
Abstract
Modern tools for viewing source code typically

include a feature that enables readers to fold or unfold
selected program segments in support of abstraction.
Existing implementations support folding structures that
conform to the abstract syntax of the programming lan-
guage; that is folding by collapsing a structured construct,
such as a method, into a single abstract statement. To sup-
port other forms of abstraction requires the ability to
define folding structures that crosscut the syntactic struc-
ture of the language. This paper contributes a conceptual
model that generalizes folding to describe both the current
state of the practice and also folds involving non-contigu-
ous segments of code. The model characterizes the techni-
cal obstacles inherent to supporting non-contiguous folds
and describes a variety of policies that can be applied to
resolve ambiguity. We also describe a tool called TAJ that
supports this capability.

1. Introduction
The primary weapon in program understanding is

abstraction, the ability to selectively recognize, label and
then ignore details. Modern Interactive development envi-
ronments (IDEs), such as Eclipse and Visual Studio, sup-
port abstraction via folding, i.e., the ability to selectively
hide and reveal source code segments. The folded area is
removed from the display, leaving its first line visible,
usually accompanied by a user interface affordance, such
as a triangle or plus sign. Activating the affordance alter-
natively expands and collapses the code segment. The
affordances are called holophrasts, and we call widgets
that support them holophrastic displays.

In IDEs, the folded segments correspond to syntactic
units, such as methods or classes, and the folds must be
strictly nested and the folded lines contiguous. However,
the abstractions expressing the design decisions present in
a program need not be so constrained. For example, a code
segment may play a role in multiple, interleaved abstrac-
tions, or a given abstraction may be realized in a delocal-
ized fashion at several sites in the code. Hence, program
understanding tools could benefit from more powerful
folding mechanisms.

The contributions presented in this paper, include the
following:
• A conceptual model capable of describing traditional

folding
• An extended model that supports delocalized abstrac-

tions
• A tool called TAJ that supports the extended model
• A speculative analysis of further extensions in support

of program understanding

2. Background
2.1 Holophrastic Display

The term holophrast was coined by Wilfred Hansen
[8] to denote a visual indicator that stands in place of a
more detailed description. Holophrasts correspond in a
natural way to depict chunks— cognitive abstractions used
to abbreviate complex concepts [20]. As such, holophras-
tic displays support a program reader’s need to identify
units of meaning in code.

In the late 1970s and early 1980s researchers pro-
moted the idea of syntax editors, such as the Cornell Pro-
gram Synthesizer [24], in which the program construction
process was supported by enabling the programmer to
instantiate a control structure template after selecting it
from a palette. Details could be filled into the template,
thereby reducing the overall programming effort and guar-
anteeing that a program’s control structures remained syn-
tactically valid. Once filled in, a control structure and its
contents could be hidden (collapsed or folded) and
revealed (expanded or unfolded) holophrastically.

In modern IDEs, holophrastic display is common-
place. In the Eclipse Java Development Tools (JDT), for
example, a small, circled plus sign in the gutter to the left
of a source code line indicates that the code for a corre-
sponding method or class is currently hidden but can be
made visible by clicking the circle. This situation is
depicted in Figure 1. A similar mechanism is available in
Visual Studio.

Holophrastic display is not restricted to IDEs. So-
called folded editors and outliners allow the user to select
arbitrary contiguous lines of text and then issue a fold

Spencer Rugaber
College of Computing

Georgia Inst. of Technology
spencer@cc.gatech.edu

Naren Chainani
College of Computing

Georgia Inst. of Technology
nchainani3@mail.gat-

ech.edu

Ogechi Nnadi
College of Computing

Georgia Inst. of Technology
ogechi.nnadi@gatech.edu

Kurt Stirewalt
Computer Science & Engin.
Michigan State University

stire@cse.msu.edu

A Conceptual Model for Folding
Technical Report: GT-CS-08-09

October 22, 2008

request, thereby hiding the selected lines while leaving a
holophrastic visual indicator.

Unfortunately, in these tools, holophrasts are limited
in what they can denote. For example, in JDT, only
classes, members, comments and import statements can be
folded. The C# programming language goes somewhat
further, supporting user-defined collapsible segments with
the #region preprocessor directive. Tools, such as
Visual Studio, that recognize this annotation can then col-
lapse arbitrary contiguous lines of code and nested user-
specified chunks.

In the above examples, although chunks can be
nested, the selected area is restricted to be strictly contigu-
ous. For programs, however, it is sometimes desirable to
be able to select non-contiguous areas.

