
Symptom Based Error Detection

Margaret Ann Francel
Spencer Rugaber

Georgia Institute of Technology
Atlanta, Georgia

1. INTRODUCTION.

A program failure is a departure of program operation from program requirements. Program failures
are caused by program faults, which in turn are caused by programming errors. A programming error is a
defect in the human thought process made while trying to write a program. A program fault is a manifesta-
tion of an error in the program code. [E1]

A failure is identified by an outside source, called an oracle. This oracle may be a human tester or an
automated regression testing system. The failure is identified because external program expectations are
not met or are violated. These expectations may have been expressed by the program specification or by
pairs of input and output vectors describing accurate computations. From the observation that the execu-
tion failed, the oracle concludes that the program contains faults. That is, some part of the program is not
executing in the manner that the programmer intended. This part of the execution is made up of one or
more actions, called deviant actions. These actions occur throughout the execution until finally one or
more incorrect values filter into output statements.

The process of finding program faults is called debugging [E1] and is usually labor intensive and time
consuming. Because of this, it is desirable to automate the process as much as possible. For example, a
debugger might be used to display intermediate results. Or a program slice might be identified, giving the
oracle a subset of the program that can not be causing the fault. Each debugging method has the underlying
purpose of trying to simplify fault detection for the oracle.

Most debugging methods identify programs faults by examining or analyzing program code. The
main purpose of this paper is to show that the debugging process can be improved by also examining the
history of the program’s execution and the validity of the program’s output values. The model developed
and the methods presented do this while at the same time reducing the amount of work on the part of the
oracle.

In the paper, a formal definition of a program, its execution, and its trace are given. A model to be
used for storage of execution data and validity information is defined, and algorithms for constructing it are
presented. The construction methods are shown to be time efficient. An example is given to demonstrate
that the model structure itself is helpful in the error detection process. This demonstration is through the
analysis of the situation where a unique error exists in a striaght line program. The model is also shown to
lend itself to detecting entire classes of errors.

In order to concentrate fully on the fault localization problem, we begin by examining a limited sub-
set of all program faults. Throughout the paper we restrict the programming environment and the behavior
of the faults by the following assumptions:

-2-

A1) Only straight line terminating programs are considered.

A2) The program execution does not correct itself.

A3) An oracle is used to provide correctness information about the output values. The information
is assumed internally consistent.

2. THE PROBLEM MODEL.

As stated above, the main problem of interest in this paper is the detection of the location of faults in
a program accomplished by the examination of the history of the program’s execution along with the output
produced by the program. In this section, we present a model for organizing this information that provides
fast retrieval of the stored data as well as a structure that lends itself to easy analysis of interrelationships
between execution actions.

2.1. A Program and its Execution.

A program is a sequence of statements that access and combine named program variables.

An example of a program containing a fault:

PROGRAM SWAP

1) GET(x)
2) GET(y)
3) x := y
4) y := x
5) PUT(x)
6) PUT(y)

Figure 2.1

Once written, a program can be executed any number of times by the computer. Each program exe-
cution is a map from a vector of data, called the input, to another vector of data, called the output.

Examples:

SWAPinput(3, 5)

SWAPinput(3, -2)

Figure 2.2

-3-

The actions carried out by an execution are prescribed by the named program. These actions can be
summarized in an execution trace. For each execution action, the trace contains a record which consists of
the number of the statement executed, the action taken, the values of all variables referenced and any newly
assigned value.

Example:

PROGRAM SWAP EXECUTION TRACE
input(3, -2) output(-2, -2)

program statement action variable variable
executed taken references assignments

1 GET(x) x/3
2 GET(y) y/-2
3 x := y y/-2 x/-2
4 y := x x/-2 y/-2
5 PUT(x) x/-2
6 PUT(y) y/-2

Figure 2.3

As illustrated above, programming examples will be given in generic notation, and execution traces
are limited to input, output and assignment actions. Input actions are represented by the GET statement,
and output actions by the PUT statement. Both statements are restricted to naming a single variable.

2.2. Trace Graphs.

During program execution, an action can reference variables that have already been assigned values.
In such a case, we say the trace record that recorded the use of the value is directly affected by the trace
record that recorded the last assignment of the value. The collection of all records that directly affect a
record r is called the direct affect set of r.

Example:

DIRECT AFFECT SETS FOR
PROGRAM SWAP EXECUTION TRACE

Statement Number Action Taken Direct Affect Set

1 GET(x) { }
2 GET(y) { }
3 x := y {2}
4 y := x {3}
5 PUT(x) {3}
6 PUT(y) {4}

Figure 2.4

The collection of direct affect sets of a trace have a natural representation as a directed graph. We
call this graph a trace graph. The nodes of the graph are the records of the trace, and an ordered pair (ri, rj)
is an arc in the graph if and only if rj is directly affected by ri. The graph for the trace illustrated above is
given by:

-4-

GET(x) GET(y)

x := y

PUT(x) y := x

PUT(y)

Figure 2.5

Note, all trace graphs are directed acyclic since the definition of arc specifies a relationship between
execution actions rather than program statements. The execution order provides a topological ordering on
the graph, where u < v if and only if (u,v) is an edge in the graph. Also, input nodes have no in-edges, out-
put nodes have no out-edges, and the trace graph is finite if and only if the execution terminates.

