� C
��� C BEGIN STEP
��� C
��� �� C 
 A
��� FC 
 FA
��
 D 
 B � A
��� E 
 D
��� �� IF �IP �EQ� �	 WRITE �����	 B� C
��� �� FORMAT ��E����	
��� IF �ABS�FC	 �GE� ABS�FB		 GO TO ��
��� A 
 B
��� B 
 C
��� C 
 A
��� FA 
 FB
��� FB 
 FC
��
 FC 
 FA
��� C
��� C CONVERGENCE TEST
��� C
��� �� TOL� 
 ����EPS�ABS�B	 � ����TOL
��� XM 
 ����C�B	
��� IF �ABS�XM	 �LE� TOL�	 GO TO ��
��� IF �FB �EQ� ���	 GO TO ��
��� C
��� C IS BISECTION NECESSARY
��
 C
��� IF �ABS�E	 �LT� TOL�	 GO TO 
�
��� IF �ABS�FA	 �LE� ABS�FB		 GO TO 
�
��� C

��� C IS QUADRATIC INTERPOLATION POSSIBLE
��� C
��� IF �A �NE� C	 GO TO ��
��� C
��� C LINEAR INTERPOLATION
��� C
��
 S 
 FB�FA
��� P 
 ����XM�S
��� Q 
 ��� � S
��� GO TO ��
��� C
��� C INVERSE QUADRATIC INTERPOLATION
��� C
��� �� Q 
 FA�FC
��� R 
 FB�FC
��� S 
 FB�FA
��
 P 
 S������XM�Q��Q�R	 � �B�A	 � �R����		
��� Q 
 �Q����	��R����	��S����	
��� C
�
� C ADJUST SIGNS
�
� C
�
� �� IF �P �GT� ���	 Q 
 �Q
�
� P 
 ABS�P	
�
� C
�
� C IS INTERPOLATION ACCEPTABLE
�
� C
�

 IF ������P	 �GE� �����XM�Q � ABS�TOL��Q			 GO TO 
�
�
� IF �P �GE� ABS�����E�Q		 GO TO 
�
�
� E 
 D
��� D 
 P�Q
��� GO TO ��
��� C
��� C BISECTION
��� C
��� 
� D 
 XM
��� E 
 D
��
 C
��� C COMPLETE STEP
��� C
��� �� A 
 B
��� FA 
 FB
��� IF �ABS�D	 �GT� TOL�	 B 
 B � D
��� IF �ABS�D	 �LE� TOL�	 B 
 B � SIGN�TOL��XM	
��� FB 
 F�B	
��� IF ��FB��FC�ABS �FC			 �GT� ���	 GO TO ��
��� GO TO ��
��
 C
��� C DONE
��� C
��� �� ZEROIN 
 B
��� RETURN
��� END

Figure �

�



ZEROIN �nds the root of a function� F� by successively shrinking the interval in which it must oc�

cur� It does this by using one of several approaches �bisection� linear interpolation� and inverse quadratic

interpolation�� and it is the interleaving of the approaches that complicates the program�

��� Interleaving of Program Fragments

A casual examination of the program indicates that it contains two WRITE statements that provide diag�

nostic information when the program is run� In fact� these statements display the progress that the program

makes in narrowing the interval containing the root� The execution of the WRITE statements is controlled

by the variable IP� IP is one of the program
s input parameters� and an examination of the program indicates

that it is not altered by the program and is used for no other purpose�

This leads to the conclusion that the overall program can be decomposed into two pieces� the root �nder

and the debugging printout� To make the analysis of the rest of the program simpler� the diagnostic portion

can be removed from the text being considered� This involves removing statements numbered ���� ���� �	��

and ��� and modifying line ��� to remove the reference to IP�

The lines that have been removed are themselves analyzable� In fact� the job of producing the debugging

printout has been decomposed into two tasks� The �rst produces a header line� and the second prints out a

description of the interval upon every iteration of the loop�

��� Representation of Structured Control Flow in Fortran

Basili and Mills begin their analysis by examining the control �ow of the program� In fact� the version of

FORTRAN used in this program has a limited set of control structures that forces programmers to use GOTO

statements to simulate the full range of structured programming constructs� In ZEROIN� for example� lines

������	 implement a repeat�until loop� lines ������� serve as an if�then statement� and lines ������� are

an if�then�else� These lines are the result of representation decisions by the original developer� They can

be detected by straightforward analysis such as that typically performed by the �ow analysis phase of a

compiler�

Another technique for expressing control �ow is illustrated in this program� In several cases �lines ��������

�������� and ��������� an elaborate branch condition is broken up into two consecutive if statements� both

branching to the same place� Each pair could easily be replaced by a single if with multiple conditions� thus