2.2 Non-Contiguous Program Chunks
Current folding technology presupposes a coherent,

hierarchical structuring to programs, and early software
design approaches such as Stepwise Refinement [26] and
Structured Design [22] encouraged this view. However,
several factors raise questions about the validity of this
assumption. Among the factors are the entropic effects of
software maintenance activities, the advent of object-ori-
ented programming languages, program optimizations that
encourage the interleaved implementations of disparate
program features and Aspect-Oriented Programming
(AOP).

Systematic observations by Belady and Lehman [2]
pointed out that any a priori coherence to the design of a
software system tends to dissipate as the software is main-
tained and enhanced. In particular, they noted that the fre-
quency of occurrence of inter-module dependencies
increases as software undergoes maintenance. That is, an

enhancement or bug fix requires changes distributed
throughout the code base.

Another factor decreasing the locality of software was
the advent of object-oriented (OO) programming lan-
guages in which actions affecting the state of an object are
distributed among its methods, and those methods them-
selves may be distributed throughout a class hierarchy.
The delocalized nature of OO programs can negatively
impact understandability; for examples, see [23] with
respect to debugging and [5] for code inspections.

In addition to problems inherent in the programming
language approach taken, non-contiguity1 is also a direct
result of intentional design practices. For example, [19]
points out how subprograms in a (non-OO) library of
numeric software frequently produce more than one result.
That is, usually in order to avoid duplicating a common
segment, the code in a subprogram may interleave several
computations around a common, core set of statements.
The authors call this phenomenon interleaving, and the
natural implication is that the implementation of any one
design abstraction is spread out in the code in order to
allow room for the code implementing other abstractions.

The most direct statement of the problem was first
made by Soloway et al. [21] in which they describe the
problems inherent with delocalized plans (design abstrac-
tions) and suggest documentation strategies to address the
problems. In particular, they suggest a multi-linked strat-
egy in which explicit mention is made of delocalized
dependencies. They also suggest using literate program-
ming [12] and multiple concurrent views as ways of
addressing this problem.

Kiczales et al. [10] made delocalization a first-class
design consideration with their exploration of AOP. An
aspect is a module written in an aspect-oriented program-
ming language that expresses a cross-cutting concern. The
process of compiling the aspects weaves the aspectual
code into the main body of the program at certain prese-
lected join points. IDEs that support AOP, such as some of
the Eclipse plug-ins described in the next subsection, pro-
vide ways to visualize the main code, the aspects and the
dependencies among them using multiple window and
iconic affordances.

2.3 More Recent Related Work
Several, more recent, studies have explored folding.

Mössenböck and Koskimies [15] generalize hypertext
links into active text— text with embedded elements such
as folds, pictures, bookmarks, annotations, timestamps,
widgets and executable scripts. Although the folds must be

Figure 1. Eclipse source code view with holophrasts

1. Terms such as delocalized, scattered, tangled and
cross-cutting have also been used to describe this
phenomenon.

strictly nested, other features such as cross-document links
are more general than TAJ, the tool we have developed to
support the ideas described in this paper.

 Perhaps the work most closely related to ours is the
GUPRO IDE developed by Kullbach and Riediger that
supports the holophrastic display of preprocessed C pro-
grams [13]. The C preprocessor is capable of distorting the
original source code via #define macros and possibly
nested file inclusions. GUPRO is capable of folding and
unfolding macro expansions and file includes. Moreover,
they present a description of the data structures and algo-
rithms used by the implementation. Their approach sup-
ports selections in units of lines and columns, where ours
is currently limited to lines only. Their folds can span files
boundaries as well, while ours currently is limited to a sin-
gle file. However, unlike TAJ, their folds are strictly con-
tiguous.

Literate Programming [12] is a software documenta-
tion scheme in which descriptive commentary is inter-
leaved with source code. Tools are provided to extract the
code for compilation or format the program and its docu-
mentation for printing. The embedded documentation can
be thought of as folds that can be hidden or displayed.
Knasmüsseler extended this idea with concepts from
hypertext, where the reader can non-sequentially
browse the code by following links [11]. Folds can encom-
pass chunks comprising either code or commentary; how-
ever, the folds must be strictly hierarchically organized. It
is worth noting that modern IDEs that support folding also
support navigation between references and definitions in a
hypertext like fashion.

Robillard and Murphy have developed a graph model
(Concern Graphs) to describe how delocalized concerns
may be documented and viewed [16]. A concern is a “con-
ceptual unit of source code of interest to a stakeholder”
[17]. A concern graph consists of nodes corresponding to
classes, fields or methods and arcs expressing various rela-
tions such as calls, reads, writes, checks, creates, declares
and super-class. That is, TAJ nodes can denote more
refined chunks than those in concern graphs, but concern
graph arcs are more specialized.

ConMan is the concern manager part of the Concern
Management Environment developed at IBM [9]. Con-
cerns in ConMan can be delocalized, and separate con-
cerns can overlap. Concerns can be associated with
program elements either explicitly or implicitly via con-
straints. The CME project is implemented as an Eclipse
plug-in, but the web site indicates that the project was
closed in 2006.

2.4 Implementation Approach
Insight into the implementation of holophrastic dis-

play for contiguous chunks can be gained from examining
how folding is accomplished in Eclipse. Folding in

Eclipse’s JDT is implemented in a package called JFace
[4]. JFace introduces the concept of a projection document
to intermediate between the actual text file being edited
and the graphical user interface (GUI) display widget.
Methods are provided to add/remove a subrange of the text
occurring in the master document to/from the projection
document. That is, chunks are expressed in terms of their
contiguous subranges, each of which is announced to the
projection document via an explicit method call. Any
changes to the master document that affect a subrange are
automatically reflected in the projection document and
hence in the display.

Coordination between the display and the document is
managed by mapping between so-called widget coordi-
nates (lines on the screen) and model coordinates (lines in
the file). Moreover, a range of text as expressed in model
coordinates can either be exposed or unexposed, that is,
expanded or collapsed.

Eclipse programmers can configure the units of
abstraction and associate visual annotations with them.
Callable operations exist for collapsing and expanding
individual chunks and expanding all chunks.

3. Research Context
We would like to provide software maintainers holo-

phrastic support for abstracting general regions of source
code files. There are two motivating use cases. In the first,
a maintainer is confronted with foreign code with the need
to understand it in order to perform a maintenance activity.
Understanding implies recognizing code chunks and
abstracting them away. Abstraction includes selection of
the lines comprising a chunk, annotating and then collaps-
ing it. We call such a process active reading; that is, the
reader does not just passively view the program text, but
instead actively documents any recognized abstractions.
This use case raises the research question of the extent to
which active reading leads to a better understanding of the
code than does passive viewing.

The second use case also concerns a maintainer con-
fronted with a maintenance task on foreign code. In this
case, the maintainer receives the code in a form produced
by the maintainer described in the first use case. That is,
the code has been abstracted and documented holophrasti-
cally. The use case raises the question of whether perfor-
mance on the second maintenance task is improved as
compared with the situation where the maintainer is pro-
vided the code along with traditional documentation.

Underlying the two use cases is the question of the
extent to which support for non-contiguous chunking
improves program understandability for the maintainers in
both use cases as compared with strictly contiguous
chunking.

To begin to address these three research questions, we
first present a conceptual model that organizes the abstrac-

tions obtained during code reading. The model is
described incrementally, beginning with support for con-
tiguous, non-conflicting2 chunks, then conflicting chunks,
and finally non-contiguous chunks. After we have pre-
sented the model, we describe the tool, TAJ, we have built
that implements it and a pilot study we have conducted
examining the first use case described above.

4. Conceptual Model
In this section we present a semi-formal description of

an idealized holophrastic tool for viewing contiguous,
non-conflicting chunks. We will extend the model in sub-
sequent sections as we add support for conflicts and non-
contiguity.

The tool comprises three parts: routines for accessing
the source code file to be read by the maintainer, the dis-
play widget used to view it, and the internal data represen-
tation used to hold the history of folds and annotations.
For the time being, we will not be concerned with issues
such as whether the tool can be used to edit the file rather
than just view it, whether it understands the syntax of the
program being viewed, whether abstractions can be spread
across multiple source code files, etc. We will also ignore
issues such as scrolling and resizing of the display widget.

The input file manager can be modeled as producing a
sequence of text lines. Likewise, the display widget needs
to present a sequence of lines, some from the input file and
some containing user-supplied annotations. Lastly, the
internal representation can be modeled as a directed tree.
The user interacts with the display by selecting one or
more lines and indicating an operation to be performed,
either COLLAPSE, EXPAND or RECOLLAPSE (refold an
EXPANDED fold). In the case of the initial selection of a
chunk, the user is asked to provide an annotation. After
each operation, the display is updated to reflect the
changed state.

We assume but do not model the visual indicator (hol-
ophrast) that informs the user of lines on the display that
corresponded to collapsed chunks. Also, we assume that
obvious errors, such as trying to expand a non-chunk or to
collapse without first making a selection, are correctly
handled. Finally, we assume for the time being that chunks
are contiguous and non-conflicting.

4.1 Directed Tree Model
Given the above assumptions, the state of the internal

representation and the meaning of the user operations on it
can be represented using a directed tree. The nodes of the
tree denote chunks and source code lines, and the branches

denote the abstraction relationship between nodes. The
tree has a ROOT node that represents the entire input file. It
has outgoing arcs to child LEAF nodes; one corresponding
to each line in the file. As the user performs COLLAPSE
operations, additional, INTERIOR, nodes are created. The
following properties define the tree model.
• There are three mutually exclusive types of nodes:

ROOT, INTERIOR and LEAF. There is exactly one ROOT
node. The number of LEAF nodes is the same as the
number of lines in the input file. The number of INTE-
RIOR nodes is initially zero and at any given time
equals the number of previously executed COLLAPSE
operations.

• Each node contains three pieces of information: a line
of text, a boolean indicating whether the node denotes
an EXPANDED chunk and a sequence of arcs connect-
ing to child nodes. For a given node, N, these pieces
are designated respectively as N.LINE, N.EXPANDED
and N.CHILDREN.

• For each leaf node N, N.LINE equals the contents of the
corresponding line from the input file. For the ROOT
node and for each INTERIOR node N, N.LINE corre-
sponds to a user-supplied annotation.

• For each INTERIOR or ROOT node, the associated
EXPANDED boolean indicates whether an EXPAND
(true) or a COLLAPSE (false) operation was more
recently performed on that node. LEAF nodes always
have this boolean true.

• The ROOT node and each INTERIOR node have a
sequence of arcs targeted at child nodes. For LEAF
node N, N.CHILDREN = <>, the empty sequence of
nodes.
Initially, the ROOT node has exactly one outgoing arc

to each of the LEAF nodes; and there are no INTERIOR
nodes. Moreover, ROOT.LINE is the empty line. Also, the
EXPANDED booleans for all nodes are true. The initial
situation is depicted in Figure 2. In the drawing, the ROOT
node is at the top, and LEAFS have no descendants. More-
over, each LEAF contains the number of the line in the
original text file to which the node corresponds. A plus
sign (‘+’) within a node indicates that the node is
expanded (has its EXPANDED boolean true). For INTE-
RIOR or ROOT nodes, a minus sign (‘-’) indicates that the
node is collapsed (not depicted in the figure).

4.2 Semantics of Operations
In this subsection we consider the effect on the inter-

nal representation of the COLLAPSE, EXPAND and RECOL-
LAPSE operations. Other operations, such as permanently
deleting a chunk, can be similarly defined. The effect of
the operations on the display is given in Section 4.3.2. Two chunks conflict if they subsume the same line(s)

and are not hierarchically nested. An example is
shown in Figure 5 and described in section 5.1.

COLLAPSE. Any non-empty, non-conflicting contiguous
sequence of lines from the display that has not been previ-
ously folded can be selected. Once the COLLAPSE opera-
tion is initiated, the following actions take place.
1. An annotation line is solicited from the user.
2. The set of nodes (NSET) corresponding to the selected

lines is determined.
3. A new INTERIOR node (N) is created, with its

EXPANDED boolean false.
4. The nearest common ancestor (NCA) of NSET is deter-

mined.
5. Any existing arcs coming into any of the nodes in

NSET are deleted.
6. An incoming arc to N from NCA is added.
7. Outgoing arcs from N to each of the nodes in NSET are

created.
8. N.LINE is set to be the solicited annotation.

For the situation depicted in Figure 2, if lines 2, 3 and
4 are selected and COLLAPSED, the resulting configuration
is shown in Figure 3. In the figure, NCA is the ROOT node,
NSET is {2, 3, 4} and N is the node containing the
minus sign.

EXPAND. The user can select a line from the display, that
represents a previously COLLAPSED chunk and request
that it be EXPANDED. The corresponding node will have its
EXPANDED boolean set true. For the example, if the
annotation line denoting the previous COLLAPSE is
selected, the resulting tree is identical to that in Figure 3
except that the minus sign in N becomes a plus sign. Other-
wise, the sets of nodes and arcs are unchanged.

RECOLLAPSE. The user can RECOLLAPSE a chunk by
selecting the corresponding visible lines or their holo-
phrast and requesting a RECOLLAPSE. No new annotation
is solicited. The only effect on the internal representation
is that the corresponding internal node has its EXPANDED
bit set true.

4.3 Display
In addition to the effect on the internal representation,

user operations also determine what is visible on the dis-
play. Initially, the display is identical to the input. User
operations change the state of the internal representation,
and the display must be updated to reflect the changed
state. At all times the display should accurately reflect the
contents of the input and the sequence of user operations.
In particular, the following properties should obtain.
1. Input line integrity. The order in which any two

LEAF lines appear in the display is the same as their
relative order in the input file. No input line occurs
more than once on the display.

2. Hidden chunk contents. The line corresponding to a
node N is only displayed if the path from the ROOT to
N does not go through a COLLAPSED node.

3. Annotation positioning. An annotation line in the
display represents the corresponding lines in the input
file. That is, its position in the display relative to other
displayed lines should be the same as that of the lines
in the chunk it subsumes.
In addition to sustaining these principles, we expect

execution of the operations to affect the display as follows.
• COLLAPSE. When the user selects lines from the dis-

play and requests a COLLAPSE operation, the tool
solicits an annotation and the selected lines are
replaced in the display by the supplied annotation
line.

• EXPAND. An EXPAND operation takes place when the
user selects an annotation line that was provided by
the user in conjunction with a COLLAPSE operation on
a set of selected lines. The annotation line on the dis-
play is removed, and the corresponding folded lines
are redisplayed in its place.

• RECOLLAPSE. The RECOLLAPSE operator affects the
display in the same way that the COLLAPSE operator
does except that the previous annotation is reused
instead of a new one being solicited from the user.

Figure 2. Initial configuration

Figure 3. Tree after collapsing nodes 2, 3 and 4

To complete our description of the basic conceptual
model, we need to present an algorithm that maps from the
internal representation to the display in such a way that the
above principles are maintained in the face of user opera-
tions.

Mapping. The visual display serves two purposes: it dis-
plays the lines from the input file interspersed with annota-
tion lines. Also, it provides a way to map from user-
selected lines back into the internal representation. Hence,
the display can be modeled as a sequence of nodes. The
text lines to be displayed can be extracted from the nodes,
and user selections anticipating operations can be mapped
to the affected nodes.

Algorithm. This subsection sketches a simple algorithm
for updating the display from the intermediate representa-
tion. That is, when the user performs an operation and the
intermediate representation is updated, the display algo-
rithm is invoked to update the display. The input to the
algorithm is the tree; the output is a sequence of nodes to
display. The algorithm consists of a simple tree walk. The
tree walk is sketched in Figure 4.

In the figure, display is a global variable whose
type is a sequence of Nodes. The walk is initiated with a
call to walk(root). The algorithm walks the tree but
never descends into a subtree whose root is COLLAPSED.

5. Extensions to the Basic Model
The model described in the previous section is capa-

ble of dealing with non-conflicting, contiguous chunks. In
this section, we concentrate on extending the basic model
to deal with non-contiguous chunks, beginning with how
to deal with conflicts. As it turns out, solving the conflict
problem also solves the problem with modeling non-con-
tiguous chunks. Other interesting extensions are discussed
in Section 7.

5.1 Conflicting Chunks
Even with contiguous chunks, the above model is

insufficient. In particular, it cannot deal with conflicting
chunks. This situation does not arise with JDT or with the
#region directive in C# where all chunks that subsume a
given line from the input file must be strictly nested. But
sometimes strict nesting is insufficient to document what

is going on in the code. Figure 5 depicts such a situation.
Note that equally valid situations might have the two INTE-
RIOR nodes contain other combinations of pluses and
minuses. In the figure, lines 2, 3 and 4 comprise one

chunk, while lines 3, 4 and 5 comprise another. The
former chunk is currently EXPANDED, and the latter is
COLLAPSED.

Both the internal representation and the display algo-
rithm need to be extended to deal with conflicts. For the
internal representation, a directed acyclic graph (DAG) is
used instead of the tree. This means that a given node may
appear in the CHILDREN list of more than one INTERIOR
node.

One other change is made to the internal representa-
tion to support the process of walking the graph. Because
there now may be more than one path from the ROOT to
any given node, multiple visits to the node must be pre-
vented. In particular, a new boolean, VISITED, is added to
each node. Before each walk, all of these booleans are set
false. Then, each time a node is first reached, the VIS-
ITED boolean is set true. Descent to CHILDREN is condi-
tioned on the VISITED boolean being false, so they are
explored exactly once.

The display component is also compromised by con-
flicts. For example, property 1 (Input line integrity) is
violated when there is more than one path from the ROOT
to a given node. Fortunately, the VISITED bit readily over-
comes this problem.

The second display property (Hidden chunk con-
tents) is even more severely affected, and it is not at all
clear how to repair it. For example, should node 3 in Fig-
ure 5 be displayed or not? One reasonable answer is “no”
because the user has chosen to hide it, as indicated by the

Figure 4. Tree walk to construct display

void walk(Node n) {
 if (n is leaf | ! n.expanded)
 display.add(n);
 else
 for (Node c : n.children)
 walk(c);
}

Figure 5. Conflicting chunks

COLLAPSE on the rightmost INTERIOR node. But the oppo-
site answer is also reasonable because of the EXPANDED
interior NODE. Hence, in adapting property two, different
policies are possible.
• Include a node in the results list of the graph walk if

any path from the ROOT can reach it without going
through a COLLAPSED INTERIOR node.

• Include a node in the results list only if none of the
paths to it from the ROOT go through a COLLAPSED
node.

• Remember the order of COLLAPSE and EXPAND oper-
ations performed by the user and obey the most
recently executed one that subsumes the line.

• If we allow different types of annotations, then we
may base the decision on the type of a line’s annota-
tion, possibly configurable by the user.

• The technology used to display the lines together with
user preferences may allow lines to be displayed with
different styles, enabling the ambiguous status of a
line to be apparent.
Note that the approach described in the previous sec-

tion effects the first policy above. Other policies require
more complex extensions to the graph walk.

Problems with the third property (Annotation posi-
tioning) are illustrated in Figure 6. The two conflicting
chunks share a common initial portion. If both chunks are
COLLAPSED, which annotation should appear first on the
display? If instead one is COLLAPSED and the other is not,
are both the EXPANDED lines and the annotation for the
COLLAPSED chunk displayed, and in what order?

The policy chosen to answer these questions can be
effected at the time the chunk is created. Recall that step 6
in the description of the COLLAPSE operation given above
adds an arc from the nearest common ancestor, NCA3 to
the new node. This is equivalent to adding the new node
into NCA.CHILDREN. Note that the position of the new
node within this sequence will dictate the order in which
the node is visited during the graph walk. We can express
whatever policy we choose for annotation display ordering
in terms of that sequence. In the case of Figure 6, if we
choose to use the sequence illustrated in the figure, then
the annotation will appear in the output display in the
order given.

In summary, we can add support for conflicting nodes
by adding the VISITED boolean, by controlling the order in
which nodes are inserted into CHILDREN sequences and by
enhancing the graph walk to enforce policies in ambiguous
situations.

5.2 Delocalized Chunks
A simple example of delocalization is depicted in Fig-

ure 7. In the figure, the leftmost chunk, subsuming lines
two and four, is delocalized, abstracting LEAF nodes 2 and
4. Allowing the user to COLLAPSE delocalized chunks

leads to significantly more complex DAGs, but no new
representation difficulties. That is, the graph structure and
display-update algorithm correctly implement the desired
display properties.

6. TAJ
A tool called TAJ has been built to support active

reading. Two current versions exist. The simpler of the
two supports active reading of a single text file and delo-
calized chunking. Moreover, annotations and chunking

Figure 6. Annotation ordering conflicts 3. For DAGs the analogous concept is called the domi-
nator.

Figure 7. Delocalized chunk

state are persisted so reading sessions can be interrupted.
The more complex version currently supports only contig-
uous chunks, but adds in a linking capability described in
Section 7. The remainder of this section describes the
implementation of the first version.

The design of the TAJ intermediate representation
comprises three classes— Display, Graph and Node—
that collaborate via the Composite, Visitor and
Observer patterns from [7]. In particular, the Graph
class implements the COLLAPSE, EXPAND and RECOL-
LAPSE operations. Changes to the graph are observed by
the Display which initiates a graph walk with an
attached visitor. The graph is comprised of instances of
class Node and its subclasses, LeafNode and Compos-
iteNode.

The current version of TAJ implements the following
display policy. If the graph walk reaches a previously
unvisited LEAF node or a COLLAPSED INTERNAL node,
then the corresponding contents line is displayed. The
implementations of other policies differ in complexity,
possibly involving recursive walks of the graph.

Pilot Study. The contiguous version of TAJ described
above was used in a pilot study testing the first use case
described in Section 3— that active abstraction supported
understanding. In the study, twenty-three software engi-
neering graduate students, about half with industrial expe-
rience, were provided with an earlier version of TAJ and
asked to read and document their understanding of a short
(42 lines) but complex and obfuscated Java program. Sub-
jects were instructed to try and understand the program
using one of several active-reading strategies. Strategies
included manually retyping the program, indenting it,
renaming variables with more meaningful names, and pro-
viding annotations for chunks. The control group was
given no instructions with regard to reading strategy.
Understanding was measured at the end of the study
period in terms of correct responses to a series of questions
about the code. The group that used folding performed
better (successfully answered more questions) than any of
the other groups, and, in general, the more active the strat-
egy employed, the more correct answers were provided4.

7. Discussion
There are many interesting extensions to the basic

model of holophrastic display described in the previous
sections. Section 7.1 describes the design space for holo-
phrastically based software understanding and documenta-
tion tools. Section 7.2 briefly describes another

implementation of TAJ we have made that supports
domain-based program understanding.