The following algorithm provides a method for building a trace graph from a trace.

Algorithm 2.1: Building a trace graph.

Input. TRACE, an execution trace. Each record in TRACE contains the fields:

program_statement_executed : integer,
action_taken : (input, output, assignment),
variables_referenced : list of variables,
variable_assigned : variable.

Output. GRAPH, the trace graph of TRACE. Each record in GRAPH describes a node and is constructed
by augmenting a record of TRACE with the following two fields:

in_edge_list : list of GRAPH records,
out_edge_list : list of GRAPH records.

-5-

Method. A table, referred to as HASH_TABLE, is used to keep track of value assignments to variables.
Access to HASH_TABLE is through a hash function called HASH. During each step of the algorithm,
HASH(X) represents the node of GRAPH in which X was last assigned a value. HASH_TABLE is initially
empty.

for i := 1 to the number of records in TRACE do

for ev ery variable X referenced in TRACE[i] do

if X is in HASH_TABLE

then

Add GRAPH[i] to the out-edges of HASH(X).

Add HASH(X) to the in-edges of GRAPH[i].

if TRACE[i].action is input or assignment

then

-6-

if TRACE[i].variable_assigned is in HASH_TABLE

then

Update HASH(TRACE[i].variable_assigned) to have value i.

else

Insert TRACE[i].variable_assigned in HASH_TABLE with value i.

Lemma 2.1 If Algorithm 2.1 is processing record r, then HASH(X) represents the last trace record before r
in which X was assigned a value.

Proof: Since the hash table is empty at the start of the algorithm, the statement is true before the first record
is processed. If the statement is true before record r is processed, it will also be true after since trace
records are processed in order, and the last step in processing r is to update the hash table to represent any
assignment made in r.

Theorem 2.1: Given a trace table, Algorithm 2.1 constructs the corresponding trace graph, (V,E), from the
table in O(|E| + |V|) time

Proof: We first show that the trace graph and the graph constructed in Algorithm 2.1 are the same graph.

All edges of the trace graph are constructed by Algorithm 2.1. Assume (u,v) is an edge in the trace
graph. Then v is directly affected by u. This says, there exists a variable x such that x is referenced in v
and the last value assignment made to x before the execution of v was made in u. Since the last value
assignment to x before the execution of v was made in u, Lemma 2.1 tells us that during the processing of v
in Algorithm 2.1, HASH(x) will have the value u. Thus, Algorithm 2.1 constructs the edge (HASH(x),v) =
(u,v) during the processing of v.

Algorithm 2.1 constructs no extra edges. Assume (u,v) is an edge constructed by Algorithm 2.1.
Then (u,v) was constructed by the algorithm during the processing of v, and there exists a variable x refer-
enced in v such that when v was processed HASH(x) = u. Since HASH(x) = u, we know the last value
assignment made to x before the execution of v was in u. This implies v is directly influenced by u; there-
fore, it follows that (u,v) is an arc in the trace graph.

The complexity of Algorithm 2.1 is O(|E| + |V|). It is reasonable to assume that a hash table lookup
can be done in unit time. The work of the algorithm is done in adding values to trace records and updating
or inserting records in the hash table. In determining the complexity of Algorithm 2.1, we will count the
number of values added to trace records and the number of updates and inserts made in the hash table. A
new value, representing (u,v), is added to a trace record if and only if the record being processed is v. Since
we have shown that each node in the trace graph is constructed exactly once, exactly 2 * |E| values are
added to trace records. An insert or update to the hash table is done at most once per trace record. Thus,
no more than |V| insert or updates are done during the algorithm. The above two facts tell us that the total
amount of work done is 2*|E|+|V|.

2.3. 0/1 Labeling a Trace Graph.

For a giv en program execution, the oracle has provided information that allows us to divide the out-
put values of the execution into two sets, those that are correct and those that are incorrect. We project this
information onto the trace graph by labeling correct output nodes and those nodes that directly affect cor-
rect output nodes with a "1", and labeling incorrect output nodes and those nodes that directly affect incor-
rect output nodes with a "0". We label a node with a "1" to indicate that the value assignment made by the
represented action is correct. We label a node with a "0" to indicate that the value assignment made by the
represented action is incorrect.

The correctness information about the output nodes can be propagated through the trace graph to give
information about other actions. To explain how, we wish to use the concepts of path and Reach-In and

-7-

Reach-Out sets. There exists a path from node a to node b in a directed graph if there exists a sequence of
nodes n1, n2, ..., nk, such that n1 = a, nk = b, and for i = 1,...,k-1, (ni, ni+1) is an edge in the graph. The set
of all nodes in a graph that appear on any path with terminal node n is called the Reach-In set of n. Simi-
larly, the set of all nodes in a graph that appear on any path with initial node n is called the Reach-Out set of
n.

Assumption A2 states that a program does not correct itself. That is, faults always lead to failures.
From this, we can conclude that any path in the trace graph that leads to a correct value consists of valid
actions, and any path that comes from an incorrect value assignment consists of deviant actions. To mark
valid actions in the trace graph, we label each node in the Reach-In set of a correct output node with a "1".
To mark deviant actions in the trace graph, we label each node in the Reach-Out set of a node that directly
affects an incorrect output node with a "0".

To complete our labeling, we label any unlabeled input node with a "1" and any unlabeled assign-
ment node with a "˜". The former is done to indicate that all input actions are assumed to be valid; the lat-
ter to indicate that at present we do not have any knowledge about the validity of the given node’s action.
The above trace graph labeling is called the 0/1 labeling of the trace graph. Assumption A3 allows us to
assume that a 0/1 trace graph labeling is well-defined.

The 0/1 labeled trace graph of program SWAP is shown below. Solid circles represent nodes labeled
with a "1", while open circles represent nodes labeled with a "˜", and "x"ed circles represent nodes labeled
with a "0".

GET(x) GET(y)

x := y

PUT(x) y := x

PUT(y)

Figure 2.6

-8-

The following algorithm provides a method for 0/1 labeling a trace graph:

Algorithm 2.2: 0/1 labeling a trace graph.

Input. GRAPH, a trace graph obtained as output from Algorithm 2.1. Data from an oracle indicating
which output results are correct and which are incorrect.

Output. A trace graph in which each node contains a field indicating the node’s 0/1 label.

Method. Tw o queues are used; ONE, which holds unprocessed nodes that will be labeled with a "1" and
ZERO, which holds unprocessed nodes that will be labeled with a "0". Both queues are initially empty.

for i := 1 to the number of records in GRAPH do

case of (GRAPH[i].action) do

input:

Label GRAPH[i] with a "1".

output:

Label GRAPH[i] as indicated by the data from the oracle.

Insert the node that directly affects GRAPH[i] in ONE or ZERO depending on
label GRAPH[i].

assignment:

Label GRAPH[i] with a "˜".

while ZERO is not empty do

Remove node from ZERO.

Label it with a "0".

Insert all of its unlabeled children in ZERO.

while ONE is not empty do

Remove node from ONE.

Label it with a "1".

Insert all of its unlabeled parents in ONE.

Theorem 2.2: Given a trace graph, (V,E), Algorithm 2.2 constructs from it in O(|E| + |V|) time a labeled
trace graph.

Proof: We first show that the labeling produced by the algorithm and the 0/1 labeling are the same. Nodes
are shown to be labeled with a "1" if and only if they are input nodes or in the Reach-In set of a correct out-
put value. Nodes are shown to be labeled with a "0" if and only if they are in the Reach-Out set of a node
that directly affects an incorrect output value.

If n is in the Reach-In set of a correct output value, then n is labeled "1". Assume n,n1,...,nk is a path
from n to a correct output value. When Algorithm 2.2 processes nk in the for loop, it will put nk-1 on the
ONE queue. When nk-1 is deleted from the queue, nk-2 will be checked. If it is labeled "1", that says it
already has been on the ONE queue; if it is not labeled, it will be put on the ONE queue, and by the
assumption that faults always lead to failures we know that the node is not labeled "0". From the preceding
we can conclude that nk-2 at some time appears on the ONE queue. We can continue arguing in this man-
ner to show that n will appear on the ONE queue and hence will get labeled "1".

If n is labeled "1", then n is an input node or n is in the Reach-In set of a correct output value.
Assume n is not an input node. Then the only way that n could have been labeled "1" is if it is a correct
output value or if it appeared on the ONE queue. If it appeared on the ONE queue, then it is the parent of a

-9-

correct output node or the parent of a node that appeared on the ONE queue. Call this node n1. Now in an
argument similar to the above, we see that n1 is a correct output node or the parent of a node that appeared
on the ONE queue. But since the graph is finite acyclic, we know the path of nodes we are producing must
end at some correct output value. Thus, n is in the Reach-In set of a correct output value, namely the one at
the end of the produced path.

If n is in the Reach-Out set of a node that directly affects an incorrect output value, then n is labeled
"0". The argument to show this is symmetric to the argument that showed that if n is in the Reach-In set of
a correct output value, then n is labeled "1".

If n is labeled "0", then n is in the Reach-Out set of a node that directly affects an incorrect output
value. The argument to show this is symmetric to the argument that showed that if n is labeled "1" and n is
not an input node, then n is in the Reach-In set of a correct output value.

The complexity of Algorithm 2.2 is O(|E| + |V|). The work of the algorithm is done in accessing
nodes, thus in determining the complexity of Algorithm 2.2, we will count the number of different node
accesses made. In the for loop, each node is accessed at most twice: once directly and possibly once as the
node that is directly affecting an output node. By assumption A3, the validity values input by the oracle are
consistent. We are assuming that this means no node can be in both the Reach-In set of a correct output
value and the Reach-Out set of a node that directly affects an incorrect output value. This implies no node
will appear on both the ONE and ZERO queues. For each node on a queue, either its children or its parents
are examined. Therefore, the number of node accesses done during execution of the two while loops can’t
exceed twice the number of edges in the graph.

3. STRAIGHTLINE PROGRAMS CONTAINING A SINGLE FAULT .

One question of interest concerning the model presented in the last section is: Can graph properties
help us to detect program faults? In this section, we look at the structure of the graph to see what it can tell
us about the number of faults in a program.

The discussion in section 2.3 implies that actions that represent program faults can not exist in the
subgraph of the trace graph labeled with "1"’s. Does this imply that the size of the subgraph labeled with
"0"’s and "˜"’s determines the number of faults in the program? The program shown in Figure 3.1 is simple
enough so that by merely looking at it one can determine that it contains a single fault: namely in statement
4 absolute values of differences, not the differences themselves are needed. When we examine its trace
graph, we see that only the node containing the fault and the node outputting the incorrectly calculated
value are labeled with "0" or "˜".

PROGRAM AVG. & S.D.

1) GET(t1)
2) GET(t2)
3) avg := (t1 + t2)/2
4) sd := ((t1-avg) + (t2-avg))/2
5) PUT(avg)
6) PUT(sd)

AV G. & S.D.input(87 93)

-10-

GET(t1) GET(t2)

avg := (t1 + t2)/2

sd := ((t1-avg) + (t2-avg))/2PUT(avg)

PUT(sd)

Figure 3.1

In Figure 3.2, we have the exact opposite situation. Again the program is simple enough so that by
looking at it one can see that it contains a single fault: in statement 2 the variable a is uninitialized. But
when we examine its trace graph, we see that all but one of the nodes are labeled with a "0" or with a "˜".

PROGRAM DIVIDE & ROUND

1) GET(b)
2) x := a/b
3) y := (x+.005)*100
4) z := truncate(y)
5) w := z/100
6) PUT(w)

-11-

DIVIDE & ROUNDinput(2)

GET(b)

x := a/b

y := (x+.005) * 100

z := truncate(y)

w := z/100

PUT(w)

Figure 3.2

Since both of the above programs contain a single fault, we can conclude that the number of faults in
a program does not depend solely on the number of nodes labeled "0" or "˜" in the corresponding trace
graph. This gives rise to the question: What properties about a 0/1 labeled trace graph do imply that all the
deviant execution behavior is being caused by a single program fault?

Since actions that represent program faults can not exist in the subgraph of the trace graph labeled
with "1"’s, we know that any node that represents a faulty statement must be labeled with a "0" or a "˜".
Also, in any trace graph, each deviant action must reach back to some action that represents a program
fault. In the trace of a straight line program, each node represents a different statement. Thus, in a straight
line program with a single fault, all deviant actions must reach back to some single node, namely the one
that represents the faulty statement.

-12-

If we know a straight line program contains a single fault, to find it, we need to look for a node with
the following two properties:

P1) It must be labeled as "0" or "˜".

P2) Every node in the graph labeled "0" must be reachable from it.

In the labeled trace graph of Figure 3.3, the only node that satisfies the two properties needed for a
node to represent the single faulty statement, in a straight line program is n2. Thus, if the graph represents a
program with a single faulty statement the statement is represented in the graph by n2.

-13-

n1

n2

n4

n8

n3

n5 n6 n7

n9

Figure 3.3

In the labeled trace graph of Figure 3.4, four nodes satisfy the two properties needed for a node to
represent the single faulty statement in a straight line program. Thus, without querying an oracle for further
information, all we can conclude is: If the labeled trace graph of Figure 3.4 represents a straight line pro-
gram with a single fault, then one of the nodes n2, n4, n5, or n8 represents the faulty program statement.

-14-

n1

n2

n4

n8

n10

n12

n3

n5 n6 n7

n9

n11

Figure 3.4

In Figure 3.5, no node of the labeled trace graph satisfies the two properties needed for a node to rep-
resent the single faulty statement in a straight line program; therefore, the program represented contains
more than one fault. We know the program can not be fault free since there exists nodes in the trace graph
which represent incorrect actions.

-15-

n1

n2

n4

n8

n3

n5 n6 n7

n9

Figure 3.5

The following algorithm provides a method for finding all nodes in a 0/1 labeled trace graph that sat-
isfy the properties needed for a node to represent the unique fault in a straight line program.

-16-

Algorithm 3.1: Locating nodes that could represent the faulty statement in a straight line program that con-
tains a single fault.

Input. GRAPH, a labeled trace graph as output from Algorithm 2.2.

Output. POSSIBLE, a set containing all nodes that could represent the single faulty statement in a straight
line program containing a single fault.

Method. A queue called TO_PROCESS is used. It contains nodes that could possibly represent the pro-
gram fault and need to be checked further. OUT_REACH[i] represents the set of nodes in the trace graph
labeled with a "0" and reachable from GRAPH[i]. FA ULTY is the set of all nodes in the graph labeled "0".

Initialize FAULTY to the empty set.

for i := 1 to the number of records in GRAPH do

case of (label of GRAPH[i]) do

"0":

Enter GRAPH[i] in the set FAULTY.

Mark GRAPH[i] as still_possible.

Initialize OUT_REACH[i] to {Graph[i]}.

"˜":

Mark GRAPH[i] as still_possible.

Initialize OUT_REACH[i] to the empty set.

"1":

Mark GRAPH[i] as not_possible.

Initialize OUT_REACH[i] to the empty set.

Insert all nodes marked still_possible in TO_PROCESS in reverse topological sort order.

while TO_PROCESS is not empty do

Remove a node from TO_PROCESS, call it ri.

Set OUT_REACH(ri) to OUT_REACH(ri) U (
r j child of ri

U OUT_REACH(rj)).

for i := 1 to the number of records in GRAPH do

if OUT_REACH[i] = FAULTY

then

Enter GRAPH[i] in the set POSSIBLE.

Lemma 3.1: A node n is in POSSIBLE as output by Algorithm 3.1 if and only if n satisfies the fol-
lowing two properties:

P1) It is labeled as "0" or "˜".

P2) Every node in the graph labeled "0" is reachable from it.

Proof: FA ULTY is the set of nodes in the trace graph that are labeled with "0". Entries are made to
FA ULTY only in the first for loop of the algorithm and only if the node is labeled with a "0".

Every node in POSSIBLE is labeled with a "0" or a "˜". If a node is labeled with a "1", then in the
first for loop of the algorithm it is marked as not_possible and its OUT_REACH set is initialized to the null
set. No node marked as not_possible is ever put on TO_PROCESS, and its OUT_REACH set is never
changed from the initialized value. Thus, in the second for loop its OUT_REACH set will never be equal
to FAULTY. (Assuming the input graph has at least one incorrect output or there would be no need to look
for program faults.) and the node will never be entered in POSSIBLE.

-17-

If n is an element of some OUT_REACH set, then n is labeled with a "0". This is true directly after
the for loop of the algorithm has been executed since the only OUT_REACH sets that are not initialized to
the null set are those where the nodes are labeled with a "0". In the remainder of the algorithm, each
change made to an OUT_REACH set is through a union of already defined OUT_REACH sets, so no ele-
ments that weren’t in some OUT_REACH set initialized in the for loop will appear in the new
OUT_REACH sets.

If n is an element of OUT_REACH[i], then n is reachable from GRAPH[i]. This is clearly true
directly after the for loop of the algorithm has been executed since either the OUT_REACH set is the null
set or contains only GRAPH[i]. But if it is true before an execution of the while loop, it will also be true
after an execution of the while loop since "reaches" is a transitive property, and an OUT_REACH set is
changed in the loop by combining the old OUT_REACH set with the OUT_REACH set of a child of the
node.

If nk is a "0" labeled node reachable from a "0" labeled node n1, then nk is in OUT_REACH of n1.
Assume nk is reachable from n1, then there exists a path n1, n2, ..., nk, ..., nm, where nm is a node with no
outedges. Since n1 is labeled with a "0", assumption A3 tells us none of the nodes on the path are labeled
with a "1". This implies that each node on the path was marked as still_possible in the first for loop of the
algorithm. Hence, each path node is in TO_PROCESS, and for i < j, nj will be processed before nj. When
nm-1 is processed, its OUT_REACH set is updated and recorded. When the update is made, any node in
OUT_REACH of nm becomes a part of the OUT_REACH set of nm-1. We can continue arguing in this
manner to show that nk will be in the OUT_REACH set of n1.

Lemma 3.2: The complexity of Algorithm 3.1 is O(|V|3), when the trace graph under consideration is
(V,E).

Proof: We are assuming that sets will be kept in bit vector notation. If this is the case, we can further
assume that every set operation will take at most time |V|, where V is the set of all possible set elements.

The work of the algorithm is done in operating on sets, thus in determining the complexity of Algo-
rithm 3.1, we will count the number of set operations performed.

In the first for loop, a set is initialized for each node in the graph. In the while loop, for each node on
the queue, a union is performed for each of the node’s children. A node can appear on the queue once and
can have at most |V| children. Thus, an upper bound for the number of set operations done in the while
loop is |V|3. In the second for loop, a set comparison is done for each node in the graph. Thus, the total
amount of work done is (2*|V|+|V|3)*|V|.

Assume the program presented in Figure 3.6 contains a single fault. From the above discussion, we
know the fault must occur in statement 3, 4, or 5. The program is simple enough so that knowing this
allows us to conclude that the formula being evaluated, (a+b)/(a*b), is not correct. What is the correct for-
mula? If we guess (a-b)/(a*b), the fault occurs in statement 3. If we guess (a+b)/(a-b), the fault occurs in
statement 4. Or if we guess (a+b)-(a*b), the fault occurs in statement 5. No available information will help
us to decide which of our three guesses, if any, is correct. If we are to decide where the program fault is
occurring, we must query an oracle for additional information about certain trace actions.

-18-

PROGRAM
FORMULA EVALUATION.

1) GET(a)
2) GET(b)
3) x := a + b
4) y := a * b
5) z := x / y
6) PUT(z)

FOR. EVAL.input(1 4)

GET(a) GET(b)

x := a + b y := a * b

z := x/y

PUT(z)

Figure 3.6

The above observation along with Lemma 3.1 gives us:

Theorem 3.1: Let P be a program with trace graph T. If POSSIBLE is the set constructed by Algorithm

-19-

3.1, when given input T, then

1) If POSSIBLE is empty, then P contains more than one error.

2) If POSSIBLE = {ni}, then P can contain a single error, and if it does, it is represented in T by
ni.

3) If | POSSIBLE | > 1, then P can contain a single error, and if it does, it occurs at one of the
nodes contained in POSSIBLE. Without further information from an oracle, the specific node
cannot be identified.