��



further simplifying the control �ow structure of the program at the expense of complicating the condition

being tested�

��� Interleaving by Code Sharing

Further analysis of the control �ow of the program indicates that lines ��� and ��� comprise the else part

of an if�then�else statement� Moreover� these lines are 
branched into� from lines ��� and ���� The two

assignment statements are really being shared by two parts of the program� That is� two execution streams

are interleaved because they share common code� Although this makes the program somewhat shorter and

assures that both parts are updated if either is� it makes understanding the program structure more di�cult�

In order to express the control �ow more cleanly� it is necessary to construct a structured version� This

requires that the shared code be duplicated so that each of the sharing segments has its own version� If the

common statements were more elaborate� a subroutine could be introduced and called from both sites� As

it is� it is a simple matter to duplicate the two lines producing two properly formed conditional constructs�

��� Data Interleaving by Reusing Variable Names

An unfortunately common practice in programs is to use the same variable name for two unrelated purposes�

This naturally leads to confusion when trying to understand the program� It can be thought of as a kind

of interleaving where� instead of two separable segments of code being intertwined at one location in the

program� two aspects of the program state share the use of the same identi�er� This occurs twice in ZEROIN�

with the identi�ers TOL� �in lines ������	 and in the remainder of the program� and Q �on line ��� through

the right hand side of line ��� and the remainder of the program� including the left hand side of line �����

Instances of this practice can be detected by data �ow analysis�

��� Generalization of Interpolation Schemes

ZEROIN exhibits a situation where two sections of code use alternative approaches to compute the values

of the same set of variables� Both lines ������� and ������� are responsible for computing the values of the

variables P and Q� The determination of which approach to use is based on a test made on line ����

This is an example of specialization� Both computations and the test can be replaced conceptually by

a more general expression that is responsible for computing P and Q based on the current values of the

��



variables A� B� C� FA� FB� FC� and XM� This has the further bene�t of localizing the uses of the variables

S and R inside of the new expression�

There are really several design issues involved here� First� both code segments result from the decom�

position of the problem into pieces expressed by a series of assignment statements� Then� the realization

that both segments are specializations of a more general one allows the details of the individual cases to be

hidden away� This� in turn� makes the code shorter and easier to understand�

��� Variable Introduction

A common programming practice is to save the result of a computation in order to avoid having to recompute

the same value at a later time� If the computation is involved� this practice can result in a signi�cant savings

at run time with a modest cost�

In ZEROIN� this practice has been used extensively� In particular� there has been a concerted e�ort to

save the results of calls to the user�supplied function� F� in the variables FA� FB� and FC� Because F may

be arbitrarily complex� this practice may be the most important determinant of the ultimate e�ciency of

ZEROIN�

An examination of the program reveals that FA� FB� and FC always contain the results of applying F

at the points A� B� and C� respectively� From the point of view of understanding the algorithm� these three

additional variables do not provide a signi�cant abstraction� On the contrary� they require a non�trivial e�ort

to understand and manipulate� Replacing them by their de�nitions makes the resulting program easier to

understand�

When readability is the goal� there are two factors to be weighed in deciding whether to write the program

using a variable name or replacing it by its value� On the one hand� each new variable places a burden on

the person trying to understand the program� The variable must be read and its purpose understood and

con�rmed� On the positive side� variables can serve as valuable abbreviations for the computation that they

replace� It is easier to understand a variable with a carefully chosen mnemonic name than the complex

expression it represents� In the case of ZEROIN� the variables FA� FB� and FC provide little in the way of

abstraction� P and Q� on the other hand� abbreviate signi�cant computations� albeit without the bene�ts of

mnemonic names� XM lies somewhere in the middle�

�	



��� Generalization of Interval Computation

Now that the recognition of some intermediate decisions has clari�ed the structure of the program� the same

sort of observation can be made about lines �������� They have the function of assigning values to the

variable D and E based on the values of the variables A� B� C� D� E� F� TOL�� and XM� The fact that the

list of variables is so long indicates that this segment is highly interleaved with the rest of the program�

Nevertheless� it is of value to indicate that the only explicit e�ect of these lines of code is to set these two

variables�

It should also be noted that� as in Section ���� there are several instances of specialization� Lines �������

and ������� are selected based on the tests on lines �������� Likewise� lines ��	 through ��� and the lines

between ��� and ��� are special cases selected on the basis of the tests on lines ��� and ����

��� Program Architecture

Once the analysis described above has been performed� it is possible to appreciate the overall structure of

the program� Based on the test made on line ���� the program can be seen to use the variable B to hold

approximations of the root of the function� B is modi�ed on lines ��	 and ��� by either XM or D� The

sections on lines �	���	� and lines ������� act as adjustments that are made in special situations�

Another conclusion that is now apparent is that A gets its value only from B� while C gets its value only

from A� Thus A� C� and B serve as successively better approximations to the root� In fact� except under

special circumstances� A and C have identical values� Likewise� E normally has the same value as D� The

resulting architecture of the program is shown in Figure 	�

��� REAL FUNCTION ZEROIN �AX�BX�F�TOL	
��� C
��� initialization

C
loop

conditional adjustment �
��� C
��� if �close enough to �nal answer	

return�B	
��� C
��� compute new value of B

C
conditional adjustment �

��� endloop

Figure 	

��



� REPRESENTING DESIGN DECISIONS

It is not su�cient to simply recognize design decisions in code� Once recognized� the decisions must be

organized in such a way that they can be e�ectively used by maintenance programmers and reuse engineers�

The organization chosen serves as a representation for design information�

There are numerous methods for designing software and numerous representations for the intermediate

results� Typically� several are used during the design of a program� some during the architectural stages

and others during low�level design� Still others may be used during the maintenance stage if the original

developers have given way to a separate maintenance sta�� It may consequently be di�cult to recreate and

reuse the original representation�

A usable representation for design information must be easy to construct during development and easy

to reconstruct during reverse engineering� Once constructed� it must facilitate queries and report generation

in order to support software maintenance activities� It must provide a mechanism for attaching available

documentation� Also� it must support automation� In particular� the representation must be formal enough

that its components can be automatically manipulated� For example� it is desirable to be able to determine

if a previously developed partial description of a software component is reusable in a new situation� A

representation for design informationmust allow all types of design information to be attached� This includes

high�level speci�cations� architectural overviews� detailed interfaces� and the resulting source code� It is

also desirable that the representation support requirements tracing� informal annotations� and versioning

information�

Several approaches to organizing design information have been proposed� Biggersta�
 is concerned with

relating code fragments to information from the problem domain� Software reuse will be facilitated if a new

problem
s requirements can be easily matched against a description of existing software� He is building the

Desire system to explore his approach� Blackburn� is also concerned with reuse� He proposes a network of

design information where fragments are connected by one of two relationships� either 
IS�DECOMPOSED�

INTO� �decomposition� or 
IS�A� �specialization�� Coleman and Gallimore report on FPD� a framework

for program development�� Arcs in their network model correspond to re�nements steps taken during the

design� Each re�nement engenders a proof obligation to guarantee the correctness of the step taken�

��



� CONCLUSION

Software maintenance and reuse require of their practitioners a deep understanding of the software being

manipulated� That understanding is facilitated by the presence of design documentation� E�ective doc�

umentation should include a description of the structure of the software together with details about the

decisions which lead to that structure�

Design decisions occur where the abstract models and theories of an application domain confront the

realities of limited machines and imperfect programming languages� If the design decisions can be recon�

structed� then there is greater hope of being able to maintain and reuse the mountains of undocumented

software confronting us�

��



References

�� Dallas E� Webster� 
Mapping the Design Representation Terrain� A Survey�� MCC Technical Report

Number STP�������� July �����

	� Robert Balzer� 
A �� Year Perspective on Automatic Programming�� IEEE Transactions on Software

Engineering� Vol� SE���� No� ��� November ����� pp� �	����	���

�� Eliot Soloway� Jeannine Pinto� Stan Letovsky� David Littman and Robin Lamport� 
Designing Doc�

umentation to Compensate for Delocalized Plans�� Communications of the ACM� Vol� ��� No� ���

November �����

�� D� L� Parnas� 
On the Criteria To Be Used in Decomposing Systems into Modules�� Communications

of the ACM� Vol� ��� No� �	� December ���	� pp� ����������

�� Martin S� Feather� 
A Survey and Classi�cation of Some Program Transformation Approaches and

Techniques�� Program Speci�cation and Transformation� pp� �������� North Holland� �����

�� Victor R� Basili and Harlan D� Mills� 
Understanding and Documenting Programs�� IEEE Transactions

on Software Engineering� Vol� SE��� No� �� May ���	�

�� Ted J� Biggersta�� 
Design Recovery for Maintenance and Reuse�� IEEE Computer� July �����

�� Mark R� Blackburn� 
Toward a Theory of Software Reuse Based on Formal Methods�� Software Pro�

ductivity Consortium Technical Report� SPC�TR�������� Version ���� April �����

�� Derek Coleman and Robin M� Gallimore� 
A Framework for Program Development�� Hewlett�Packard

Journal� Vol� ��� October ����� pp� ������

��


