
TaskBoard: Tracking Pertinent Task Artifacts and Plans

Chris Parnin, Carsten Görg, Spencer Rugaber
College of Computing, Georgia Institute of Technology

chris.parnin@gatech.edu, {goerg,spencer}@cc.gatech.edu

Abstract

Developers must actively maintain status information
about the programming tasks they are engaged in. Unfor-
tunately, much of this knowledge does not exist in tangible
form. Commonly, developers are forced to recover the de-
tails of this knowledge after encountering an unanticipated
interruption. In this paper, we present a technique enabling
developers to quickly reengage in a task after such an in-
terruption. A dashboard visualization, called TaskBoard, of
intermediate task knowledge is constructed from recent ac-
tivities and program executions and then displayed to assist
reengagement. Developers can annotate its contents with
task descriptions and prospective cues.

1. Introduction

Development tasks typically require coordinating soft-
ware changes across multiple locations in a program’s
source code. Integrated development environments (IDEs)
have provided limited support for managing the active ar-
tifacts relevant to the programming task. This includes
tabbed editors for editing multiple files, hierarchical file
lists that can be collapsed and expanded, forward/backward
navigation commands to return to previous locations, and a
list of recently visited files.

Unfortunately, there are problems with these interfaces.
In studies of developer navigation histories, a common find-
ing is that developers frequently visit many locations in
rapid succession in a phenomenon known as navigation jit-
ter [3]. Navigation jitter has been commonly attributed to
developers flipping through open tabs and file lists when
trying to recall a location [3, 2]. To alleviate this problem,
researchers have proposed various alternatives. Relo [4]
displays a complementary UML view that is built from re-
cently visited source code. Another system, SHriMP [5],
uses a focus-and-context paradigm to allow multiple code
locations to be viewed simultaneously. Mylyn1 maintains a

1http://www.eclipse.org/mylyn/

context of associated artifacts for each task in a task reposi-
tory.

Although these systems improve to some extent the pre-
sentation of relevant task artifacts, they do not expand their
scope. Further, when developers perform a task, they often
need to refine it into several steps, perform tangential inves-
tigations, and track and evaluate progress. These systems
represent tasks monolithically instead of representing their
distinct stages, steps, or objectives. Developers need sup-
port for representing and accessing these components of a
task breakdown to support planning, tracking progress, and
evaluating a performed task. In this paper, we present a tool
called TASKBOARD to address those limitations.

2. TaskBoard

We have developed TASKBOARD as a Visual Studio plu-
gin to manage access to artifacts referenced in a program-
ming task and its subtasks. In TASKBOARD, a set of active
task items are displayed on a peripheral monitor. The task
items include source code, runtime program values, and a
list of code locations. As the programmer actively develops,
these task items maintain visual cues to assist the developer
in getting an overview of the artifacts, recent activity, and
progress. Further, these items can be annotated with task
planning information and prospective notes.

To use TASKBOARD, a developer begins planning how
they want to perform a task. Using a process we call trail-
blazing, developers can investigate the code to evaluate and
plan the proposed changes. During this time, the developer
may add an artifact to TASKBOARD. Developers have sev-
eral choices in the types of artifacts they can add:

• code files,

• results of a query such as find references or search,

• runtime values from a debugging session, and

• prospective notes and implementation plans.

When an artifact is in TASKBOARD, a developer may
then associate the item or group of items with a subtask.
Visual cues are given to the artifacts to note the planned
sequence of steps, and they can be used to filter which arti-

facts appear or to adjust the level of detail. For example, el-
ements belonging to the subtask following the current sub-
task would be smaller and muted. In Figure 1, an example
of artifacts and annotations is shown. As seen in the visu-
alization, code files are represented with a Code Thumbnail
view [1] that can be dynamically adjusted in size. Further,
code files are annotated with two visual cues indicating re-
cent editing (green) and navigation activity (blue).

1

Code.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Mono.Cecil;
using CILDiffLibPrime.Collectors;
using CILDiffLibPrime;

namespace WorkStream.Data.BuildStream
{
 class LoadBuildStream
 {
 public List<BuildRevision> LoadRepository(string repository)
 {
 List<BuildRevision> builds = ReadBuildStream.ReadStream(repository, -1);

 builds.Reverse();

 Dictionary<string, int> priorversions = new Dictionary<string, int>();

 foreach (string name in builds[0].Assemblies.Keys)
 {
 priorversions[name] = 0;
 }

 for (int i = 1; i < builds.Count; i++)
 {
 BuildRevision build = builds[i];
 Console.WriteLine(build.RevisionNumber + ";" + build.BuildTime);
 Console.WriteLine("===========");
 foreach (string name in build.Assemblies.Keys)
 {
 int prior = priorversions[name];

 Console.WriteLine("begin----------;" + name);

 AssemblyDefinition a = AssemblyFactory.GetAssembly(build.Assemblies[name]);
 AssemblyDefinition b = AssemblyFactory.GetAssembly(builds[prior].Assemblies[name]);
 build.ChangePairs[name] = GetPairs(a, b);
 Console.WriteLine("end----------");

 priorversions[name] = i;
 }
 Console.WriteLine("----------");
 }
 return builds;
 }

 private ChangePairCollector GetPairs(AssemblyDefinition revisionA, AssemblyDefinition revisionB)
 {
 DiffServices services = new DiffServices();
 ChangePairCollector pairs = services.GetChangePairs(revisionA, revisionB);

 foreach (TypeDefinition td in pairs.NewTypes.Keys)
 {
 }
 foreach (TypeDefinition td in pairs.DeletedTypes.Keys)
 {
 }
 foreach (TypeDefinition td in pairs.ChangedTypes.Keys)
 {
 TypeChange typechange = pairs.ChangedTypes[td];
 foreach (MethodDefinition md in typechange.ChangedMethods.Keys)
 {
 MethodChange mdchange = typechange.ChangedMethods[md];

 Console.WriteLine("*" + md.Name);
 foreach (EntityActivity activity in mdchange.Entities)
 {
 CILFlow.PairEntity entity = activity.Entity;
 Console.WriteLine(" Entity: " + entity.Name);
 }
 }
 foreach (MethodDefinition md in typechange.DeletedMethods.Keys)
 {
 }
 foreach (MethodDefinition md in typechange.NewMethods.Keys)
 {
 }
 }
 return pairs;
 }

 // TODO @If ReadBuildStream has UnitTest, Begin refactoring module.
 class ReadBuildStream
 {

public static List<BuildRevision> ReadStream(string
repositoryPath, int lastX)
 {
 List<BuildRevision> list = new List<BuildRevision>();

string lastBuildInfo = System.IO.Path.Combine
(repositoryPath, "LastBuildInfo.txt");
 int lastRevision = -1;
 if (System.IO.File.Exists(lastBuildInfo))
 {

System.IO.StreamReader sr = new
System.IO.StreamReader(lastBuildInfo);
 string info = sr.ReadLine();
 lastRevision = int.Parse(info.Split(';')[0]);
 sr.Close();
 }

 int current = lastRevision;

2

Name Value
address

City
State

Postcode 30332

null
{Name=”Atlanta”}

itGapFilter.cs(17): from user in doc.Descendants("User") StreamElements(reader,"User")

itPeakFilter.cs(48): from user in doc.Descendants("User")

itPeakPeriodFilter.cs(22): var res = from user in doc.Descendants("User")

Figure 1. Three task artifacts are displayed: a code file,
runtime value, and search results. In addition, the arti-
facts are annotated with subtask sequences and a prospec-
tive note.

2.1. Examples

In this section, we give three examples of how
TASKBOARD can be used to solve common problems while
performing a programming task.

Developers commonly use the list of search results in an
IDE to track the locations where changes need to be made.
Two problems they face when using this approach are that
the search results are not easily persisted, and it is difficult to
see whether the change was made successfully in all places.
To address these two concerns with TASKBOARD, search
results can be persisted as a task artifact. Also, the devel-
opers can take a snapshot of the code when the query was
made and display differences next to the original. The dif-
ferences allow a developer to evaluate if the change was ef-
fectively made and to then optionally mark it as completed.

When developers test their intended changes, they may
find some unexpected problems. Typically, developers de-
bug the program to investigate the cause of failures. After
the developer has identified a potential cause for the fail-
ures, they end the debugging session and attempt to make a
fix. Unfortunately, the runtime values that were instrumen-
tal in diagnosing the problem are not persisted after or be-

tween multiple debugging sessions. In TASKBOARD, these
values can be persisted and associated with the class they
were collected from.

Finally, failure to remember prospective tasks is a com-
mon result of interruption. A popular tactic to remember
prospective tasks is to leave a TODO comment as a re-
minder. However, these notes are often also used to mark
possible design flaws or suggestions for future preventive
maintenance. To allow developers to specify temporary
notes in the context of the current task, we support the
specification of implementation plans. An implementation
plan is a memory tactic that uses a conditional cue to ac-
tivate a reminder. For example, a developer could specify
the following conditional cue and reminder: If UnitTest

available for class =>begin refactoring module.

3. Conclusion

We have presented a prototype system for managing task
artifacts, planning subtasks, and evaluating task progress.
Currently, we are expanding and improving our proposed
features. In addition, we intend to conduct experiments that
measure how developers access the task artifacts and which
visual cues prove the most helpful.

References

[1] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson. Code thumbnails: Using spa-
tial memory to navigate source code. In Proceedings of the
Visual Languages and Human-Centric Computing, pages 11–
18, 2006.

[2] C. Parnin and C. Görg. Building usage contexts during pro-
gram comprehension. In ICPC ’06: Proceedings of the 14th
IEEE International Conference on Program Comprehension,
pages 13–22, 2006.

[3] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Support-
ing navigation in software maintenance. In Proceedings of
the 21st IEEE International Conference on Software Mainte-
nance, pages 325–334, 2005.

[4] V. Sinha, D. Karger, and R. Miller. Relo: Helping users
manage context during interactive exploratory visualization
of large codebases. In Proceedings of the Visual Languages
and Human-Centric Computing, pages 187–194, 2006.

[5] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu,
and M. Musen. Shrimp views: An interactive environment
for information visualization and navigation. In CHI ’02 Ex-
tended Abstracts on Human Factors in Computing Systems,
pages 520–521, 2002.