4. FINDING UNINITIALIZED VARIABLES AND DEAD STATEMENTS.

Another question of interest concerning the model is: Given a class of errors, what information does
a trace graph provide that helps to locate program errors from this class. In this section, uninitialized vari-
ables and dead statement error classes are examined. An error from the latter class is shown to be
detectable from the interrelationship information provided by the trace graph, while an error from the for-
mer class is shown to be detectable during the construction of the trace graph.

4.1. Uninitialized Variables.

If a variable is referenced before it has been assigned a value, it is said to be an uninitialized variable.
In Algorithm 2.1, when a variable reference is encountered, the hash table is checked. If there exists an
entry in the hash table for the referenced variable, an edge is constructed; whereas, if no entry exists, no
action is taken. Since a hash table entry is made for each value assignment at the time of the value assign-
ment, not finding a table entry represents finding an uninitialized variable. Instead of taking no action when
a reference does not exist in the hash table, an entry could be made to an error list stating what variable ref-
erence was missing from which record. The revised algorithm is presented below:

Algorithm 2.1 (revised): Building a trace graph.

Input. Trace an execution trace. Each record in TRACE contains the following fields:

program_statement_executed : integer,
action_taken : (input, output, assignment),
variables_referenced : list of variables,
variable_assigned : variable.

Output. A list of uninitialized variable errors and GRAPH, the trace graph of TRACE. Each record in
GRAPH describes a node and is constructed by augmenting a record of TRACE with the following two
fields:

in_edge_list : list of GRAPH records,
out_edge_list : list of GRAPH records.

Method. A table, referred to as HASH_TABLE, is used to keep track of value assignments to variables.
Access to HASH_TABLE is through a hash function called HASH. The function HASH maps a variable X
to the node of GRAPH in which X was last assigned a value. HAS_TABLE is initially empty.

for i := 1 to the number of records in TRACE do

for ev ery variable X referenced in TRACE[i] do

if X is in HASH_TABLE

then

Add GRAPH[i] to the out-edges of HASH(X).

-20-

Add HASH(X) to the in-edges of GRAPH[i].

else

Add X and TRACE[i] to list of uninitialized variable errors.

if TRACE[i].action is input or assignment

then

if TRACE[i].variable_assigned is in HASH_TABLE

then

Update HASH(TRACE[i].variable_assigned) to have value i.

else

Insert TRACE[i].variable_assigned in HASH_TABLE with value i.

The list of uninitialized variable errors output in Algorithm 2.1 (revised) can be used as input to
Algorithm 2.2 to construct a more complete labeling of the graph. Nodes that are currently labeled by the
algorithm as unknown can potentially be labeled by the revised algorithm as deviant.

A revised labeling algorithm is presented below:

-21-

Algorithm 2.2 (revised): 0/1 labeling a trace graph.

Input. BAD_REFERENCE, a list of nodes referencing uninitialized variables. GRAPH, a trace graph
obtained as output from Algorithm 2.1. Data from an oracle indicating which output results are correct and
which are incorrect.

Output. A trace graph in which each node contains a field indicating the node’s 0/1 label.

Method. Tw o queues are used: ONE, which holds unprocessed nodes that will be labeled with a "1", and
ZERO, which holds unprocessed nodes that will be labeled with a "0". Both queues are initially empty.

for i := 1 to the number of records in GRAPH do

case of (GRAPH[i].action) do

input:

Label GRAPH[i] with a "1".

output:

Label GRAPH[i] as indicated by the data from the oracle.

Insert the node on in-edge list of GRAPH[i] in ONE or ZERO depending on label
GRAPH[i].

assignment:

if GRAPH[i] in BAD_REFERENCE

then

Insert in GRAPH[i] ZERO.

else

Label GRAPH[i] as unknown.

while ZERO is not empty do

Remove node from ZERO.

Label it with a "0".

Insert all of its unlabeled children in ZERO.

while ONE is not empty do

Remove node from ONE.

Label it with a "1".

Insert all of its unlabeled parents in ONE.

To illustrate the amount of information that can be gained by marking uninitialized variables during
trace graph construction, we build and label the trace graph of the DIVIDE & ROUND program presented
in Figure 3.2 using the revised algorithms. In the trace graph built using the revised algorithms, (see Figure
4.1) no node is labeled as having unknown validity. Recall that in the original labeling, half of the nodes
were labeled as having unknown validity. If we assume that the program contains a single fault, Algorithm
3.1, when given the labeled trace of Figure 4.1, will identify the error as being in statement 2. When given
the labeled trace graph of Figure 3.2, the algorithm says a single error can be causing the faulty output and
if so it is in statement 2, 3, 4, or 5.

-22-

GET(b)

x := a/b

y := (x+.005) * 100

z := truncate(y)

w := z/100

PUT(w)

Figure 4.1

Since an execution trace represents only a single execution of the program, no claim is made that
Algorithm 2.1 (revised) finds all uninitialized program variables. The best that can be said is that no unini-
tialized variables exist in any program statement appearing in the given trace.