7.1 Feature Space
There are many possible extension available in TAJ’s

design space. The following are simple to implement and
ubiquitous.
• Scrolling
• Window resize
• Text editing (may require corresponding modifica-

tions to the nodes and arc of the graph)
Also simple to implement, but specific to holophrastic dis-
plays are the following.
• Chunk deletion (leaving the underlying LEAF nodes)
• Annotation editing
There are also a variety of more complex features neces-
sary when applying TAJ to real-world projects.
• Support for multiple documents, particularly when an

abstraction can cross document boundaries
• Multiple annotations for the same chunk, possibly

provided by different developers at different times,
with accompanying provenance

• Support for programming language syntax including
automatic detection of syntactic chunks. Eclipse has
mature support for syntactic analysis of Java pro-
grams. This can be leveraged to enable more sophisti-
cated abstractions than the line-oriented ones
currently supported

• Display order policies, as previously described
It is also interesting to contemplate the following

more extrapolative extensions.
• Annotation types, for example, formal pre- and post-

conditions
• Interpretation of annotations by external tools in the

spirit of Java 5 annotations
• Automatic detection of abstractions and construction

of annotations, as, for example, cliche recognition
[25] and ownership domains [1]

• Support for a typed abstraction, for example, a
design-pattern type

• Interoperation with refactoring tools, providing, for
example, the automatic transformation of a chunk
using the ExtractMethod refactoring [6]

• Metrics and corresponding visualizations, for exam-
ple, indicating those sections of the code for which
relatively fewer annotations have been made

• Validation of abstractions. For example, if the soft-
ware maintainer has detected a chunk that he or she
believes serves the role of a discrimination variable in

4. The preliminary nature of the pilot study and the
well-known logistics problems of controlling for
independent variables prevent any generalizations
being made from the study.

a switch statement, make sure that there are no
invalidating uses of the variable in the remainder of
the code

• Visualizations. Linear text, even when holophrasti-
cally managed, is likely insufficient for rendering
complex software with multiple, interleaved abstrac-
tions. Clearly, the software visualization community
has much to offer in supporting this effort.

• Support abstractions over non-text (graphical) docu-
ments, such as UML models

7.2 TAJ with Domain Modeling
The second implementation of TAJ is a domain-based

program understanding and documentation tool. It is
embedded as a plug-in into the Eclipse JDT and supports
contiguous, non-conflicting holophrastic chunking of pro-
gram files. Moreover, it includes a second window con-
taining a graphical model of the program’s application
domain expressed as a UML class diagram. An existing
Eclipse plug-in (EMF5) supports the definition of graphi-
cal models, and we have used it to enable software engi-
neers to express domain models using a subset of the
UML class modeling notation, specifically, classes, meth-
ods, attributes and relationships.

Once a user has detected a chunk in the program and
provided an annotation, he or she can link that chunk to an
element of the domain model. Whereas holophrastic
chunking of the program text supports the answering of
what questions [14], links to the domain model supports
answering the all-important why questions. That is, a link
from a program chunk to a domain abstraction explicitly
documents design intent. In particular, this version of TAJ
comprises the following features.
• The ability to view a program and abstract it into a

hierarchical program model
• The ability to view and extend one or more domain

models
• The ability to link program elements to domain ele-

ments
In addition to these existing features, we anticipate

investigating the following extensions.
• Support for dowsing [3]. Dowsing is the process of

automatically constructing domain models by analyz-
ing textual descriptions of the domain. We intend to
add a dowsing tool into TAJ.

• Re-engineering from procedural programming lan-
guages to object-oriented languages. Technically, a
domain model in TAJ is an object oriented frame-
work; that is, it is a collection of abstract classes and

inter-class collaborations. As such, there is a natural
opportunity to use subclass refinement in support of
re-engineering from a source program written in a
procedural language into an object-oriented version.
For example, if a code chunk is detected that corre-
sponds to a domain concept denoted in the domain
model with an abstract method, then we can construct
a concrete subclass in which the method body corre-
sponds to the (syntactically transformed) chunk con-
tents. Clearly, this step is just part of the overall re-
engineering effort, but it can serve as a useful target to
regulate the re-engineering process.

8. Conclusion
The grand vision of TAJ is as a software maintenance

and documentation environment. An essential part of the
tool is the ability to support the maintainer in understand-
ing the source code. Abstraction and, specifically, delocal-
ized abstraction is an essential part of this vision.

Acknowledgements
We appreciate the contributions of Sergio Berzosa

Gonzalez, Zaheer Hooda, Jai Kejriwal, Raphael Kobi,
Samir Vira and Shaoyu Xue to the early development of
TAJ.

References
[1] Marwan Abi-Antoun and Jonathan Aldrich. “Owner-

ship Domains in the Real World”. International Work-
shop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO), 2007.