4.2. Dead Statements.

We now look at a second class of errors that needs a completely built trace graph to obtain any help-
ful information. An assignment or input statement is said to be a dead statement if the variable which is
assigned a value in the statement is never referenced after the assignment has been made or if the variable is
reassigned a new value before being referenced. A variable reference in a trace graph is represented by an
arc. The arc (ri, rj) in a trace graph indicates that a reference in rj has been made to the value assigned in ri.
Thus, if an assignment or input node in a trace graph has no out-edges it can not have been referenced dur-
ing the program’s execution. For example, the statement GET(x) in Figure 2.1 is never referenced since the
value of x assigned in the GET statement is overwritten with the value of y before a value for x is ever
needed. In Figure 2.5, this shows itself as GET(x) having no out-edges.

Given a trace graph, it is straight forward to check each assignment and input node to see if its out-
edge list is empty. If so, the node can be marked as a potential dead statement.

-23-

As was the case with uninitialized variables, no universal statement about dead variables can be
made. Clearly, no remark about statements that do not appear in the program execution can be made. Also
statements that are referenced in other executions, but are unreferenced in the execution being used, will be
marked as dead.

5. FUTURE WORK.

The ideas and results in the previous sections open the way to a wealth of interesting problems.
Below we mention several of these.

Relaxing The Assumptions: In the paper we have demonstrated how to model the execution of straight
line programs using a labeled directed graph. Most programs make use of loops, conditionals, and subpro-
gram calls. Each of these concepts needs to be explicitly provided for in the model.

-24-

In straight line programs, a program fault appears as an action in the trace graph at most once. When
loops appear in the program a single program fault may be executed more than once, and hence, will be
represented in the trace graph zero or more times. This turns error location into a two step process. In step
one, the trace actions that represent faulty program statements must be identified. In step two, these must
be "reduced" to the programming statements represented. One might want to help provide for this second
step in the graph structure. A second type of arc could be used to link nodes that represent actions stem-
ming from the same program statement. Although simplifying the error location problem, this type of link
adds to the complexity of the graph construction process.

When a conditional is executed, the boolean expression is evaluated in exactly the same way as
expressions included in assignment statements are evaluated when an assignment is made. Thus, many of
the faults that appear in assignment statements can also appear in conditional statements. This indicates
that conditionals should appear in some form in the trace. Exactly what form is what needs to be deter-
mined. Questions like "should some marking be included in the graph to indicate a path choice was made
here" need to be addressed along with "should only the expression evaluation be represented or should the
"whole" conditional be represented in some way?"

Subprogram calls appear to be the easiest concept to add to the present model. They can be treated as
a series of complex assignment statements. A mapping between parameters and the actual arguments needs
to be defined. This could then be used to alter HASH_TABLE, of Algorithm 2.1, before and after the sub-
program statements have been added to the graph.

Accepting Nonconsistent Data: One of the underlining assumptions made about the program environment
was that the data provided by the oracle lead to a consistent labeling of the graph. It is possible for a
human oracle to violate this condition, see Figure 5.1.

? x1 := ...

PUT(x1) PUT(x1)

Figure 5.1

Because of this; some of the responsibility for seeing that the oracle is providing consistent data
needs to be shifted from the oracle to the system. There are two ways in which this can be handled: batch
or incrementally. In a batch system, the data is checked for consistency after all the data has been input. In
an incremental system, the data is checked for consistency as it is being entered.

A modification of Algorithm 2.2 could be used in either type system to do the consistency checking.
But the major work in a system is not in the checking of the data supplied by the oracle but in the generat-
ing of information to help the oracle. If the oracle has provided the system with one inconsistent set of
validity values, then before the oracle is asked for another such set, information should be provided about
the problems in the first set. The checking done by this type of algorithm is time consuming and involved.
For example, if the graph in Figure 5.2 represents an execution for which the oracle is supplying values,
and x1 has been indicated as incorrect, then each of x2, x3, and x4 must be input as incorrect. The system
must discover this, inform the oracle of it, and monitor the system to see that the oracle does supply this
value..

-25-

x1 := ...

x2 := ...

x3 := ...

x4 := ...

PUT(x1)

PUT(x2)

PUT(x3)

PUT(x4)

Figure 5.2

When an inconsistency is entered, or a value entered that leads to conclusions about other values unexcept-
able to the oracle, the oracle must be allowed to make changes. We use Figure 5.2 to show that this can
have a rippling effect. Assume all output nodes are currently assumed incorrect, and that the oracle decides
x3 is correct. Then x1 and x2 must also be changed to correct. How does a system deal with this?

Finding the minimum number of errors. In section 3, we asked when a single fault could exist in a
straight line program. A more general question would be to ask what is the minimum number of faults that
can occur? In Figure 5.3, we see that two faults could be causing all the deviant actions. One would occur

-26-

in n5 and the other in either n2 or n4.

n1

n2

n4

n7

n3

n5 n6

n7

Figure 5.3

From this example, we see that the minimum fault situation will parallel the single fault situation in that the
exact locations of the faults can not always be identified. In the example, one fault was pinpointed exactly
while the other only identified as being part of a particular subgraph.

In finding a solution to the minimum error question, Reach-Out sets will need to be used. To generate
these, a generalization of Algorithm 3.1 could prove useful. It also appears that some of the methods used
in data flow analysis and dynamic programming will be applicable.

Of course once the multi-error problem is settled for straight line programs, the results need to be
expanded so the same results can be determined when you have any program.

Oracle queries: As demonstrated several times in the paper, a fault position can not always be pinpointed
exactly. It can however be restricted to a subset of the graph nodes. To pinpoint it more takes an oracle.
Since one of the aims of the system is to minimize the work of an oracle, we want to determine what ques-
tions to ask the oracle that will produce the most results from the least amount of work. One problem to be
considered is which node to ask the oracle about. Included in this is what happens when the action asked
about is identified as deviant versus what happens when when the action is identified as correct. Figure 5.4
illustrates the two extreme situations that will need to be considered. Clearly there is no simple definitive
answer to the question.

-27-

Figure 5.4

Another problem to be considered when querying an oracle is the amount of work needed to be done by the
oracle to answer a question. If the position of two nodes in a graph provide the same amount of informa-
tion, the one that takes less work on the part of the oracle to identify as correct or incorrect should be exam-
ined first.

Classes of errors: In mutation theory (see section 6 for more details) classes of faults are identified and
discussed in relationship to testing. What can we say about these classes in relationship to fault identifica-
tion? What other classes might be identified and discussed? This type of question is what is addressed in
section 4. Much more needs to be done.

Multiple Traces: Since one trace has proven helpful in the fault detection process, can more than one trace
provide us with even more information? Traces that produce trace graphs with identical structures can be
used to identify differences in the labelings. A node with two different labels represents a deviant action
rather than a faulty statement. What other information can be gained from having more than one trace?
Can the analysis of a trace graph generate suggested test cases?

Real Programs: Some empirical studies need to be made. What types of graphs are produced by actual
programs? Of special interest, is the average number of children and parents of a node because of Algo-
rithm 3.1. It appears that the bound given is actually in practice more on the order of c * |V|2, where c is a
bound on the number of children and parents of a node.

-28-

6. THE LITERATURE.

Below we present several projects which have some relationship to the work presented in the paper.

In [S1], Shapiro develops algorithms to diagnose and correct errors in logic programs. A program is
viewed as a series of procedure calls having inputs and outputs. During execution, the diagnosis system
interprets a procedure and queries an external oracle, which determines if the procedure has produced the
correct output on the given input. When done, the system returns the name of the incorrect procedure and
the input that makes it fail. It is claimed that the number of oracle queries produced by the system is pro-
portional to the logarithm of the number of procedure calls. This result is shown to to be minimal in the
expected number of queries required.

In [R1], Renner presents the algorithms of [S1] adapted to work with Pascal programs. The relevant
differences between Pascal and logic programming languages are identified, and the Shapiro algorithms are
altered to deal with the problems caused by the differences. The complexity results of [S1] are not proven
for the altered system, and in fact no longer appear to be true.

A slice is an independent program guaranteed to faithfully represent an original program within a
domain of a specified subset of behavior [W1]. Starting from a subset of a program’s behavior, a program
can be reduced to a minimal form which still produces that behavior. This reduced program is the slice. In
[W1], it is claimed that finding a slice is in general unsolvable. However, a dataflow algorithm is presented
for approximating a slice when the behavior subset is specified as the values of a set of variables at a state-
ment. In [W3], a dice is defined as a slice on incorrect variables from which slices on correct variables
have been removed. Both [W2] and [W3] present empirical results on slicing and dicing. In [W2], experi-
mental evidence is given to show that programmers mentally slice during debugging. A second experiment
presented in [W3] further states that programmers using a dicing tool debugged their programs significantly
faster than unaided programmers.

Program mutation is a technique for measuring the adequacy of test data. The technique is error-
based. In error-based testing, the goal is to construct test cases that reveal the presence or absence of spe-
cific errors. Classes of errors have been defined, and case studies of mutation testing which investigate the
effectiveness of mutation testing to uncover these classes have been done. For example, in [A1], a number
of examples are provided to show how mutation operators can be used to uncover simple statement errors,
dead code errors, domain errors, dead branch errors, data flow errors, special values errors, and coincidental
correctness errors. We are interested in analyzing the error classes defined for mutation testing in our sys-
tem; see section 4 for examples.

7. REFERENCES.

[A1] Acree, A.T., Budd, T.A., DeMillo, R.A., Lipton, R.J., and Sayward, F.G., :Mutation Analysis,"
Report GIT/ICS-79-08, Georgia Institute of Technology, 1979.

[E1] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 729-1983, Inst. Electrical
and Electronics Eng., New York, 1983.

[R1] Scott Renner. "Diagnosis of logical errors in Pascal programs", Report UIUC-DCS-F-84_915 Univer-
sity of Illinois, Urbana, Apr.1984.

[S1] T.E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA. 1983.

[W1]
Mark Weiser. "Program Slicing". Proceeding of the Fifth International Conference on Software Engi-
neering, San Diego, CA, March, 1981.

[W2]
Mark Weiser. "Programmers Use Slices When Debugging". Communications of the ACM 25, 7, pp.
446-452, July, 1982.

[W3]
Mark Weiser and Jim Lyle. "Experiments on Slicing-Based Debugging Aids". Emperirical Studies of
Programmer, pp. 187-197, Ablex Publishing, Norwood, New Jersey, 1986.

-29-