[2] L. A. Belady and M. M. Lehman. Program Evolution.
Processes of Software Change. Academic Press, 1985.

[3] Richard Clayton, Spencer Rugaber and Linda Wills.
“Dowsing: A Tools Framework for Domain-Oriented
Browsing Software Artifacts”. Automated Software
Engineering, May, 1998.

[4] Prashant Deva. “Folding in Eclipse Text Editors”.
http://www.eclipse.org/articles/
Article-Folding-in-Eclipse-Text-Edi-
tors/folding.html, March 11, 2005.

[5] Alastair Dunsmore, Marc Roper and Murray Wood.
“Object-Oriented Inspection in the Face of Delocaliza-
tion.” International Conference on Software Engineer-
ing, 2000, Limerick, Ireland, pp. 467-476.

[6] Martin Fowler. Refactoring. Addison Wesley, 1999.
[7] Erich Gamma, Richard Helm, Ralph Johnson and John

M. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[8] W. J. Hansen. “User Engineering Principles for Inter-
active Systems.”Proceedings of the Fall Joint Com-
puter Conference 39”, 1971, pp. 523-532.

5.www.eclipse.org/modeling/emf/

[9] William Harrison, Harold Ossher, Stanley Sutton, Jr.
and Peri Tarr. “Concern Modeling in the Concern
Modeling Environment.” Workshop for Modeling
and Analysis of Concerns in Software (MACS 2005),
St. Louis, Missouri, May 16, 2003.

[10] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier and John Irwin. “Aspect-Oriented Program-
ming”. Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), June 1997,
Jyväskylä, Finland, Lecture Notes in Computer Sci-
ence #1241, Springer-Verlag.

[11] Marcus Knasmüeller. “Reverse Literate Program-
ming.” Technical Report CS-SSW-P96-05, Johannes
Kepler Universitat Linz, 1996.

[12] Donald E. Knuth. “Literate Programming.” Computer
Journal, 27(2):97-111, May 1984.

[13] Bernt Kullbach and Volker Riediger. “Folding: An
Approach to Enable Program Understanding of Pre-
processed Languages.” Working Conference on
Reverse Engineering, pp. 3-12, 2001.

[14] Stanley Letovsky. “Cognitive Processes in Program
Comprehension”. Empirical Studies of Programmers,
E. Soloway and S. Iyengar, editors, Ablex Publish-
ing, Norwood, New Jersey, 1986, pp. 325-339.

[15] Hanspeter Mössenböck and Kai Koskimies. “Active
Text for Structuring and Understanding Source
Code.” Software - Practice and Experience,
26(7):833-850, July, 1996.

[16] Martin P. Robillard and Gail C. Murphy. “Concern
Graphs: Finding and Describing Concerns Using
Structural Program Dependencies.” International
Conference on Software Engineering, ICSE'02, May
19-25, 2002, Orlando, Florida, pp. 406-416.

[17] Martin P. Robillard and Gail C. Murphy. “Represent-
ing Concerns in Source Code.” ACM Transactions on
Software Engineering and Methodology, 16(1), Feb-
ruary, 2007.

[18] Spencer Rugaber. “The Use of Domain Knowledge in
Program Understanding.” Annals of Software Engi-
neering, Volume 9, pp. 143-192, 2000.

[19] Spencer Rugaber, Kurt Stirewalt and Linda Wills.
“Understanding Interleaved Code”. Automated Soft-
ware Engineering, 3(1/2):47-76, June 1996.

[20] Herbert A. Simon. “How Big Is a Chunk?”. Science,
183(4124):482 - 488, February 8, 1974.

[21] Eliot Soloway, Jeannine Pinto, Stan Letovsky, David
Littman and Robin Lampert. “Designing Documenta-
tion to Compensate for Delocalized Plans”. Commu-
nications of the ACM, 31(11): 1259-1267, November,
1988.

[22] W. P. Stevens, G. J. Myers, L. L. Constantine. “Struc-
tured Design.” IBM Systems Journal, 13(2):115-139,
1974.

[23] David H. Taenzer. “Object-Oriented Software Reuse:
The Yoyo Problem”. Journal of Object Oriented Pro-
gramming, September-October 1989.

[24] Thomas Teitelbaum. “The Cornell Program Synthe-
sizer”. Communications of the ACM, 24(9):563-573,
September 1981.

[25] Linda M. Wills. Automated Program Recognition by
Graph Parsing. Technical report, MIT-AI-TR 1358,
MIT Artificial Intelligence Laboratory, Doctoral Dis-
sertation, July, 1992.

[26] Niklaus Wirth, “Program Development by Stepwise
Refinement”. Communications of the ACM,
14(4):221–227, April 1971.

